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Bayesian optimization with active learning of design
constraints using an entropy-based approach
Danial Khatamsaz 1, Brent Vela 2✉, Prashant Singh2,3, Duane D. Johnson 3,4, Douglas Allaire1 and Raymundo Arróyave 1,2,5

The design of alloys for use in gas turbine engine blades is a complex task that involves balancing multiple objectives and
constraints. Candidate alloys must be ductile at room temperature and retain their yield strength at high temperatures, as well as
possess low density, high thermal conductivity, narrow solidification range, high solidus temperature, and a small linear thermal
expansion coefficient. Traditional Integrated Computational Materials Engineering (ICME) methods are not sufficient for exploring
combinatorially-vast alloy design spaces, optimizing for multiple objectives, nor ensuring that multiple constraints are met. In this
work, we propose an approach for solving a constrained multi-objective materials design problem over a large composition space,
specifically focusing on the Mo-Nb-Ti-V-W system as a representative Multi-Principal Element Alloy (MPEA) for potential use in next-
generation gas turbine blades. Our approach is able to learn and adapt to unknown constraints in the design space, making
decisions about the best course of action at each stage of the process. As a result, we identify 21 Pareto-optimal alloys that satisfy
all constraints. Our proposed framework is significantly more efficient and faster than a brute force approach.
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INTRODUCTION
To improve their efficiency, gas turbine engines (GTEs) must be
able to operate at higher temperatures. The development of
materials capable of withstanding these demanding operating
conditions has played a key role in the evolution of GTE
technologies. Ni-based superalloys are currently the material of
choice for GTE blades, and have been continually redesigned over
the past 40 years to increase their ability to operate at higher
temperatures. Starting with PWA1480 and culminating in TMS-
238, six generations of single-crystal Ni-based superalloys have
been developed1. TMS-238 is the most advanced Ni-based
superalloy to date, and is able to withstand 1000 hours of creep
testing under 137 MPa tensile stress at 1100 ∘C1. However, these
alloys are approaching their operational limits as they are being
designed to operate near their solidus temperatures. As a result,
the discovery and development of ultrahigh-temperature materi-
als are necessary to enable further increases in operating
temperatures for GTE blades2.
Refractory Multi-Principal-Element Alloys (MPEAs) have shown

promise as structural materials for gas turbine engine blades3.
These alloys consist of multiple alloying elements (typically 4 or
more) at concentrations ranging from 5 to 35 at%. The diversity of
MPEA compositions offers the potential to design alloys with
desirable properties such as low density, high-temperature yield
strength, creep resistance, and oxidation resistance. However, the
MPEA design space has been largely unexplored to date4. The
high dimensionality of this space and the combinatorial explosion
of different constituent combinations makes it challenging to
explore. For example, a 5-component alloy system sampled at 5 at
% would result in over 10,000 candidate designs, not including the
exploration of microstructure space. Due to the vast size of the
MPEA space, it is impossible to explore it through traditional
experimental (or even computational) approaches.

Moreover, candidate alloys for complex engineering applica-
tions such as GTE must meet multiple design objectives and
constraints, all at once. For example, they must be ductile at room
temperature for formability while retaining their yield strength at
high temperatures. However, the ‘strength-ductility trade-off’5

makes it difficult to design such an alloy. In addition to these
objectives, candidate alloys must also meet a number of
performance constraints, including low density, high thermal
conductivity, narrow solidification range, high solidus tempera-
ture, and a small linear thermal expansion coefficient. The design
of structural materials for GTE blades is, therefore, a highly
constrained problem, requiring the simultaneous satisfaction of
multiple objectives and constraints. It is not possible to know
beforehand whether a given alloy will meet all of these
requirements, so each point in the design space must be
individually evaluated. These multi-objective, multi-constraint
problems are more complex and resource-intensive than conven-
tional single-objective, loosely-constrained design problems.
The Integrated Computational Materials Engineering (ICME)

paradigm6 offers a promising approach for designing alloys with
tailored properties through computational means by inverting the
process-structure-property-performance (PSPP) chain. However,
constructing meaningful linkages along the PSPP chain is a
resource-intensive process, both experimentally and computa-
tionally. Traditional ICME methods are not sufficient for efficiently
exploring a vast, high-dimensional design space while simulta-
neously optimizing for multiple objectives and satisfying a range
of constraints. This presents a major challenge in the field, as it is
crucial to identify constraint-satisfying Pareto-optimal designs
within limited resources. Without more efficient approaches for
exploring and exploiting highly-constrained multi-objective
design problems, it will be difficult to make significant progress
in this area.
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Multi-objective Bayesian optimization (MOBO) methods have
been popular in materials design because they work with minimal
data and employ a heuristic-based search to look for the possibly
most informative observations to make and increase a system’s
state of knowledge in terms of optimal design. MOBO schemes
have been successfully deployed in various contexts within the
domain of materials science. For example, Arpan et al.7 leveraged
MOBO to design interfacially controlled ferroelectric materials for
superior energy storage and minimal energy loss. The authors
performed 4-objective optimization of the following parameters:
temperature, partial O2 pressure, film thickness, and surface ion
energy. Solomou et al.8 optimally explored the multi-objective
Pareto front in precipitation-strengthened shape-memory alloys
by maximizing the Expected Hyper Volume Improvement (EHVI)
scalar metric9. In another work, Suzuki et al.10 proposed a MOBO
scheme known as Pareto-frontier entropy search (PFES). The
proposed acquisition function evaluates the information gain via
the mutual information between the objective functions and the
Pareto front and selects the design most likely to improve the
system’s knowledge of the Pareto front. The authors benchmarked
the proposed optimization scheme against two datasets concern-
ing the design of battery materials. Within the first dataset, the
simultaneous maximization of ion conductivity and stability
(minimization of formation energy) was performed within the
Bi1−x−y−zErxNbyWzO48+y3/2z chemical space where a pool of 335
candidate designs were available. Likewise, simultaneous max-
imization of ion conductivity and stability was performed within
the La2/3−xLi3xTiO3 chemical space where a pool of 1119 candidate
designs was available. The authors note that this entropy-based
approach to MOBO converged faster than implementations such
as ParEGO11 in both design spaces.
An improvement to the Bayesian optimization paradigm is to

employ multiple models representing the same quantity of
interest. This is known as multi-fidelity BO and has been shown
to effectively increase the robustness and efficiency of engineer-
ing design schemes12–16. These models are built upon different
assumptions and/or simplifications and vary in fidelity and cost of
the evaluation. The models can then be considered to be
information sources that provide useful knowledge about a given
quantity of interest (QoI). In multi-fidelity BO, the assumption is
that every source has some helpful information about the design
space. By accurately fusing the information from all available
sources, it is possible to construct a fused model that is a better
approximation to the ground truth than any information source in
isolation. In the earlier works of refs. 12–16, a multi-fidelity approach
has been employed to optimize a single quantity of interest
(single-objective optimization). Recently, this multi-fidelity setting
has been expanded to multi-objective design problems as well17.
However, none of these prior works have tackled problems for
which constraints must be actively learned to identify the feasible
design space.
Constrained design problems pose a significant challenge

because it can be difficult to handle constraints and ensure the
feasibility of proposed solutions. Without properly identifying the
feasible region in the design space, there is a risk that optimal
designs may be infeasible. Recently, Hickman and Aldeghi et al.18

proposed a method for using Bayesian optimization (BO) with
constraints in their Python module, GRYFFIN. However, this
method assumes that the constraints are already known and
can be easily checked, which is often not the case. Additionally,
checking if a design satisfies a constraint can often require
expensive computational modeling or resource-intensive experi-
ments. In such cases, machine learning approaches can be more
effective at learning and modeling the constraints. The main focus
when learning a constrained design space is the boundary of the
feasible space, rather than the value of the constrained quantity of
interest (QoI) at a particular location. Instead of a regression
model, it may be more efficient to use a classifier to represent the

feasibility boundary that separates feasible and infeasible regions
in the design space. Once this boundary has been correctly
identified, optimization can be performed within the feasible
design space, which increases the efficiency of the design process
by limiting expensive queries against design objectives to only
feasible design choices.
Of particular interest to this work is the Closed-loop autono-

mous materials exploration and optimization (CAMEO) framework,
developed by ref. 19. The authors deployed CAMEO within the Ge-
Sb-Te chemistry space in search of optimal phase-change memory
materials for application in photonic switching devices. The
authors first use GRENDEL (graph-based endmember extraction
and labeling)20 to determine where boundaries between phases
lie in the chemistry space. Once the phase boundaries have been
learned, the authors then use CAMEO to optimize within a phase
of particular interest; priority is given to design near phase
boundaries where significant changes in the optical contrast
between amorphous and crystalline states (the target property)
are expected. This framework first identifies the phase-boundaries
in a particular design space. Once the phase-boundaries are
identified, CAMEO will sample near the boundaries as this is likely
where the local maxima are located. Depsite this, CAMEO was
limited to mapping phase boundaries. Furthermore, during
constrained optimization in the context of alloy design, it is often
the case that multiple constraints (not just phase boundaries)
must be mapped in order to identify regions in the design space
worth performing optimization in. In this work we propose a
framework that actively learns the boundaries of multiple
constraints and then searches within these boundaries for optimal
materials.
In order to effectively use classifiers to represent constraint

boundaries, it is necessary to learn the feasibility boundaries to
ensure the accuracy of classifier predictions. In this work, we build
upon our previous efforts21 in constraint-satisfaction multi-
objective Bayesian optimization by introducing a entropy-based
approach to the decision-making process. Our previous approach
calculated entropy based on the difference between class
membership probabilities predicted by Gaussian process classi-
fiers, resulting in higher entropy for designs close to the predicted
boundary. However, this approach did not take into account
uncertainty in the probability predictions, and the entropy was
heavily influenced by the location of the predicted boundary,
which can change as the system learns more, potentially making
previously queried data points less valuable. In this work, we
propose calculating entropy based on uncertainty in class
membership probability predictions so that designs with higher
uncertainty about their class membership will have higher entropy
regardless of their distance from the predicted boundary. This
approach improves upon our previous efforts by considering
uncertainty in probability predictions and reducing the reliance on
the location of the predicted boundary.
Our proposed method for solving constrained design problems

is not only faster than previous approaches but also allows for
more informed decision-making at every stage of the process. By
introducing a entropy-based approach to the Bayesian optimiza-
tion (BO) framework, we are able to accurately learn the feasibility
boundaries while also improving the system’s knowledge of the
optimal values of the quality of interests QoIs. This is exemplified
in our application of the method to a tri-objective, multi-
constrained design problem over the Mo-Nb-Ti-V-W system, a
complex multi-physics problem space. The efficiency and effec-
tiveness of our approach are further enhanced when it is
implemented with a batch variant in the BO stage. With this
method, we are able to make confident and strategic decisions
that lead to successful design outcomes.
The deployment of our framework within the Mo-Nb-Ti-V-W

high entropy alloy system resulted in the identification of 21
constraint-satisfying Pareto optimal alloys. Importantly, the
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framework converges on a Pareto front of alloys that is
interpretable. With regard to constraint satisfaction, we find that
alloys that meet constraints relevant to GTE blades are lean in W
and Mo due to the dominance of the density constraint. On the
other hand, Ti- and V-rich alloys failed the minimum solidus
temperature constraint. When considering the multi-objective
optimization problem, compositions along the tri-objective Pareto
front were found to have more W when near the strength axis. At
the same time, they were rich in Nb when the alloys were near the
axes for both ductility indicators. We note that identifying these
Pareto optimal alloys with a brute force approach would have
required the querying of ~10,000 alloys for five constraints each,
just to learn the feasible space. On the other hand, the proposed
framework learns the feasible space and identifies the Pareto set
in ~700 queries. Furthermore, we demonstrate that employing a
batch querying policy after the feasible space has been identified
can decrease the time required to identify the Pareto set by ~95%.

RESULTS
Definition of design problem
Alloys suitable for GTE blades must meet several objectives and
satisfy numerous constraints. For the sake of simplification, in this
work, we consider two opposing types of design objectives,
summarized in Table 1. On the one hand, the alloy must have high
strength at high temperatures in order to carry the necessary
structural loads during operation. On the other hand, the alloy has
to possess some degree of ductility at room temperature to
minimize the risk of fracture.
In this work, we evaluate the HT (1300 ∘C) yield-strength

objective using a physics-based model developed by Curtin and
Maresca22. We consider this model to be the truth model for the
HT yield strength objective, as detailed in the Methods section.
This model relies on the assumption that a hypothetical
homogeneous ‘average’ alloy has all the macroscopic properties
of the true random alloy22. The model’s grounding assumption is
that the intrinsic strength of compositionally complex BCC alloys
originates from the increased ‘roughness’ of the landscape that
dislocations must traverse to induce plastic deformation. The
model is capable of incorporating temperature effects and has
been found to be in moderately good agreement with available
experimental data.
While models for the elongation at fracture (ϵf) of MPEAs are not

available, the ductility of MPEAs can be roughly inferred from
ground state properties of alloys, such as the Pugh ratio and the
Cauchy pressure. These two indicators of ductility have been used
extensively in the design of ductile MPEAs21,23–25. In the context of
metals, Pugh’s ratio is defined as the ratio of the bulk modulus to
the shear modulus (B/G). Thus, B/G captures the extent of the
plastic deformation (B) without fracture (G)26. Pettifor27 proposed
Cauchy pressure as an indicator of intrinsic ductility/brittleness,
which is the difference between two elastic constants C12 and C44.
A positive Cauchy pressure indicates non-directional metallic
bonds resulting in intrinsic ductility of the crystal, whereas a
negative Cauchy pressure corresponds to directional bonds and
results in an intrinsically brittle crystal structure. Both indicators
can be estimated with high-fidelity DFT frameworks at a great
computational cost. However, as the MPEA composition space is
combinatorically vast, sufficient exploration of the space is
intractable using conventional brute-force approaches. In the
case of this work, the truth model for both ductility objectives is
the DFT-based Korringa–Kohn–Rostoker Green’s function (DFT-
KKR-CPA) method, as detailed in the Methods section.
In addition to the objectives associated with strength and

ductility, candidate alloys for next-generation GTE blades must
satisfy several constraints. Feasible alloys must have a sufficiently
high solidus temperature to operate in the hot zone of the

turbine. As such, we stipulate that the solidus temperature be
greater than 2000 ∘C. Moreover, candidate alloys must also be
lightweight, both to minimize centripetal forces caused by the
rotation of the blades28 and to reduce the total mass of the GTE
system. For this reason, we stipulate feasible alloys must have a
density of less than 9 g/cc. Alloys should also be designed with the
thermal management system of the turbine blade in mind. As
such, the material comprising the turbine blades must have high
thermal conductivity to dissipate the large amounts of heat from
the hot zone of the engine29.
Additionally, the blade must be compatible with thermal barrier

coatings. To ensure this, the linear thermal expansion from room
temperature to 1300 ∘C must not exceed 2%/K. Furthermore, from
the manufacturing standpoint, these alloys must be resistant to
solidification tearing, a common concern during the synthesis/
fabrication of metallic parts from melt precursors. While solidifica-
tion tearing results from very complex physical processes, a
narrow solidification range can protect against this failure mode.
Here, we stipulate the solidification range not exceeding 400 ∘C.
Finally, we want to note that the design constraints and objectives
described above and summarized in Table 1 are derived directly
from the challenge specifications by the Department of Energy’s
ARPA-E ULTIMATE program2. Thus, the present alloy design
exercise has some practical relevance.

Deployment of framework
The proposed framework is structured by connecting Bayesian
classification and Bayesian optimization loops. Starting with the
Bayesian classification loop, the goal is to actively learn the
boundaries separating the feasible and infeasible regions. There-
fore, a binary classifier is a natural choice for such a condition. A
Bayesian approach to learning the boundaries requires classifiers
capable of providing uncertainty for class membership predic-
tions. Thus, Gaussian process classifiers are employed to represent
design constraint boundaries. A formal way to make uncertainty a
comparable quantity is by representing it as entropy. Thus, active
learning in the Bayesian classification framework is done by
attempting to reduce the entropy associated with the classifiers
via augmenting the prediction standard deviations provided by
Gaussian process classifiers for a set of designs to the Shannon
entropy formula. Once the reduction in entropy drops below a
threshold, the predicted feasible regions are fed to the Bayesian
optimization loop by generating feasible designs to be searched.
The Bayesian optimization framework uses Gaussian process
regressions (GPRs) to model objective functions and Expected
HyperVolume Improvement (EHVI) as the acquisition function to
suggest the most informative experiments to discover better
approximations of the Pareto frontier. Note that the Bayesian
classification loop runs in parallel to the Bayesian optimization
loop in search of experiments that may significantly reduce

Table 1. The five constraints and the three objectives associated with
the design problem addressed in this work.

Property Constraint/Objective

Solidus Temperature Ts ≥ 2000 ∘C

Solidification Range ΔT ≤ 400

Thermal Conductivity κ ≥ 20

Linear CTE a1 ≤ 2%

Density ρ ≤ 9g/cc

Ductility Max C12− C44
Ductility Max B/G

HT Yield Strength Max σHT
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entropy. Thus, the framework is capable of dynamically switching
between both loops depending on the expected information gain
calculations. the schematic the framework is illustrated in Fig. 1
(All codes will be publicly available upon the end of the project at
the following Github repository: https://github.com/Danialkh26/
EBBC-MOBO).
Figure 2 illustrates the overall results of implementing the

proposed framework to solve the 3-objective, 5-constraint design
problem in this study. A total of 700 iterations were completed,
and the Bayesian optimization stage was initiated after iteration
420, when all the average entropy reduction plots flattened and
dropped below 3%. At the beginning of the Bayesian optimization
stage, classifiers were used to filter the design space, discarding
the infeasible regions first. As more queries were made to the
objective functions, better estimations of the Pareto front were
obtained, as indicated by improvements in the hypervolume
value. Initially, larger improvements were observed. However, the
improvements gradually decreased, indicating convergence to the
optimal Pareto front. It is important to note that all queries were
made around one corner of the objective space corresponding to
the maximum values of each quantity of interest, which confirms
that the framework effectively recognized the optimal design
region and is searching that area to discover better non-
dominated solutions.
While the aforementioned results are obtained using a

sequential approach during the Bayesian optimization stage, we
also consider a batch Bayesian optimization approach. Since there
is no change in the Bayesian classification stage and the related

results, the batch process begins after the optimization stage is
triggered. Employing the batch Bayesian optimization scheme
enables the execution of 48 experiments in parallel. This is
equivalent to processing a batch of 48 samples at every single
iteration at no or low additional costs. While economies of scale
are likely to be more modest in the context of actual physical
experiments, in this computational study, the batch of 48 simulta-
neous calculations was executed at no additional cost (per
sample).
By employing the batch Bayesian optimization scheme, the

same hypervolume improvement is obtained in only 13 iterations,
as a comparison is shown in Fig. 3. In contrast, 280 iterations were
needed while exploring the Pareto set using sequential MOBO.
This corresponds to a reduction in the time necessary to discover
the Pareto set of 95%. While the total cost (in terms of
supercomputing time) associated with the calculations was
roughly the same in both cases, there is a significant opportunity
cost incurred during sequential BO by not learning the Pareto set
early enough. Assuming each iteration lasts one day, it is much
more valuable to learn the design capabilities of an alloy system in
just 2 weeks rather than 9 months. In this context, batch-based
strategies can significantly reduce opportunity costs related to
long development times.
The fact that the batch and sequential BO schemes show the

same hypervolume improvement at convergence means that they
achieve a predicted Pareto set of similar quality. However, the
non-dominated designs found (i.e., the alloys comprising the
Pareto sets) may not necessarily be the same due to the high

Fig. 1 Schematic of the Bayesian optimization framework with active learning of the design constraints. In every iteration of the
framework, both Bayesian classification and Bayesian optimization loops run in parallel. The algorithm starts with Bayesian classification and
switches to Bayesian optimization once the average reduction in entropy of all constraint models falls below a threshold. The framework
switches back to Bayesian classification if a valuable experiment is suggested accordingly.
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dimensionality of the input space and the stochastic nature of the
BO process.
Regarding the discovery of constraint satisfying candidate

alloys, UMAP (Uniform Manifold Approximation and Projection)
in Fig. 4a–c shows that alloys rich in Ti, Mo, and particularly W fail
one or more of the five constraints, depicted in gray. For a more
quantitative view of this filtering process, in Fig. 4d, a Kernel
Density Estimate (KDE) is fit over the frequency at which elements
at various concentrations remain after filtering to visualize the
chemical signature of the resultant feasible space. In these
chemical signature plots, we see that the Ti and Mo signatures
are slightly shifted back, indicating a slight depletion in these
elements. On the other hand, the W signature is shifted back
significantly, indicating W-rich alloys fail at least one of the design
constraints.

The optimization portion of the framework converged on 21
Pareto-optimal alloys. The best-performing alloys with regard to
the ductility indicators are rich in Nb. This can be seen in the
UMAP, where the Pareto-optimal alloys, represented by stars, are
located near the Nb-rich corner of the diagram. On the other
hand, Pareto-optimal alloys that perform the best with regards to
the HT yield strength metric have higher W-content. Again, this
can be seen in the UMAP, where Pareto-optimal alloys approach
the W-rich corner of the diagram until reaching the border of the
feasible region. Likewise, the alloys that strike a trade-off between
these three objectives have a wide range of potential Nb and W
contents. This range of Nb and W contents can be seen in the
chemical signature of the Pareto set, where the chemical signature
of these two elements has broad peaks. These alloys and their
associated objective and constraint values are summarized in

Fig. 2 Overall results of the 5-constraint 3-objective material design problem. The figure shows the application of the proposed framework
to solve the problem. The process begins with learning the constraint boundaries by querying the constraints, effectively reducing the
entropy associated with each classifier that represents a specific constraint. Once the entropy curves for all classifiers are flattened, Bayesian
optimization begins to learn the non-dominated design region. As the estimations of the Pareto front improve, the hypervolume increases
respectively. The figure also includes an illustration of the objective space, showing all the queries to the ground truth model and the final
estimation of the Pareto front.
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Table 2. We recommend further investigation of these 21 Pareto-
optimal alloys to properly characterize their behavior in the
context of GTE blade applications.

DISCUSSION
To benchmark, the performance of the constraint-satisfaction
aspect of the proposed framework, a factorial exploration of the
space was performed. The information sources for the 5
constraints were queried at increments of 5 at% considering
binaries to quinaries resulting in 10,626 queries of each model

(53,130 queries in total). Using the proposed batch active learning
of constraints, only 420 queries were required to learn the extent
of the feasible design space, demonstrating the improved
efficiency of the proposed framework over a brute-force approach,
with a total reduction in the effort of ~96%. Here we note that
while in this work, the constraints were evaluated computationally
at relatively modest cost, in a real physical setting such a reduction
in effort would have a dramatic impact on the feasibility of
experimental campaigns.
We note that the classification of the feasible space has arrived

at interpretable results. Regarding the solidus temperature,

Fig. 3 Comparison of hyper-volume improvements in batch and sequential Bayesian optimization. Only 13 iteration is needed to reach
the same Pareto front estimation quality in comparison to the sequential approach. 48 cores are accessible in our supercomputing system.
Thus, it is possible to run 48 experiments in parallel without additional wall-time in batch Bayesian optimization case.

Fig. 4 Visualizations of constraint-passing and pareto-optimal alloys. a ROM Cauchy Pressure (indicator of true objective) plotted over the
design space. b ROM Pugh Ratio (indicator of true objective) objective plotted over the design space. c Estimated yield strength from the
Curtin–Maresca model plotted over the design space. d Chemical signature of the feasible chemical space. e Chemical signature of Pareto-
optimal set of alloys.
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85.96% percent of alloys pass the Ts ≥ 2000 °C constraint. Alloys
that fail this constraint are rich in Ti and V. This is to be expected,
as Ti and V are the least refractory elements comprising this
design space. Most alloys in the space (99.46%) pass the thermal
conductivity constraint κ ≥ 20 W/m/K. The few alloys that fail this
constraint are, again, rich in the two elements with the lowest
thermal conductivities, Ti and V. Again, this is likely due to the fact
that Ti and V are the least refractory elements in this design space.
In addition to Ti-rich and V-rich alloys, compositionally complex
alloys are also more likely to fail this constraint due enhanced
phonon and electron scattering leading to a decreased thermal
conductivity, putting a slight penalty on more high-entropy alloys.
All alloys in the Mo-Nb-Ti-V-W space pass the thermal expansion

coefficient constraint CTE < 2% 1/K. Regarding solidification range,
97.12% of candidate alloys pass the ΔT ≤ 400 K constraint. Alloys
that fail this constraint are rich in W and Ti. This is to be expected
as these W and Ti have the biggest difference in their melting
temperatures i.e., 3422 °C and 1668 °C, respectively. Furthermore,
increased alloy complexity alloys increases the solidification range,
again putting a penalty on high entropy alloys. Regarding density,
42.55% alloys pass the ρ ≤ 9 g/cc constraint. The three most
refractory elements, W, Mo, and to a lesser extent Nb, fail this
constraint. Figure 5 depicts a summary of this filtering.
Likewise, the optimization aspect of the framework has

converged on results that can be understood using metallurgical
intuition. The fact that Nb-rich alloys perform well concerning the
ductility objectives agrees with other works where Nb is to
enhance the ductility of otherwise brittle RHEAs30. The Pugh ratios
and Cauchy pressures of these 21 Pareto-optimal alloys are on the
order of 3.32 ± 0.266 and 93.1 ± 1.92 GPa, respectively. These
values are comparable to the ductile refractory MPEAs TiHfVNbTa
(B/G= 3.817, C12− C44= 75 GPa, ϵfrac= 12.6%)31 and NbMoTaWTi
(B/G= 2.74, C12− C44= 73, ϵfrac= 13%).32. Regarding yield
strength, increasing the W content within MPEAs has been shown
to increase the yield strength of alloys33.

To further benchmark the performance of the optimization
aspect of the proposed framework, we carried out a DFT analysis
of the Pareto-front. For example, in Fig. 6, we analyzed the
correlation of at.% Nb and V, (as both are from same group in the
periodic table) on key DFT quantities such as formation energy
(Eform), intrinsic-strength, and Pugh’s ratio34.
In Fig. 6a, b, we plot Eform with respect to (Mo+ Nb) and V

concentration, respectively, where an increase in at.% (Nb with
Mo) increases the alloy stability while increasing at.% V
destabilizes the BCC phase. We found that there is an optimal V
(<50 at%) or Mo+ Nb (>50 at%) concentration that stabilizes the
alloy. On the temperature scale, the 25 meV is equivalent to 300 K
(RT; 27 °C), i.e., all predicted HEAs (except one) show RT stability.
The intrinsic strength (bulk moduli, B) and Pugh’s ratio (i.e., ductility

indicator) in Fig. 6c, d shows a strong correlation with V+Nb
composition for predicted HEAs in Table 2. As seen in Fig. 6c, the
intrinsic strength decreases sharply with increasing V+Nb concen-
tration, while Pugh’s ratio (shown in Fig. 6d) increases. Alloys with
Pugh’s ratio (G/B) < 0.57 are considered ductile based on Pugh’s
criteria26. Furthermore, a good correlation is observed between
framework-predicted properties in Fig. 4 and DFT calculations in Fig. 6
for increasing Nb composition. This correlation suggests the utility of
such frameworks for reliable exploration and understanding of the
strength-ductility trade-offs in HEAs.
In light of recent initiatives for ICME-enabled closed-loop

design platforms and autonomous materials discovery, it is
important to note that the methodology used in this work, while
conducted in silico, can also be used to guide experimental
exploration of design spaces. One possible approach would be
to use computational models to initially reduce the design space
by applying relaxed constraints to eliminate candidates that are
likely to fail one or more constraints, such as predicted thermal
conductivity greater than 10W/m− K. This initial filtering could
then be followed by experimental campaigns to more accurately
determine the true boundaries of the constraint-satisfying
regions in the design space using stricter constraints, such as
thermal conductivity greater than 20W/m− K. A possible design
of experiments could include using a dilatometer to measure
the thermal expansion coefficient35, a densimeter to measure
the density36, a laser flash apparatus to measure thermal
conductivity37, and a high-temperature tensile testing rig to
measure the yield strength and elongation at yield38. For
constraints related to the solidus and solidification range, the
design space could be reduced by relying on CALPHAD-based
predictions, as it is currently not feasible to experimentally
determine the melting temperature for such refractory alloys in
an HTP manner. After reducing the design space, an experi-
mental campaign could be undertaken to optimize simulta-
neously for strength and ductility. The proposed framework can
be useful for autonomous and closed-loop material design
campaigns, as depicted in Fig. 7.

METHODS
In this study, we proposed and implemented an approach to
solving constrained multi-objective design problems by deploying
a Bayesian classification and optimization-based active learning
strategy. The framework is capable of handling an arbitrary
number of objectives and constraints. Moreover, the Bayesian
classification scheme uses an entropy-based measure to select an
optimal sequence of informative experiments. As a result, this
approach can identify the feasible boundaries on the design space
in a more efficient manner compared to previous approaches21 by
incorporating the uncertainty provided by Gaussian process
classifiers regarding the class membership predictions. The
superiority of our MOBO framework is that it employs a Bayesian
classification approach that can handle any number of constraints
and recognizes the feasible regions regarding each constraint

Table 2. The set of alloys that lie on the tri-objective strength-ductility
Pareto-front identified by the proposed framework.

Mo Nb Ti V W B/G C12− C44 (GPa) σy (MPa)

0.073 0.299 0.002 0.37 0.256 3.06 91.3 529

0.093 0.407 0.002 0.27 0.228 3.15 94.7 466

0.154 0.289 0.008 0.322 0.227 2.99 91.5 524

0.051 0.399 0.009 0.374 0.167 3.35 95.6 408

0.093 0.463 0.028 0.301 0.115 3.45 93.6 333

0.117 0.355 0.008 0.332 0.188 3.16 93.0 471

0.151 0.277 0.013 0.301 0.258 2.91 90.5 535

0.084 0.489 0.03 0.319 0.078 3.56 93.4 282

0.129 0.584 0.025 0.233 0.029 3.71 96.0 209

0.082 0.519 0.009 0.348 0.042 3.69 94.7 247

0.111 0.37 0.011 0.341 0.167 3.23 91.8 444

0.009 0.313 0.029 0.372 0.277 3.08 90.3 494

0.18 0.29 0.002 0.333 0.195 3.04 92.3 516

0.125 0.553 0.019 0.238 0.065 3.54 93.8 257

0.077 0.614 0.026 0.198 0.085 3.71 96.6 203

0.078 0.375 0.011 0.429 0.107 3.43 93.7 361

0.096 0.655 0.024 0.195 0.030 3.83 95.8 154

0.047 0.337 0.015 0.342 0.259 3.07 90.1 500

0.143 0.343 0.006 0.328 0.180 3.12 91.2 479

0.116 0.421 0.015 0.345 0.103 3.37 92.0 366

0.075 0.37 0.011 0.39 0.154 3.27 92.5 414
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without spending a substantial computational budget to obtain
training data required for accurately distinguishing the feasible
and infeasible regions. Since the models representing the
constraints are not computationally cheap to evaluate, it is vital
to manage the available resources to make observations on alloys
with the greatest values in them.
To determine the overall uncertainty of a classifier, the class

memberships of a set of randomly generated samples are
checked. However, the labels are not informative here, but the
uncertainty of the predictions in the form of standard deviation is
used to calculate the entropy. As the classifiers get more
information in terms of boundaries, the standard deviations get
smaller, and so does the entropy. Here, a criterion is defined by
the user to make the transition to the Bayesian optimization stage
once all classifiers are confident enough in terms of label
predictions. Since the entropy data is noisy because, at every
iteration, a different set of samples are generated in the
composition space to make sure it does not overlook any part
of the space, a window of 50 iterations is considered to calculate
the average reduction in entropy (in distances of 25 iterations). In
this case, we stop considering a constraint among the possible
experiments for the next step if this average drops below 3
percent.

Once all constraints meet the defined criteria, the Bayesian
optimization stage begins; however, the framework still keeps track
of entropy values for all constraints at every iteration of the process
so that if it finds an experiment of great value (when the average
entropy reduction jumps greater than 3 percent), it may switch to
the classification stage and perform that experiment. This dynamic
decision-making approach makes the framework capable of switch-
ing between classification and optimization stages when necessary.
Below, all the ingredients of this framework are introduced.

Gaussian process regression
Surrogate models are essential for a Bayesian optimization framework
to model black-box functions, given prior observations made from
these functions. Moreover, surrogate models make it possible to
search the space at low computational costs, looking for the best next
experiment that adds the most information about the optimum
design to the system. This work uses GPRs as surrogates to model the
objective functions39. Gaussian process models are powerful tools for
probabilistic modeling due to the ease with which models can be
updated with newly acquired information. Moreover, they provide
probabilistic predictions that model the uncertainty associated with
unobserved regions in a given design space. Finally, GPs are

Fig. 5 Pairwise plot demonstrating correlations and trade-offs between the 5 constraints applied to the design space. Alloys that are
comprised of more than 50% of a particular element are colored accordingly. Alloys that do not have a majority element are colored in gray.
Diagonal rows depict property distributions for each class of alloy. The lower-left triangle depicts Kernel Density Estimate (KDE) estimates over
joint property distributions to better visualize the structure of the data.
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constructed with an intrinsic notion of distance (or correlation)
between points in a design space. This correlation is exploited when
predicting the model uncertainty.
Since more than one model may represent the same quantity of

interest, each model needs its own GPR. These models are
considered as different sources that the system has access to gain
required information about a quantity of interest—such frame-
works are known as multi-information source approaches.
Following refs. 15,16, we formulate the surrogates (GPRs) by
assuming we have available multiple information sources, fi(x),
where i∈ {1, 2,…, S}, to estimate a quantity of interest, f(x), at
design point x. These surrogates are indicated by fGP,i(x).
Assuming there are Ni evaluations of information source i denoted
by fXNi ; yNi

g, where XNi ¼ ðx1;i; ¼ ; xNi ;iÞ represents the Ni input
samples to information source i and yNi

¼ f iðx1;iÞ; ¼ ; f iðxNi ;iÞ
� �

represents the corresponding outputs from information source i,
then the posterior distribution of information source i at design
point x is given as

fGP;iðxÞjXNi ; yNi
� N μiðxÞ; σ2GP;iðxÞ

� �
(1)

where

μiðxÞ ¼ KiðXNi ; xÞT ½KiðXNi ;XNi Þ þ σ2
n;i I��1yNi

σ2
GP;iðxÞ ¼ kiðx; xÞ � KiðXNi ; xÞT

½KiðXNi ;XNi Þ þ σ2
n;i I��1KiðXNi ; xÞ

(2)

where ki is a real-valued kernel function, KiðXNi ;XNi Þ is the
Ni × Ni matrix whose m, n entry is ki(xm,i, xn,i), and KiðXNi ; xÞ is
the Ni × 1 vector whose mth entry is ki(xm,i, x) for information

source i. We have also included the term σ2
n;i , which is used to

model observation error for information sources based on
experiments or expert’s opinion. Note that the term signal
variance is to cover two sources of uncertainty: the variance
associated to the GPR estimation of the objective function and
the variance associated to the information source with respect
to the highest fidelity model, also known as the ground truth.

Gaussian process classification
In Bayesian classification frameworks, similar to Bayesian
optimization technique, Bayes’ theorem can be employed but
to calculate the joint probability p(y,x), where y is the class
label:

pðyjxÞ ¼ pðyÞpðxjyÞPC
c¼1 pðCcÞpðxjCcÞ

(3)

Gaussian process classifications (GPCs) are probabilistic models
that predict the probability of belonging to a specific class by
putting a Gaussian process prior over a latent function f(X) and
computing the posterior distribution at a desired location
x39,40. GPCs are formulated similar to GPRs but with labeled
data, instead of a continuous objective value, as follows:

μiðxÞ ¼ KiðXNi ; xÞT ½KiðXNi ;XNi Þ��1f ðXÞ
ΣiðxÞ ¼ kiðx; xÞ � KiðXNi ; xÞT

½KiðXNi ;XNi Þ��1KiðXNi ; xÞ
(4)

The class label predictions are obtained by performing Monte
Carlo sampling from the calculated posterior distribution and then

Fig. 6 Phase stability, intrinsic-strength, and ductility. a, b Formation energy plotted with respect to Mo+Nb and V concentration for 21
MPEAs in Table 2. c Intrinsic strength (bulk-moduli), and d Pugh’s ratio with respect to V+Nb concentration.
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passing samples through a sigmoid function σ to ensure the
output is bounded to [0,1]. Then the mean and variance of the
obtained distribution define the class membership probability and
associated uncertainty to the predicted label.
By utilizing a Bayesian methodology, the inclusion of uncer-

tainty in the predictions is a crucial aspect in determining the
expected utility value. Importantly, this feature differentiates
Gaussian Process Classification (GPC) as a probabilistic model
from other classification methods. As a result, GPC is particularly
well-suited for applications that involve probabilistic frameworks
and machine learning tasks. A more detailed discussion is
presented in ref. 39.

Active learning in Bayesian classification
As mentioned earlier, GPCs are probabilistic models well-suited for
Bayesian classification frameworks because they provide uncer-
tainty associated with the predicted class memberships. The class
membership predicted by a GPC of information source i is a
random variable defined via a normal distribution
Y � N piðxÞ; σ2

i ðxÞ
� �

. A Bayesian classification framework aims
to reduce the overall classifier’s uncertainty associated with class
membership predictions. To further quantify the uncertainty of a
classifier, a measure is needed to compare how newly added
information to the system may help to achieve more accurate
classifiers. Entropy is a natural choice here to determine the
uncertainty of different models.
Herein, we propose to use the uncertainty in form of standard

deviation assigned to class membership predictions of a GPC.
Then, we employ the discrete entropy formula to determine the
entropy:

H ¼ �
Xk
j¼1

σj logðσjÞ (5)

where we have predicted the labels of k samples randomly
generated, and σj is the standard deviation of the predicted class
membership provided by the GPC. The more accurate a classifier is
about the boundary, the less uncertain it will be about the
assigned labels. Such a decrease in uncertainty is manifested as a
lower model/classifier entropy. Employing the entropy measure as
the utility function in a Bayesian classification framework, we can

recognize the best next experiment to make and update the
system that results in the most significant reduction in a classifier’s
entropy.

Information fusion of multiple sources
Several approaches exist for fusing multiple sources of informa-
tion, such as Bayesian modeling averaging41–46, the use of
adjustment factors47–50, covariance intersection methods51, and
fusion under known correlation52–54.
In engineering design, there often exist multiple models that

represent the same system of interest. Each model provides
valuable information about the quantity of interest. By combining
all of this knowledge through a process known as model fusion,
more accurate and less biased models can be produced. As more
sources are incorporated into the fusion process, it is commonly
expected to see a reduction in the variance of the quantity of
interest estimates. However, this is not always the case with other
fusion techniques such as Bayesian model averaging41–46,55, the
use of adjustment factors47–50, covariance intersection methods51,
with the exception of fusion under known correlation 52–54.
Unlike some multi-fidelity methods, our approach does not

rely on any assumptions about the relative importance of the
information sources. As a result, it is crucial to establish the
correlation between information sources prior to the fusion
process. We use a technique called the reification process to
estimate the correlation coefficients between the different
information sources56,57. In accordance with the methodology
outlined in previous studies such as refs. 15,56–58, once the
correlation coefficients are determined, the fused mean and
variance at a specific design point x can be defined using the
method proposed in ref. 54.

E½̂f ðxÞ� ¼ eT~ΣðxÞ�1μðxÞ
eT~ΣðxÞ�1e

(6)

Varðf̂ ðxÞÞ ¼ 1

eT~ΣðxÞ�1e
(7)

where e= [1,…, 1]T, μðxÞ ¼ ½μ1ðxÞ; ¼ ; μSðxÞ�T given S models,
and ~ΣðxÞ�1 is the inverse of the covariance matrix between the
information sources. A more detailed discussion and examples can
be found in Refs. 12,14,16,56,59–62.

Fig. 7 Schematic representation of an experimental campaign utilizing the proposed framework. The process begins with a closed-loop
exploration of the design space to identify the range of compositions that meet all requirements. This forms the feasible region of the design
space. Optimization is then carried out within this region to identify a set of Pareto-optimal alloys as the final outcome of the campaign.
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Multi-objective optimization
A multi-objective optimization problem is defined as

minimize ff 1ðxÞ; :::; f nðxÞg; x 2 X (8)

where f1(x),…, fn(x) are the objectives and X is the feasible design
space. In multi-objective optimization, it is typical that there is no
single solution that simultaneously optimizes all objectives.
Rather, the optimal solutions are represented by a set of non-
dominated designs, which form the Pareto front in the objective
space. In this context, the optimal solutions, y, to a multi-objective
optimization problem with n objectives, are denoted as y � y0 and
can be expressed as

fy : y ¼ y1; y2; ¼ ; ynð Þ; yi � y0i 8 i 2 f1; 2; ¼ ; ng; 9 j 2
f1; 2; ¼ ; ng : yj < y0jg

(9)

where y0 ¼ ðy01; y02; ¼ ; y0nÞ denotes any possible objective output.
The set of y 2 Y, where Y is the objective space, is known as the
Pareto front.
There are various techniques for estimating the Pareto front in

multi-objective optimization problems, such as the weighted sum
approach63, the adaptive weighted sum approach64, normal
boundary intersection methods65 and hypervolume indicator
methods66–72, among others. In Bayesian optimization frameworks,
hypervolume indicator approaches are well-suited to handle the
probabilistic nature of these frameworks and to approximate the
Pareto front of solutions efficiently. We adopt the methodology
presented in refs. 17,73 to conduct Bayesian optimization of multi-
objective functions in multi-fidelity settings. For a detailed explana-
tion of the calculation of the EHVI, we refer readers to ref. 9.

Models for constraints
In this work, the truth models for all five constraints were derived
from high-fidelity CALculation of PHase Diagrams (CALPHAD)-
based simulations. The high entropy alloy database TCHEA5 and
Thermo-Calc’s equilibrium simulation were used to calculate the
density, solidus, solidification range, CTE, and thermal conductiv-
ity. Specifically, the solidus and solidification range (difference
between solidus and liquidus temperatures) were extracted from
phase diagrams generated from CALPHAD models74. The coeffi-
cient of thermal expansion (CTE) was calculated by using Thermo-
Calc to estimate the equation of state of the system at a given
reference temperature T0 and a target temperature Tf, and then
determining the amount of expansion at those two tempera-
tures74. The density was calculated in the same manner. Finally,
thermal conductivity was determined by querying fitted poly-
nomials within the CALPHAD database. In situations where
separate data for electronic and lattice thermal conductivities is
not available, the thermal conductivity was estimated using the
Slack model74–76 for lattice thermal conductivity and the
Wiedemann–Franz Law74,77 for electronic thermal conductivity,
then summing these two estimates to obtain the overall thermal
conductivity74. The Thermo-Calc’s API, TC-Python, was used to
integrate these models with the proposed framework.

Models for objectives
The yield strength objective in this study is modeled using the
analytical framework proposed by Curtin and Maresca in ref. 22.
This model considers the behavior of an edge dislocation within a
random solute field present in a body-centered cubic high-
entropy alloy. In order to minimize the energy associated with the
dislocation in this random alloy, the dislocation adopts a wavy
configuration. This allows the dislocation to avoid high-energy
areas in the medium due to dislocation-solute interactions while
being attracted to and pinned to areas with lower energy from
such interactions. This wavy configuration results in an increased
line tension, which represents the energy cost of this

configuration. However, the characteristic waviness also minimizes
the overall energy of the dislocation by simultaneously reducing
the energy associated with the interaction between the edge
dislocation and the solute field and the energy associated with the
line tension of the edge dislocation. A statistical analysis of the
energy barrier required for thermally activated edge glide was
carried out, leading to the following equations:

τy0 ¼ 0:040α�1=3μ 1þν
1�ν

� �4=3 P
n
cnΔVn

2

b�6

� �2=3
(10)

ΔEb ¼ 2:00α1=3b�3μ 1þν
1�ν

� �2=3 P
n
cnΔVn

2

b�6

� �1=3
(11)

τyðT ; _ϵÞ ¼ τy0 � 1
0:55

kbT
ΔEb

ln _ϵ0
_ϵ

� �0:91
� �

(12)

σyðT ; _ϵÞ ¼ Mτy0 (13)

The variables in the above equation are as follows: α is the line
tension parameter and is set to 1/12 for edge dislocations; μ is the
average shear modulus of the alloy; ν is the average Poisson ratio
of the alloy; b is the Burger vector associate with the BCC edge
dislocation within the random alloy; ΔV is the misfit volume of the
nth solute, which can be accurately estimated as ΔVn= Vn− ∑

n=1cnVn according to Vegard’s law; τy0 is the zero-temperature
yield stress; ΔEb is the energy barrier for the thermal-activated
flow; _ϵ0 is the reference strain rate which is typically set to 104s−1;
_ϵ is the applied strain rate which is typically set to 103s−1 and is
indeed set to this value in the current work; M is the Taylor factor
for edge glide in a random BCC polycrystal; kB is the Boltzmann
constant; σy(T, ϵ) is the yield strength estimated at a finite
temperature and strain rate, T and _ϵ.
In this study, we employed the DFT-based KKR (Korringa-Kohn-

Rostoker Green’s function) method as the reference model for
calculating key properties such as intrinsic strength and phase
stability for arbitrary compositions. The method uses a coherent-
potential approximation (CPA) to account for direct configura-
tional averages over chemical disorder78,79. The gradient-
corrected exchange-correlation functional provided by Perdew,
Burke, and Ernzerhof (PBE)80 was used in the DFT-KKR-CPA
calculations, which were used to obtain bulk moduli and derived
quantities such as shear moduli and Pugh’s ratio. A 24 × 24 × 24
Monkhorst-Pack mesh was used for Brillouin zone integrations and
core-electrons were treated relativistically, while valence-electrons
were handled scalar-relativistically, with no spin-orbit coupling78.
The Fermi energy was determined by integrating the complex
Green’s function on a semicircular energy contour of 25 points on
a Gauss-Chebyshev mesh78.
The mechanical properties (bulk and shear moduli) of down-

selected compositions were calculated and assessed by designing
Super-Cell Random Approximates (SCRAPs)34 and employing a
computationally intensive stress-strain method as implemented
within DFT based Vienna Ab-initio Simulation Package (VASP)81–84.
The PBE generalized-gradient approximation (GGA) functional80

was employed for geometrical relaxations with total-energy and
force convergence criteria of 10−6 eV and 0.01 eV/Å, respectively.
The Brillouin-zone integration during ionic relaxation was
performed on 1 × 1 × 1 while mechanical properties calculations
were calculated on 3 × 3 × 3 k-mesh grid using Monkhorst-Pack
method85 with a plane-wave cutoff energy of 520 eV. The effect of
the core electrons and interaction between the nuclei and the
valence was treated by the projector-augmented wave (PAW)86.

LIMITATIONS OF MODELS
Regarding the accuracy of the yield strength truth model, in their
original publication using a similar refractory MPEA system and
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its subsystems (Mo-Nb-Ta-V-W) Maresca et al.22 compared their
model to experimental yield strength measurements captured
over a range of temperatures. They determined their model has
acceptable agreement with experiment (MAE= 126 MPa,
RMSE= 138 MPa from 800 K to 1800 K) to be used for HTP alloy
design. Furthermore, the Curtin–Maresca model has been
successfully used in alloy design87,88. Specifically, Rao et al.87

showed that the Curtin–Maresca models accurately (MAE= 167
MPa, RSME= 209 MPa) predicts temperature-dependent yield
strength of 4 refractory MPEAs at 5 temperatures ranging from
25 °C to 1200 °C.
DFT is the truth model for the two ductility indicators in this work,

the Pugh ratio and Cauchy pressure. A large potential source of error
in these calculations is the exchange-correlation functional. How-
ever, the exchange-correlation functional used in this work has been
extensively tested in MPEA composition spaces21,89. Specifically,
DFT-calculated elastic constants were consistently within 10% to
experimental values89, which represents a smaller scatter compared
to one calculated from elemental average.
Regarding the accuracy of these models, Thermo-Calc’s

equilibrium simulations have been able to successfully predicted
phase stability90, solidus temperatures91, thermal-conductivity92,93,
and thermal expansion coefficient93,94. Specifically, Abu-Odeh
et al.90 benchmarked the TCHEA1 database against experiments
and found that phase predictions from Thermo-Calc’s equilibrium
simulation were in 70.8% agreement with experimental data; the
authors note that discrepancies between Thermo-Calc may lie in
experimental procedures such as not providing enough time for
the alloys to reach thermodynamic equilibrium. In this work, the
5th iteration of this database is used, likely increasing the accuracy
of the model. Regarding the solidus constraint, Kirk et al.
demonstrated that Thermo-Calc equipped with the TCHEA4
database accurately predicts the melting temperature of MPEAs
(MAE= 10.5 K), outperforming ROM predictions of solidus tem-
peratures. Regarding thermal conductivity, preliminary works
conducted throughout the BIRDSHOT collaboration2 (a project
conducted for ARPA-e’s ULTIMATE program) indicate that the
Thermo-Calc’s property module equipped with the TCHEA5
database is able to accurately predict thermal conductivity of
BCC alloys (MAE= 14.9 W/m/K.)95. As previously stated, when data
for a particular system is sparse, Thermo-Calc’s thermal con-
ductivity is informed by the Slack model96. As such, the model
used for thermal conductivity is at least as accurate as the
commonly used96 Slack model.
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