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Factorial design analytics on effects of material parameter
uncertainties in multiphysics modeling of additive
manufacturing
Amanda Giam 1,2, Fan Chen2, Jiaxiang Cai 3✉ and Wentao Yan 1,2✉

A bottleneck in Laser Powder Bed Fusion (L-PBF) metal additive manufacturing (AM) is the quality inconsistency of its products. To
address this issue without costly experimentation, computational multi-physics modeling has been used, but the effectiveness is
limited by parameter uncertainties and their interactions. We propose a full factorial design and variable selection approach for the
analytics of main and interaction effects arising from material parameter uncertainties in multi-physics models. Data is collected
from high-fidelity thermal-fluid simulations based on a 2-level full factorial design for 5 selected material parameters. Crucial
physical phenomena of the L-PBF process are analyzed to extract physics-based domain knowledge, which are used to establish a
validation checkpoint for our study. Initial data visualization with half-normal probability plots, interaction plots and standard
deviation plots, is used to assess if the checkpoint is being met. We then apply the combination of best subset selection and the
LASSO method on multiple linear regression models for comprehensive variable selection. Analytics yield statistically and phyiscally
validated findings with practical implications, emphasizing the importance of parameter interactions under uncertainty, and their
relation to the underlying physics of L-PBF.
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INTRODUCTION
Laser Powder Bed Fusion (L-PBF) is a commonly used metal
additive manufacturing (AM) process that is capable of manu-
facturing products with complex geometries1. A major barrier that
hinders a wide application of L-PBF in industry is the quality
inconsistency of its products. In practice, it is difficult to measure
some parameters to high precision due to constraints such as
powder oxidation and temperature fluctuation. This introduces
substantial uncertainties to input parameters such as the
absorbed laser power and surface tension temperature sensitivity.
Consequently, these input uncertainties in reality cause variations
in the quality of the L-PBF products. These variations may be
amplified by interaction effects arising from these uncertainties.
To alleviate this issue, the AM community resort to multi-physics
modeling, where input parameters can be precisely set, and costly
experimentation can be circumvented. Multi-physics modeling
refers to the application of high-fidelity mathematical models,
numerical tools, and software technologies that closely approx-
imates the actual L-PBF process by incorporating simultaneous
physical phenomena of the process, e.g., heat transfer, fluid flow,
powder melting and solidification2. Nevertheless, input parameter
uncertainties cannot be eliminated in multi-physics models due to
the lack of knowledge on the exact values of the parameters3,4. As
a result, the uncertainties from the inputs and their interactions,
propagate to essential model outputs such as the melt pool
dimensions. The melt pool dimensions are key performance
indices (KPIs) of the L-PBF process because the melt pool influence
microstructure5, thus affecting the structural integrity and quality
of the final product6. This drives the need for model-based
uncertainty quantification (UQ), which is the process of

investigating the effects of uncertainty sources on the output
quantities of interests (QoIs) in computational models7.
UQ is an interdisciplinary field that involves both physical and

statistical aspects. The physical aspect of UQ entails multi-physics
modeling of the L-PBF process and/or actual L-PBF experimenta-
tion to collect data for subsequent analysis. The statistical aspect
of UQ encompasses the application of statistical techniques before
or after data collection, such as the design of experiments (DOE),
sensitivity analyses and/or surrogate modeling, which are often
used to mitigate or bypass heavy computational cost. The UQ
studies for AM in literature mostly obtain data from simulation
models such as continuum-based thermal models using the Finite
Element Method (FEM) or semi-analytical thermal-conduction
models based on the homogeneous continuum assumption,
which are less accurate in the physical aspect as compared to
computational fluid dynamic (CFD) models resolving the thermal
fluid-flow behaviors of individual powder particles8. The limited
accuracy of the low-fidelity models hinders the effectiveness of
the previous UQ studies. For example, Moges et al.3 has employed
a fractional factorial DOE to analyze the main and interaction
effects of input parameters in semi-analytical and finite element
models. By performing a normal probability plot of the data from
the simulation models, the absorbed laser power and thermal
conductivity were identified as the most significant input
parameters. The major advantage of his study is the reasonable
computational cost. However, the semi-analytical and FEM models
are not the most accurate, and the use of a high-fidelity model, i.e.,
the thermal fluid-flow model, will be better instead. Tapia et al.9

has studied the influence of laser parameters on melt pool
characteristics by applying the polynomial chaos expansion (PCE)
framework on data from two simulation models—where the first
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model is a reduced order thermal model (Eagar-Tsai model), and
the second model is a finite element thermal model. Although the
PCE framework is a decent tool for UQ, these simulation models
are less accurate than high-fidelity thermal fluid-flow models.
Wang et al.10 has utilized the Gaussian Process (GP) surrogate
model to perform a global sensitivity analysis on parameters
affecting microstructure. Despite the GP model being a robust
surrogate for UQ, the simulation data used to train the surrogate
model came from a finite-element based thermal model, which is
nevertheless not as accurate as thermal fluid-flow models.
Most of the previous studies perform UQ based on lower-fidelity

simulation models3,9–11—which although incur lower computa-
tional cost, do not accurately capture the complexities of the
physical L-PBF process. Such a limitation can make it difficult to
apply the UQ results in an industrial setting. Additionally, there is a
lack of studies on interaction effects, which are suspected to be
significant3. Hence there is a pressing demand for a UQ study
anchored with a high-fidelity multi-physics model, which can
provide practical insights at a reasonable computational cost. To
bridge this gap, we propose the use of a computationally efficient
factorial design, and a comprehensive variable selection approach,
to analyze the effects arising from input parameter uncertainties
and their interactions in a high-fidelity multi-physics model, i.e.,
the thermal-fluid model. Through the use of analytics coupled
with the strength of high-fidelity multi-physics modeling, we aim
to provide practical insights for the AM community. The choice of
the thermal fluid model achieves sufficient accuracy for the
physical aspect of UQ. In addition, our methodology also accounts
for the statistical aspect of UQ through the application of DOE,
surrogate modeling, sensitivity analysis and uncertainty analysis.
Moreover, the statistical results of this work is carefully evaluated
with physics-based domain knowledge to demonstrate result
consistency and attain statistical-physical validation. These jointly
validated results then provide practical guidance to the simulation
and experimental groups directly. Overall, the well-established
techniques employed in the study are straightforward for the
different communities in UQ such as simulation groups, industrial
practitioners, and data analysts. As such, the ease of result
interpretation and facilitation of common understanding across
the communities is made possible through the use of these
techniques. The largest benefit of the factorial design and analysis
is its capability to yield consistent, practical insights with low
computational cost and complexity.

This paper aims to obtain practical insights by using the
proposed factorial design along with variable selection and model
analytics, to characterize the uncertainties due to five input
material parameters (or factors) in the thermal fluid model, namely
the laser power absorption (PA), thermal conductivity (λ), viscosity
(μ), surface tension coefficient (γ), surface tension temperature
sensitivity (−dγ/dT), quantifying their respective influences on the
selected output variable—the melt pool depth (Y). Justification on
the selection of these five material input parameters is provided in
Section “Methods” . The remainder of the paper is organized as
follows. Section “Results and discussion” reports the key findings
of this paper from both statistical and physical perspectives with
practical follow-up directions for simulation groups and industrial
practitioners in metal AM. Section “Methods” presents the
comprehensive methodology used in this paper including the
design of experiments, thermal-fluid simulations, data visualiza-
tion, variable selection and statistical-physical validation.

RESULTS AND DISCUSSION
Data visualization
The half-normal plot for all the effects of the 25 factorial is
displayed in Fig. 1, where the five input factors: (PA, λ, μ, γ, −dγ/
dT), are denoted by (X1, X2, X3, X4, X5), respectively for ease of
representation. From Fig. 1, it can be seen that the main effect of
PA is an obvious outlier, implying that it is highly suspected to be a
significant factor. Such an observation agrees well with literature
—it is universally agreed in the AM community that the absorbed
laser power is a major factor with large influence on the melt pool
geometry. The second most important factor that demonstrates
considerable deviation from the fitted line is the main effect of
λ. In addition, the main effect of μ, 2-factor interaction effect of
λ � �dγ=dT, as well as the higher-order interactions
(PA � λ � �dγ=dT, PA � λ � γ � � dγ=dT, λ � μ � γ � �dγ=dT)
also exhibit deviations from the line. As these observed deviations
are smaller, a considerable amount of subjectivity is involved in
the assessment of their significance due to their proximity to the
fitted line. Therefore, further analysis with a quantitative basis, i.e.,
hypothesis tests, will be conducted in Section “Variable selection
and model analytics” to validate our prior conclusions. Since the
half-normal plot has identified potentially significant interactions
such as λ � �dγ=dT, we analyze all possible 2-factor interactions
in detail using interaction plots.
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Fig. 1 Half-normal plot of all effects, where input factors (PA, λ, μ, γ, −dγ/dT), are represented by (X1, X2, X3, X4, X5), respectively. The
X-axis represents the absolute value of the effects, and the Y-axis shows the corresponding probability of observing such an effect. Only the
outliers (i.e. significant effects) are labeled on the plot.
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The interaction plots for all 5
2

� �
2-factor interactions are shown

in Fig. 2, where the five input factors: (PA, λ, μ, γ,− dγ/dT), are
denoted by (X1, X2, X3, X4, X5), respectively for ease of
representation. We first observe that the magnitude of

interactions involved with PA are much larger than that of other
factors, which is expected since the dominating influence of PA
has already been established. The PA � λ interaction is not
significant, as seen from the two parallel lines in Fig. 2a. Hence

Fig. 2 Interaction plots with the melt pool depth on the Y-axis and an input factor on the X-axis. a Interaction effect of PA � λ. b Interaction
effect of PA � μ. c Interaction effect of PA � γ. d Interaction effect of PA � �dγ=dT. e Interaction effect of λ � μ. f Interaction effect of λ � γ.
g Interaction effect of λ � �dγ=dT. h Interaction effect of μ � γ. i Interaction effect of μ � �dγ=dT. j Interaction effect of γ � �dγ=dT.
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the amount of absorbed laser power does not interact with the
thermal conductivity of IN625, and these two factors may be
calibrated independent of each other in experiments or simula-
tions. On the other hand, the interactions of PA � μ, λ � γ and
λ � �dγ=dT λ � �dγ=dTare likely significant due to the con-
siderable degree of non-parallelism for the lines observed in
Fig. 2b, f, and g, respectively. This implies that the absorbed laser
power interacts with the viscosity of the IN625 material. The
analysis also reveals an interaction between the thermal
conductivity of IN625 and other material properties of IN625,
such as the surface tension coefficient and temperature sensitivity
of the surface tension. Therefore, these interactions should be
taken into account in the calibration of L-PBF simulations and
experiments. Further elaboration and follow-up guidance on the
significant interactions can be found in Section “Practical
interpretation with joint statistical-physical validation”. As for the
rest of the interactions, their significance are rather inconclusive,
as there is subjectivity in determining the extent of non-
parallelism of the lines. Due to the subjectivity, the significance
of all interactions will be validated with a quantitative basis
through the regression analysis in Section “Variable selection and
model analytics”. We next study the relationship between the
input uncertainties of the main effects (PA, λ, μ, γ,− dγ/dT) and the
output uncertainty of the melt pool depth.
Standard deviation plots based on the uncertainty function in

Eq. (7), have been constructed in Fig. 3 to study the overall
influence of each input parameter’s standard deviation onto
the output standard deviation. In these plots, the Y-axis represents
the standard deviation of the response melt pool depth, while the
X-axis represents the standard deviation of a coded input factor. A
plot of the output depth’s standard deviation, σY against the input
standard deviations of the five factors (σPA , σλ, σμ, σγ, σ−dγ/dT) is

shown in Fig. 3a. In addition, another plot excluding PA is
illustrated in Fig. 3b, where we consider σY against the four input
standard deviations (σλ, σμ, σγ, σ−dγ/dT).
It is observed from Fig. 3a that the standard deviation of factor

PA propagates the largest uncertainty to the output uncertainty,
dominating the uncertainties propagated by the rest of the
variables. A change in the input standard deviation of PA causes
the largest change (approximately 0.02) in output standard
deviation of the depth. This result aligns well with the prior
results of the half-normal plot. It is intuitive that the most
influential factor (PA) will naturally contribute the largest
uncertainty to the response melt pool depth. The propagation
of uncertainty from the other four input variables (λ, μ, γ,− dγ/dT)
shown in Fig. 3b, is approximately in the order of magnitude of
10−5. In the absence of σPA , the uncertainty propagated to the
output depth from the four input variables (λ, μ, γ,− dγ/dT) in
descending order is: σλ > σμ > σ−dγ/dT > σγ.
Overall, data visualization through the half-normal plot, inter-

action plots and standard deviation plots validates our small-
sample based analysis, as it correctly identifies PA as the most
significant factor with a dominating influence on the response
melt pool depth, which is consistent with existing literature.

Variable selection and model analytics
Table 1 summarises the key output of the five MLR models formed
via the systematic manual selection of variables, based on the
recommended analysis procedure for a full factorial design12. The
respective p values and regression coefficients of the five models
are provided in Supplementary Table 1. The full model,
YXi1Xi2Xi3 Xi4 Xi5

has no meaningful results due to the lack of
replicates for the deterministic simulation, causing zero degrees
of freedom for the standard error (SE) of the coefficient estimates.

Fig. 3 Standard deviation plots with melt pool depth deviation σY on the Y-axis, and standard deviation of main effect Xi on the X-axis.
a All factor deviations, (σPA , σλ, σμ, σγ, σ−dγ/dT). b Factor deviations, (σλ, σμ, σγ, σ−dγ/dT).

Table 1. Regression output for five MLR models formed by manual selection of variables.

Terms Significant Factors at α = 0.1 Adjusted R2 Residual normality

YXi1Xi2Xi3 Xi4 Xi5
, full model 32 NA NA NA

YXi1Xi2Xi3 Xi4
, 4-factor interactions model 31 PA, λ, μ, PA � μ,

λ � �dγ=dT;

PA � λ � � dγ=dT;

λ � μ � γ � �dγ=dT;

PA � λ � γ � �dγ=dT 0.99982 Severe Violation

YXi1Xi2Xi3
, 3-factor interactions model 26 PA, λ 0.98642 Some Violation

YXi1Xi2 , 2-factor interactions model 16 PA, λ, μ 0.99251 Mild violation

YXi1 , main effects model 6 PA, λ, μ 0.993785 Little violation
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Thus we analyze the reduced models instead. It is observed that
the results on variable significance are not consistent across the
reduced models in Table 1. From the QQ plots of the models
provided in Fig. 4, it is found that most models have some degree
of violation of the residual normality assumption, with the main
effects model having the least. All four reduced models have
decent adjusted R2 values, with the 4-factor interaction model,
YXi1Xi2Xi3 Xi4

, attaining the highest value. However, YXi1Xi2Xi3 Xi4
is not

an appropriate model choice due to severe violation of residual
normality as seen in Fig. 4a. Among the four reduced models, the
main effects model, YXi1 , appears to be the most appropriate
model choice as it strikes the best balance between residual
normality and adjusted R2. Nevertheless, YXi1 is an oversimplified
model that cannot provide insight on interactions. Hence forming

an optimal model for result interpretation via the manual selection
of variables is challenging. This motivates automated variable
selection such as best subset selection, to perform an exhaustive
search for a model containing the optimal number of variables (k)
and the best combination of variables.
The optimal k is determined by criterion such as Mallow’s Cp

and the adjusted R2 as shown in Fig. 5. It is observed that the
residual sum of squares (RSS) converges to a minimum value
when k is approximately equal to 23. The value of Cp converges to
a minimum when k = 25. For the adjusted R2, the maximum value
is attained at approximately k = 27. In order to strike a balance
between goodness of fit and not overfitting the model, the
optimal number of variables is determined as k = 25. The best

Fig. 4 Quantile-quantile (QQ) plots for six MLR models. a QQ plot of 4-factor interaction model, YXi1Xi2Xi3 Xi4
. b QQ plot of 3-factor interaction

model, YXi1Xi2Xi3
. c QQ plot of 2-factor interaction model, YXi1Xi2 . d QQ plot of main effects model, YXi1 . e QQ plot of LASSO model, YXL . f QQ plot

of best subset model, YXk .
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combination of 25 variables is also selected from the best subset
selection algorithm as displayed in Table 2.
In the best subset model YXk , all terms are statistically significant at

α = 0.1, and the model has the highest adjusted R2 value of 0.9999.
The QQ plot in Fig. 4f reflects that most of the model’s residuals are
reasonably scattered around the best fit line, apart from slight
deviations at the tail ends. Thus, the best subset model has the best
performance metrics compared to the other models formed via
manual selection of variables. However, it is challenging to interpret
some of its results regarding the significance of higher-order
interactions, i.e., PA � λ � �dγ=dT, λ � μ � γ � �dγ=dT, PA � λ �
γ � �dγ=dT as it is rare for higher-order interactions involving 3
factors and above to be significant according to literature12. As there
is currently no evidence from physical domain knowledge to support
the presence of higher order interactions involving more than 3
factors, we focus on interpreting the main effects and 2-factor
interactions instead. The parameter ranking of the statistically
significant main effects and 2-factor interactions is provided in
Table. 3. It can be seen that the top three factors that influence the
melt pool depth are the main effects of: PA, λ and μ. This result is in
agreement with that of the main effects model and half-normal plots.
It is observed that some 2-factor interactions such as λ � �dγ=dT,
PA � μ, λ � μ, λ � γ, PA � �dγ=dT, PA � γ might be more
significant than the main effects of γ and− dγ/dT. As for the
significant higher-order interactions, there are a couple of possible
reasons that could explain the result. A possibility is that
standardization of the input variables affected the relative magnitude
of the regression coefficients of the interactions with respect to the
main effects. Hence the interpretation of standardized regression
weights should always be conducted with caution, using domain
knowledge as a reference to evaluate the statistical results13,14.
Another reason for the significant higher-order interactions could be
overfitting, where the model fits to the noise in the training data
rather than the underlying pattern. Due to the considerably large
number of model parameters relative to the sample size, YXk is prone
to overfitting. To check this, we have used leave-one-out cross-
validation (LOOCV) to compute both the train and test MSE of the
best subset model. The resulting ratio of the test MSE and train MSE
for the best subset model is then benchmarked it against that of the

main effects model, YXi1 , to assess if overfitting occurs. From Table 4,
it can be seen that both the train and test MSE values of YXk are small
with a magnitude of 1.68*10−8 and 4.77*10−7 respectively. The train
and test MSE values of YXk are also smaller than that of YXi1 , which
could imply that YXk has better predictive power. However, when we
examine the ratio of the test and train MSE, we observe that the best
subset model’s test MSE is around 28 times larger than that of its
train MSE. This is a sign of overfitting since the performance on the
training set significantly outperforms that of the test set, meaning the
best subset model may not generalize well to unseen data. As a
result, model YXk exhibits high variance and low bias, which
undermines the interpretability of the model. Therefore, we will
implement regularized regression to address overfitting to achieve a
better balance between bias and variance.
To achieve repeatability and stability of our results, we use

LASSO regression with bootstrapping to estimate the regularized
regression coefficients and corresponding confidence intervals
(CIs). The results are provided in Table 5. The optimal value of the
regularization parameter, λreg, for the LASSO regression model is
determined to be 0.0003398815 through LOOCV. The adjusted R2

of the model is 0.9972896, indicating a good fit. Residual normality
of the model is also satisfactory, as shown in Fig. 4e.
We first apply the LASSO method to the full model, and observe

that the variable selection results are consistent with those of the
best subset model, particularly for the main effects and 2-factor
interactions. All variables identified as significant by the LASSO
model YXL have also been identified as significant by the best
subset model YXk . The parameter ranking from the LASSO model
as reported in Table 6 is nearly identical to that of the best subset
model, with the exception of γ,− dγ/dT, PA � γ, PA � �dγ=dT.
Although these four terms are not identified as significant in the
LASSO model, we expect some tradeoff between bias and
variance to occur from the regularization process, which could
explain why these variables were not selected. The consistent
parameter ranking adds validity to the previous results. It is
observed that the application of LASSO to the full model provides
confirmation of the results from the best subset model. The result
consistency for both models increases confidence in the selected

Fig. 5 Criterion to determine optimal number of variables k for the best model. a Adjusted R2 values for different values of k. b Residual
sum of squares (RSS) values for different values of k. c Cp values for different values of k.
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variables, identifying a stable and interpretable set of variables
that are relevant to the response.
Another interesting finding is that applying LASSO to the best

subset model yields the same regression coefficients as those
obtained from applying LASSO on the full model as presented in
Table 5. The only discernible difference is in the width of the
confidence intervals of the coefficient estimates, as shown in
Fig. 6, but the variation is minimal and almost negligible. This
finding suggests that the LASSO method effectively selects the
most important variables regardless of which model it is applied
on, making it a valuable tool not only for variable selection, but
also for model refinement. The agreement between the coeffi-
cients obtained by applying LASSO on the full model and LASSO
on the best subset model provides additional evidence of the
robustness of the selected variables and the stability of the model,
which can be seen as an added value of using LASSO and best
subset selection in combination.
To further assess the performance of the LASSO model, we also

use LOOCV to compare the ratio of test mean squared error (MSE)
to train MSE for the LASSO model. The LASSO model has generally
low values for both train and test MSE, with a test-to-train MSE
ratio of approximately 2.4. This ratio of test-to-train MSE is
comparable to that of the main effects model, and notably
superior to that of the best subset model. Thus, the LASSO model
mitigates overfitting, providing better balance between bias and
variance. The result is a more parsimonious model with improved
interpretability and enhanced generalizability to unseen data.
Overall, the combination of LASSO regression and best subset

selection proves to be an effective tool for a comprehensive variable
selection for a small sample size. Given the consistent results
between the LASSO model YXL and the best subset model YXk , as
well as the improved balance between bias and variance, reduced
complexity, and improved interpretability, the LASSO model is the
most suitable for result interpretation. Based on the information
provided by the parameter ranking in Table 6, (e.g., λ � �dγ=dT,
λ � μ, PA � μ being more significant than main effects of γ and− dγ/
dT), valuable insights can be obtained. These insights have practical
implications for our understanding of the physical phenomena in the
L-PBF process. In the following section, we will discuss how we can
use these results to bridge the missing links in our knowledge of
these phenomena and provide directions for future research.

Practical interpretation with joint statistical-physical
validation
The significance and uncertainties of the input factors as well as
their interactions are evaluated from both physical and statistical
perspectives. The physical perspective corresponds to the
inferences drawn from domain knowledge in Section “Inferences
from physics-based domain knowledge”. On the other hand, the
statistical perspective comprises of the results from the data
visualization and variable selection in Sections “Data visualization
to Variable selection and model analytics”. The joint statistical-
physical evaluation is presented in Table 7. In general, there is
result consistency between factors identified to be significant
from both physical and statistical perspectives. Upon studying the
overlapping significant variables from both the physical and
statistical perspectives, we can use our statistical findings to
contribute insights to the existing physical domain knowledge.
Before delving into the insights, we first establish the credibility of
our work by demonstrating the achievement of statistical-physical
validation. The initial data visualization through statistical plots
correctly identifies PA as a dominant factor contributing to the
largest uncertainty, which aligns with well-established physical
conclusions in the AM community. Hence this cross-domain
validation serves as a substantial source of credibility for our
findings, enabling us to pass the statistical-physical validation
checkpoint despite the constraint of a small sample size, and

Table 2. Best subset model regression coefficients and p values of
selected variables using a significance level of 0.1.

Terms Include? Regression
coefficients

(Intercept) TRUE 1.05839E−01***

PA TRUE 2.69350E−02***

λ TRUE −2.08196E−03***

μ TRUE −9.61593E−04***

γ TRUE 1.14047E−04*

−dγ/dT TRUE 2.26852E−04***

PA � λ FALSE 0

PA � μ TRUE 4.53708E−04***

PA � γ TRUE 2.44496E−04***

PA � �dγ=dT TRUE 3.08903E−04***

λ � μ TRUE −3.96380E−04***

λ � γ TRUE −3.77203E−04***

λ � �dγ=dT TRUE −5.63809E−04***

μ � γ FALSE 0

μ � �dγ=dT FALSE 0

γ � � dγ=dT FALSE 0

PA � λ � μ TRUE 1.86421E−04**

PA � λ � γ FALSE 0

PA � λ � � dγ=dT TRUE 6.75741E−04***

PA � μ � γ TRUE −1.55266E−04**

PA � μ � � dγ=dT TRUE 2.25628E−04***

PA � γ � �dγ=dT TRUE 2.24396E−04***

λ � μ � γ TRUE 2.93934E−04 ***

λ � μ � dγ=dT TRUE 2.92017E−04***

λ � γ � � dγ=dT TRUE −1.42671E−04**

μ � γ � � dγ=dT TRUE −3.14491E−04***

PA � λ � μ � γ TRUE 2.22234E−04***

PA � λ � μ � �dγ=dT TRUE −2.71283E−04***

PA � λ � γ � �dγ=dT TRUE 8.13880E−04***

PA � μ � γ � �dγ=dT TRUE −1.59792E−04**

λ � μ � γ � �dγ=dT; TRUE 1.05624E−03***

Adj. R2 0.99988206
***p < 0.01; **p < 0.05;
*p < 0.1.

Standard error =
0.00005287

for all coefficient
estimates

Table 3. Parameter ranking of main effects and 2-factor interactions in
the best subset model.

Ranking Parameter

1 PA
2 λ

3 μ

4 λ � � dγ=dT;

5 PA � μ

6 λ � μ

7 λ � γ

8 PA � �dγ=dT

9 PA � γ

10 −dγ/dT

11 γ

A. Giam et al.
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proceed on to offer further practical insights. Subsequently, the
robust results of variable selection obtained from the combination
of best subset selection and LASSO regression, implies that this
comprehensive approach is a powerful tool for variable selection
in small sample sizes, which can successfully identify a stable and
interpretable set of variables. Hence this approach can be
considered as a viable solution for other high-fidelity multi-
physics models that face the constraint of high computational cost
and small sample size, such as in phase-field models of
microstructural evolutions or residual stress models. In addition,
it is noteworthy that the parameter ranking of the optimal LASSO

model reveals interactions effects such as λ � �dγ=dT, PA � μ,
λ � μ, λ � γ, PA � �dγ=dT, PA � γ to be more significant than
main effects of γ and− dγ/dT. This finding highlights the
importance of incorporating these interaction effects in sensitivity
analysis, rather than solely focusing on the main effects of γ
and− dγ/dT, thus the AM community should account for these
interactions in future design of experiments. Specifically for
physical experiments, it is recommended to use experimental
designs which can support further investigation of interaction
effects involving the thermal conductivity with other material
properties of IN625, as well as the interactions of laser power

Table 4. Cross-validation error for the models.

Train MSE Test MSE Ratio of test MSE:train MSE

Main effects model 3.82934428E−06 5.80066352E−06 1.51479290

Best subset model 1.67695916E−08 4.77001718E−07 28.4444444

LASSO model 1.99120001E−06 4.77208228E−06 2.39658611

Table 5. LASSO method applied to the full model, YXi1Xi2Xi3 Xi4 Xi5
, for variable selectiona.

Variable Regression coefficient Confidence interval of estimate

1 (Intercept) 1.05840E−01

2 PA 2.65950E−02 [2.6481E−02, 2.7403E−02]

3 λ −1.74210E−03 [−2.5763E−03, −1.6261E−03]

4 μ −6.21710E−04 [−1.2434E−03, −5.1081E−04]

5 γ 0 [−1.1174E−04, 1.5449E−04]

6 − dγ/dT 0 [−1.3260E−04, 1.7679E−04]

7 PA: λ 0 [−1.9592E−04, 1.6435E−04]

8 PA: μ 1.13830E−04 [−4.3454E−05, 3.1418E−04]

9 PA: γ 0 [−1.3641E−04, 1.6228E−04]

10 PA:− dγ/dT 0 [−1.5428E−04, 1.0928E−04]

11 λ: μ −5.64980E−05 [−1.8704E−04, 5.5667E−05]

12 λ: γ −3.73220E−05 [−1.6863E−04, 9.2135E−05]

13 λ:− dγ/dT −2.23930E−04 [−4.4786E−04, −9.0059E−05]

14 μ: γ 0 [−2.1030E−04, 1.4835E−04]

15 μ:− dγ/dT 0 [−1.8330E−04, 9.5482E−05]

16 γ:− dγ/dT 0 [−1.5408E−04, 1.7311E−04]

17 PA: λ: μ 0 [−9.0821E−05, 1.2955E−04]

18 PA: λ: γ 0 [−1.7375E−04, 1.5250E−04]

19 PA: λ:− dγ/dT 3.35860E−04 [2.1058E−04, 6.7172E−04]

20 PA: μ: γ 0 [−1.1278E−04, 1.5428E−04]

21 PA: μ:− dγ/dT 0 [−1.6792E−04, 1.3970E−04]

22 PA: γ:− dγ/dT 0 [−1.4926E−04, 1.1707E−04]

23 λ: μ: γ 0 [−1.1622E−04, 1.5245E−04]

24 λ: μ:− dγ/dT 0 [−1.8964E−04, 1.6005E−04]

25 λ: γ:− dγ/dT 0 [−1.6836E−04, 1.3746E−04]

26 μ: γ:− dγ/dT 0 [−1.6794E−04, 1.3532E−04]

27 PA: λ: μ: γ 0 [−1.2429E−04, 1.1270E−04]

28 PA: λ: μ:− dγ/dT 0 [−1.0911E−04, 1.6172E−04]

29 PA: λ: γ:− dγ/dT 4.74000E−04 [3.2954E−04, 9.4800E−04]

30 PA: μ: γ:− dγ/dT 0 [−1.3084E−04, 1.1765E−04]

31 λ: μ: γ:− dγ/dT 7.16360E−04 [5.6841E−04, 1.4327E−03]

32 PA: λ: μ: γ:− dγ/dT 0 [−1.4869E−04, 1.4495E−04]

aA bootstrap size of 500 is used to estimate the regularized regression coefficients with the corresponding 90% confidence intervals for the bootstrapped
estimates.
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absorption with viscosity and surface tension. In simulations, more
research should be invested on the physics driving the interac-
tions between:

● laser power absorption and viscosity
● laser power absorption and surface tension related para-

meters
● thermal conductivity and viscosity
● thermal conductivity and surface tension related parameters

Next, the interaction effects of λ � μ and λ � �dγ=dT are
validated to be significant by the prandtl and marangoni numbers,
respectively. We further outline the association of these effects
with the Pr and Ma numbers as follows.

● The variability in Pr can be inferred as a joint effect—which
involves the 2 main effects of λ, μ, and the λ � μ interaction,

because these three terms have been found to be significant
from the statistical perspective.

● The statistical significance and ranking of importance of λ �
�dγ=dT helps us to identify it as the most prominent
interaction out of the 3

2

� �
possible interaction terms that could

contribute to the variability in Ma.

Given that the interactions between λ � μ and λ � � dγ=dT
may be the key contributors to the variability in Pr and Ma, the AM
community should consider channeling resources for further
investigation of these interactions. For instance, instead of varying
Pr and Ma in simulations, it could be more informative to vary
λ � μ and λ � � dγ=dT instead. Furthermore, the evident interac-
tions of the thermal conductivity λ with other material properties
imply that it is important to take note of potential enhancement
or counteracting effects of different factor combinations for the
four factors: λ, μ, γ,− dγ/dT. We should calibrate one factor’s level
while considering another factor’s level instead of calibrating
them independently. Another important interaction that requires
more attention from the AM community is PA � μ. Further
investigations should be conducted on the PA � μ interaction as
it may indicate the presence of a previously unidentified physical
phenomenon in AM, or a possible relation to an existing physical
phenomenon that has yet to be fully understood. Since the
significance of the PA � μ interaction falls between that of λ � μ
and λ � � dγ=dT, which are related to the two significant physical
effects of Pr and Ma, respectively, it is likely that the potential
physical phenomenon associated with the PA � μ interaction may
also be a key player in the field.
Some general discussion points for the five main effects (PA, λ, μ,

γ and− dγ/dT) are provided as follows. Firstly, the AM community
should pay careful attention to the laser power absorption, by

Table 6. Parameter ranking of main effects and 2-factor interactions
of the LASSO model.

Ranking Parameter

1 PA
2 λ

3 μ

4 λ � �dγ=dT

5 PA*μ

6 λ � μ

7 λ � γ

X1X2 X3 X4 X5 X1
X2

X1
X3

X1
X4

X1
X5

X2
X3

X2
X4

X2
X5

X3
X4

X3
X5

X4
X5

X1
X2
X3

X1
X2
X4

X1
X2
X5

X1
X3
X4

X1
X3
X5

X1
X4
X5

X2
X3
X4

X2
X3
X5

X2
X4
X5

X3
X4
X5

X1
X2
X3
X4

X1
X2
X3
X5

X1
X2
X4
X5

X1
X3
X4
X5

X2
X3
X4
X5
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X2
X3
X4
X5Term
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Fig. 6 90% confidence intervals of the regularized regression coefficients from applying LASSO to the full model (marked in blue) and
the best subset model (marked in red) respectively. The X-axis contains the labels for the model terms, where PA, λ, μ, γ,− dγ/dT, are
denoted by X1, X2, X3, X4, X5 respectively. The plot illustrates the regression coefficients on a dual Y-axis scale, with the Y-axis on the right
displaying the range of values for the regression coefficient of X1, and the Y-axis on the left representing the range of values for the regression
coefficients of all other variables. The regression coefficient for X1 exhibits a significantly different magnitude from other variables. A dotted
line demarcates the boundary between the two Y-axes, with values on the left corresponding to the left Y-axis, and values on the right
corresponding to the right Y-axis.
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accurately deriving the absorbed laser power from fundamental
physics in simulations, such as implementing a ray-tracing model
to achieve physically-informed absorptivity, and/or calibrating
against experiments, to accurately predict the melt pool dimen-
sions. Investing immense efforts into accurately measuring the
absorbed laser power for physical experiments is also crucial, by
carefully controlling its potential variations caused by surface
roughness, powder oxidation, and temperature fluctuation since
these may result in significant interactions. Secondly, the thermal
conductivity λ and viscosity μ, which also play significant roles,
should be carefully controlled when determining processing
parameter windows for materials. For instance, the processing
parameter windows of some materials with higher thermal
conductivity, i.e., copper, are very different from those of
commonly used materials with lower thermal conductivity, i.e.,
stainless steel. Hence when exploring the processing window for
any material, it is advisable to look up a similar material with
known thermal conductivity and viscosity values, as reference for
the calibration of λ and μ to avoid trial-and-error variations. Finally,
as the surface tension coefficient (γ) and its temperature sensitivity
(− dγ/dT) are involved in substantial interactions with the thermal
conductivity, this implies that material compositions or impurities
that alter the temperature sensitivity of surface tension is worthy
of attention during experiments as it may affect the interactions.
For example, the surface tension temperature sensitivity of Invar36
alloy is susceptible to oxygen content, which is affected by
powder type, i.e., oxidation effects in reused powder. Thus reused
powder may cause variations in− dγ/dT, possibly leading to
different interaction effects, and this could lead to very different
molten pool flow behaviors as observed in X-ray imaging15. In
contrast, for another material such as S17-4 PH stainless steel
powder, which has a surface tension temperature sensitivity that is
not susceptible to oxygen content, the mechanical properties of
the L-PBF specimens made from fresh state powder do not exhibit
obvious changes from those made from powder that has been
recycled multiple times16. Therefore, it is important to take into
account the potential variations and interaction effects for the
surface tension temperature sensitivity of different materials
during experiments. The aforementioned conclusions are valid
for the provided ranges of energy density and material parameters
in Table. 8, which correspond to the conduction mode heating.
However, they may not always apply in vastly different ranges
corresponding to different modes of melting, such as the keyhole
mode.
In summary, we use a comprehensive data analytics approach

on a full factorial design to work within the constraint of our small

dataset from a high-fidelity multi-physics model. The results are
consistent for the main and interaction effects of (PA, λ, μ, γ,− dγ/
dT) from both statistical and physical perspectives, despite the
limited sample size. The domain knowledge validation, coupled
with the strength of the high-fidelity simulations, yields insightful
results at a reasonable computational cost with low complexity.
The conclusions are summarised as follows:

● The combination of best subset selection and LASSO
regression is a comprehensive variable selection approach
that may be effective on small sample sizes with many
variables, and can potentially be applied to other high-fidelity
multi-physics models, such as phase-field models of micro-
structural evolutions or residual stress models.

● The hybrid variable selection approach consistently identifies
a stable and interpretable set of variables relevant to the
response, including main effects and 2-factor interactions such
as PA, λ, μ, λ � �dγ=dT, PA � μ, λ � μ, λ � γ in descending
order of significance.

● The parameter ranking suggests that interactions such as
λ � �dγ=dT, PA � μ, λ � μ, λ � γ might be more significant
than main effects of γ and− dγ/dT. Hence the AM community
should shift their focus of sensitivity analysis to incorporate
these interactions instead and account for them in future DOE.

● Further investigation on the PA � μ interaction is necessary, as
the significant interaction could be related to an existing
physical phenomenon in AM.

The comprehensive variable selection and joint statistical-
physical interpretation gives practical guidance to both the
simulation community and industrial practitioners in AM on
resource allocation, understanding underlying physics, future
design of experiments, and potential application in other fields.
These insights have the potential to improve quality consistency
of L-PBF products with careful control of the significant variables
and their interactions. Future work should consider designs that
provide more detailed analysis of interactions.

METHODS
Overview
Consider a high-fidelity multi-physics model such as the thermal-
fluid model in Fig. 7, which has the five material input parameters:
the absorbed laser power (PA), thermal conductivity (λ), viscosity
(μ), surface tension coefficient (γ), surface tension temperature
sensitivity (− dγ/dT), and the melt pool depth, Y, as the response
variable of interest. The input uncertainties (ΔPA, Δμ...etc.)

Table 7. Significant factors identified from the physical and statistical perspectives.

Perspective Physical Statistical

Results Physical phenomena such as the marangoni effect, effective
energy input, and heat transport mechanisms significantly
influence melt pool geometry. It is universally agreed in the AM
community that the laser power absorption exhibits a dominating
influence on the melt pool dimensions. The crucial physical
parameters based on the aforementioned domain knowledge are
summarized as follows:
• Pr ¼ cpμ

λ
• Ma ¼ � dγ

dT
wΔT
μα

• Pe ¼ UL
α

• Re ¼ Pe
Pr

• η
• μ
•− dγ/dT

• Data visualization via Figs. 1, 2, 3 consistently identify PA as a
dominating factor with the largest uncertainty, and suspect the
significance of some 2-factor interactions.

• Both variable selection methods (best subset selection and
LASSO regression) identify PA, λ, μ, λ � �dγ=dT, PA � μ, λ � μ,
PA � μ � � dγ=Td, PA � λ � γ � � dγ=dT, λ � μ � γ � � dγ=dT,
as statistically significant variables.

• The LASSO model achieves the best bias-variance tradeoff. The
corresponding parameter ranking of significant main effects
and 2-factor interactions from the optimal LASSO model in
descending order is as follows: PA, λ, μ, λ � �dγ=dT, PA � μ,
λ � μ, λ � γ, PA � � dγ=dT, PA � γ.

Interpretation • Factors PA, λ, μ,− dγ/dT are significant
• Suspected significant interactions:
λ � μ; λ � � d=dT; μ � dγ=dT; λ � μ � �dγ=dT

• Factors PA, λ, μ are significant.
• Confirmed significant interactions:
λ � μ; λ � γ; λ � � dγ=dT; PA � μ
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propagate directly to the depth Y, and may also result in
interaction effects such as PA � μ and λ � μ that further contribute
to output uncertainty of the depth (ΔY). We aim to understand the
effects of these input uncertainties, but a constraint is the high
computational cost of high-fidelity simulations—which take 2 to
3 days on average per simulation. Therefore, a full factorial design
and variable selection approach is proposed for analytics on the
effects of these input uncertainties at a reasonable computational
cost.
The thermal-fluid model is selected as our multi-physics model

due to its ability to capture major physical phenomena of the
L-PBF process8, hence offering better accuracy than analytical
models and heat transfer models which use the finite element
method. Material parameters are specifically chosen in this study

since most studies in the literature focus on the effects of process
parameters, such as laser power, scan speed, and beam
radius9,17,18. Though reported to be highly sensitive19, there are
limited studies on material parameters such as surface tension,
viscosity, thermal conductivity and the absorbed laser power—
which is determined by the energy absorptivity of the material
while the input laser power is kept constant. For instance, it has
been found that the energy absorptivity variation is related to the
likelihood of keyhole pore formation, which drastically changes
the melt pool geometry8,20. The thermal conductivity, viscosity,
and surface tension parameters play a critical role in thermal-fluid
simulation results as they are related to the flow properties and
thermal properties of the material, which in turn control the
hydrodynamics and transport phenomena of the melt pool19.

Table 8. Full factorial design of experiments for input factors (PA, λ, μ, γ,− dγ/dT) with the corresponding output melt pool depth values.

Factor PA λ μ γ -dγ/dT D

Name Absorbed
Laser Power

Thermal
Conductivity

Viscosity Surface Tension
Coefficient

Surface Tension Temperature
Sensitivity

Melt Pool Depth

Lower Level 58.5 18.24 0.004 1.504 0.00008 N.A.

Higher Level 97.5 27.36 0.006 2.256 0.00012 N.A.

Nominal Value 78 22.8 0.005 1.88 0.0001 0.1064

Unit W W m−1 K−1 kg(m⋅s)−1 kgs−2 kgs−2K−1 mm

Relative Error 25% 20% 20% 20% 20% N.A.

Case 1 − − − − − 0.08162

Case 2 − − − − + 0.08162

Case 3 − − − + − 0.07827

Case 4 − − − + + 0.08588

Case 5 − − + − − 0.07917

Case 6 − − + − + 0.08077

Case 7 − − + + − 0.08037

Case 8 − − + + + 0.08042

Case 9 − + − − − 0.07912

Case 10 − + − − + 0.079696

Case 11 − + − + − 0.081869

Case 12 − + − + + 0.07448

Case 13 − + + − − 0.07576

Case 14 − + + − + 0.07452

Case 15 − + + + − 0.07571

Case 16 − + + + + 0.07319

Case 17 + − − − − 0.1346

Case 18 + − − − + 0.1326

Case 19 + − − + − 0.1353

Case 20 + − − + + 0.138

Case 21 + − + − − 0.13184

Case 22 + − + − + 0.13722

Case 23 + − + + − 0.13587

Case 24 + − + + + 0.13318

Case 25 + + − − − 0.13167

Case 26 + + − − + 0.13184

Case 27 + + − + − 0.13049

Case 28 + + − + + 0.13175

Case 29 + + + − − 0.13041

Case 30 + + + − + 0.12915

Case 31 + + + + − 0.12772

Case 32 + + + + + 0.13273

A scan speed of v = 0.6 ms−1 is used for all cases.
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Hence this study focuses on the effects of highly sensitive material
parameters on the output QoI, which is selected as the melt pool
depth, Y. Of the three output melt pool dimensions (length, width,
depth), the depth is most crucial since it is related to lack of fusion
defects, which affect the mechanical properties of L-PBF
products20. The nickel-based alloy, Inconel 625 (IN625), is selected
as the model material, since it is popular in many AM applications
due to its high strength and good fabricability1.
The methodology used in this work is detailed as follows. A

full factorial design of experiments is conducted for the five
material parameters (PA, λ, μ, γ,− dγ/dT), where the upper and
lower factor levels of the design are selected to represent their
respective input uncertainties. Data of melt pool dimensions is
generated using high-fidelity thermal-fluid simulations. A
thorough review of the physical phenomena in the L-PBF
process is conducted to serve as domain knowledge for
verifying the statistical results obtained in this study. Given
the limited size of our data set, we define a validation
checkpoint based on domain knowledge to ensure the
credibility of our subsequent statistical analysis. The selected
statistical-physical validation criterion is PA having a dominating
influence on the response depth, since it is a well established
fact in the AM community. Initial data visualization using half-
normal plots, interaction plots, and standard deviation plots are
being conducted to confirm that our prior results meet the
validation checkpoint, and that our data set is suitable for
further analysis. Subsequently, multiple linear regression
analysis is employed to further investigate the findings from
the initial visualization, through hypothesis testing of seven
different models. A combination of variable selection techni-
ques such as best subset selection and the least absolute
shrinkage and selection operator (LASSO) regression is used to
identify the significant variables and provide a parameter
ranking. Measures such as adjusted R2, Mallow’s Cp, the ratio of
test mean squared error to train mean squared error, and
residual normality are used to assess model performance.
Finally, the overall statistical results of the study are jointly
evaluated with physical domain knowledge to provide
statistical-physical validation for our critical findings. These
findings are then used to draw practical insights for simulation
and experimental communities in AM.

Design of experiments for simulations
A full factorial DOE is constructed for the five factors: PA, λ, μ, γ,
and− dγ/dT due to its ability to study not only the main effect of
a single factor, but also interaction effects between any two
factors on the output QoI21,22. A major advantage of the full
factorial design is its ability to comprehensively examine all
possible combinations of input factors23. This allows us to study
important factor interactions, which are suspected to have

substantial influence on melt pool geometry3,24. Here we
consider the 2-level design, and the simulations are conducted
by taking all possible combinations of each factor’s high level
(+ ) or low level (− )25. The high and low levels of the factors:
PA, μ, λ, γ,− dγ/dT, are taken as 25%, 20%, 20%, 20%, 20% above
and below the nominal values of the factors respectively. These
relative error percentages of the factors represent their
respective input uncertainties in multi-physics modeling, which
arise due to the lack of knowledge on their exact values. Since it
is not possible to explicitly determine these exact values, the
nominal values for the factors, along with their variations (or
uncertainties), are chosen based on prior research and domain
knowledge3,24. For instance, the commonly used nominal value
for energy absorptivity under the laser power of 195W and scan
speed of 0.6 ms−1, is 0.43. Hence the absorbed laser power PA—
which involves a multiplication of laser power and energy
absorptivity, has a selected nominal value of 78W. In addition,
the relative error of PA has a selected value of 25% since
previous studies have estimated the uncertainty of the absorp-
tion coefficient to be larger than that of other input factors, with
a variation of at least 25%3. The total number of simulations to
be run is 25, and they are performed using the thermal fluid-flow
model discussed in Section “Thermal fluid-flow model”. The
constructed DOE with complete design information, along with
the simulated depth values, are given in Table 8.

Thermal fluid-flow model
The thermal-fluid simulation is utilized to build the dataset for the
subsequent data analysis26–29. Based on the assumption of the
incompressible laminar flow, the governing equations of mass
continuity with the incompressiblity condition, momentum
conservation and energy conservation are given as

∇ � ðvÞ ¼ 0;
∂
∂t ðρvÞ þ ∇ � ðρv� vÞ ¼ ∇ � ðμ∇vÞ � ∇pþ ρgþ fB;

∂
∂t ðρhÞ þ ∇ � ðρvhÞ ¼ qþ ∇ � ðλ∇TÞ;

8><
>: (1)

which are related to the five selected material input parameters in
this study (PA, λ, μ, γ,− dγ/dT)26. The absorbed laser power, PA, is
contained in term q of the energy conservation equation. The
thermal conductivity, λ, is incorporated in the energy conservation
equation. Viscosity, μ, is incorporated in the momentum
conservation equation. The boundary conditions for the momen-
tum conservation equation incorporate surface tension, recoil
pressure and Marangoni forces20, which account for the surface
tension coefficient, γ, and surface tension temperature sensitiv-
ity,− dγ/dT. The thermal boundary conditions incorporate the
surface radiation and energy loss by evaporation. In addition, v
represents the velocity vector, p represents the pressure, and T
represents the temperature. In the energy conservation equation,

Fig. 7 A black box representation of the propagation of uncertainty Δ, from the input parameters (PA, λ, μ, γ,− dγ/dT) to the output (Y) in a
high-fidelity multi-physics model.
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h is the specific enthalpy denoted by h ¼ cpT þ 1� f sð ÞL, where
cp, fs and L represent the specific heat, solid fraction and latent
heat of melting, respectively. The momentum equation incorpo-
rates gravity (g) and buoyancy (fB, Boussinesq approximation).
The free surface at each time increment is tracked and re-

constructed by the Volume of Fluid (VOF) method30, given as

∂F
∂t

þ ∇ � ðFvÞ ¼ 0; (2)

where F denotes the fluid fraction. The model is able to provide
output melt pool dimensions from simulations performed at
different input factor settings. In these simulations, the powder
layer is not incorporated to minimize melt pool fluctuation caused
by the randomly-packed powder layer. This enables better focus
on the output variation caused by the material input parameters,
and more details about the model can be referred to26,28.
The full set of simulation results is provided in Table 8. Two

variables, namely the temperature and the fusion zone, are used
to measure melt pool dimensions, as shown in Fig. 8. The
temperature plot is used to measure melt pool length. The fusion
zone represents the region that has ever been melted, i.e.,
temperatures exceeding the melting temperature of IN625
(1623K), and is used to measure melt pool width and depth. It
displays the entire melted region, which includes both molten and
solidified states of the material along the scan track.

Inferences from physics-based domain knowledge
In this section, crucial physics that occur in the L-PBF process
based on the knowledge of field experts, e.g., simulation teams,
industrial practitioners, are discussed and analyzed. Some physical
phenomena found to significantly influence melt pool geometry

are the marangoni effect, effective energy input, and heat
transport mechanisms, i.e., via conduction, convection, diffusion31.
The Marangoni Effect refers to the phenomenon of mass

transfer along an interface between two fluids driven by a surface
tension gradient32,33. It can be quantified with the Marangoni
Number, Ma, which compares the rate of transport of fluid due to
Marangoni flows, with the rate of transport of diffusion31. It
contains 3 input factors of interest in this study, namely− dγ/dT, μ,
λ, and is defined by: Ma ¼ � dγ

dT
wΔT
μα , where α is the thermal

diffusivity of the alloy, given by α ¼ λ
ρcp
. The constants cp and ρ

stand for the specific heat and density respectively, while w is the
characteristic length of the melt pool, which is taken as melt pool
width. The difference between the maximum temperature inside
the pool and the solidus temperature of an alloy is denoted by ΔT.
Dimensionless numbers related to the different types of heat

transfer mechanisms are the Prandtl Number (Pr), the Peclet Number
(Pe) and the Reynolds Number (Re)19,31,34. The Prandtl Number, Pr, is a
fluid property, which reflects the ratio of kinematic viscosity and heat
diffusivity. It contains 2 input factors of interest in this study, namely
μ and λ, and is defined as: Pr ¼ cpμ

λ . It provides a gauge of the relative
effects of momentum diffusivity and thermal diffusivity34. The Peclet
Number, Pe, signifies the ratio of the convection rate associated with
the scanning speed and the rate of conduction31. It is related to input
factor λ of this study, and is defined as: Pe ¼ UL

α , where U is the
characteristic velocity, α is the thermal diffusivity of the alloy, and L is
the characteristic length—which is taken as the melt pool length31.
The dimensionless parameters Pr and Pe are related by the Reynolds
Number, which is defined as: Re= Pe/Pr. It is not an independent
parameter since it is a ratio of the Peclet Number and Prandtl
Number. Holding the Reynolds number constant is equivalent to
holding laser diameter and scanning velocity constant31. This

Fig. 8 Typical simulation results with corresponding colour scales. a Isometric view with temperature scale, where L and W denote the melt
pool length and width respectively. b Vertical cross sectional view of melt pool depth with fusion scale---where 1 represents the region that
has ever been melted, while 0 represents the region that has never been melted.
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provides a convenient basis of comparison for different parameter
effects—with constant Re, material effects are associated with Pr, and
heat input effects are attributed to− dγ/dT31,34. Another crucial
parameter related to the effective laser energy input is the laser
absorption coefficient of the material (η). It represents the percentage
of laser power that is actually absorbed by the material for a specific
experimental set up4.
The observations reported by the simulation groups as well as

industrial practitioners provide useful inferences regarding the main
effects as well as potential interaction effects of input factors
(PA, λ, μ, γ,− dγ/dT) onto the response melt pool dimensions. Table 9
summarizes the observations made by the domain experts, along
with the corresponding inferences for the input factors PA, λ, μ, γ,−
dγ/dT19,19,31,34–37. The inferences are drawn based on the assumption
that all other variables, apart from the input factors of our study
(PA, λ, μ, γ,− dγ/dT), are kept as constants in the physical parameters.
Since PA, λ, μ, γ,− dγ/dT contribute to the main source of variability in
these physical parameters, their effects on the output can be
associated with the main effects of PA, λ, μ, γ,− dγ/dT and/or their
interactions. For instance, it has been reported in literature that Pr has
a substantial effect on the melt pool aspect ratio35,36. Such an
observation could be caused by the main effect of λ, μ and/or the
combined effect of both factors. Hence, a possible inference for Pr is
that the factors λ, μ and/or interaction λ � μ is significant. The same
reasoning is applied for the rest of the physical parameters to yield
the respective inferences as shown in Table. 9.
The research conducted thus far will serve as domain knowl-

edge that can be used to complement the interpretation of the
statistical results subsequently, allowing us to jointly evaluate our
results from a statistical-physical perspective.

Half-normal probability plots
Data visualization plays a crucial role in analytics as it serves as a
common ground for understanding the data, and serves as a quick
method to assess if the defined validation checkpoint is being
met. Additionally, it allows for the detection of any unusual trends
in the data. To achieve this, we will utilize half-normal plots,
interaction plots and standard deviation plots for our data
visualization process. If the validation checkpoint is met through
the prior results of the data visualization, we will proceed with
further analysis using multiple linear regression.
In a general 2k factorial, if there are no replicates, Montgomery12

recommended the use of a normal probability plot for analysis. The
normal probability plot (NPP) works on the assumption that changes
in input factor levels have no effect on the response, and that the
variation in the response variable occurs by chance, i.e., random
fluctuation of the response variable about a mean. This implies that
all 32 effects—which are the main effects and interaction effects of
the five input factors, are initially assumed to have roughly normal
distributions centred at zero, and should form a straight line when
plotted as points on a normal probability scale14. Hence points
(effects) that fit reasonably well on the straight line agree with this
assumption, and are concluded as not significant. However, effects
that deviate from the line are not easily explained as chance
occurrences, and are suspected to be significant. According to the
aforementioned working principle, the following steps are used to
produce the NPP and perform prior analysis of all the factor effects.

(1) Calculation of the 32 effects—The effects are calculated and
sorted in standard order using Yates’ Algorithm14,38,39.

(2) The ordered effect values then undergo a rankit approxima-
tion—which estimates the expected values of the effects’

Table 9. Inferences based on domain knowledge.

Physical Parameters Observation from domain knowledge for: PA, λ, μ, γ,− dγ/dT Physics-based inferences for PA, λ, μ, γ,− dγ/dT

Prandtl Number,
Pr ¼ cpμ

λ

• High Pr values result in wider and shallower melt pools, while
low Pr values cause narrow and deep melt pools35,36.

• Materials with high Pr values result in melt pools with strong
Marangoni convection35.

Parameter Pr has a significant effect on melt pool dimensions
—where this effect is attributed to one or more of the
following main effect(s) and/or interaction(s) of the input
factors:
• Main effects of: λ, μ
• The 2

2

� �
possible interaction terms of λ and μ.

Inference: Main effects of λ, μ and/or interaction effect λ � μ
is significant

Marangoni Number,
Ma ¼ � dγ

dT
wΔT
μα

• Marangoni flow in the melt-pool could significantly influence
the melt-pool shape in a nonlinear manner. A higher Ma
number results in a wider and shallower melt pool35.

• A high value of Ma implies larger liquid metal velocity and
more efficient convective heat transfer. This causes a larger
melt pool with higher aspect ratio and length31.

• Large values of Ma indicate a strong driving force for
convection at the melt pool surface, causing rapid heat
transfer in the radial direction by convective heat transport
and consequently, a higher value of Pe36.

Parameter Ma has a significant effect on melt pool dimensions
—where this effect is attributed to one or more of the
following main effect(s) and/or interaction(s) of the input
factors:
• Main effects of: λ, μ,− dγ/dT
• The 3

2

� �
possible 2-factor interactions of λ, μ,− dγ/dT

• The 3
3

� �
3-factor interaction of λ, μ,− dγ/dT

Inference: Factors λ, μ,− dγ/dT and/or interaction effects λ �
μ; μ � �dγ=dT; λ � dγ=dT; λ � μ � �dλ=dT is significant

Peclet Number,
Pe ¼ UL

α

• A low value of Pe causes a narrow and deep melt pool36.
• Higher values of Pe imply smaller conduction-induced melt
zone in the absence of thermocapillary motion34.

• A high value of Pe results in increased aspect ratio due to
more dominant Marangoni convection34.

Parameter Pe has a significant effect on melt pool dimensions
—where this effect is attributed to:
• Main effect of: λ
Inference: Factor λ is significant.

Absorption
coefficient, η

PA has significant effect on melt pool depth20 Parameter η has a significant effect on melt pool dimensions—
where this effect is attributed to:
• Main effect of: PA
Inference: Factor PA is significant

Surface Tension
Temperature
Sensitivity,− dγ/dT

A higher value for− dγ/dT result in convective heat transfer
and nearly round melt pool shape19.

The main effect of factor− dγ/dT has a significant effect on
melt pool dimensions.
Inference: Factor− dγ/dT is significant.

Viscosity, μ • A higher value of μ increases melt pool length19. The main effect of factor μ has a significant effect on melt pool
dimensions.
Inference: Factor μ is significant.
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order statistics from the standard normal distribution, to
yield their respective cumulative probabilities and corre-
sponding z-test statistics according to

zi ¼ Φ�1 i�a
nþ1�2a

� �
;

for i ¼ 1; 2; ¼ ; n;

a ¼ 3=8 if n � 10 and 0:5 for n>10;

(3)

where Φ−1 represents the standard normal quantile function, i
represents the rank order of each effect, n represents the total
number of effects. Since n = 32, the corresponding value of a is
0.540,41

(3) The NPP plot is generated with the corresponding z-statistic
for each effect on the vertical axis, and the absolute value of
the effect on the horizontal axis.

(4) A best fit straight line is drawn and outliers are identified as
significant effects.

The half-normal plot shares the same working principles as the
NPP, except that it considers only the magnitude of these effects.
The benefit of using the NPP or half-normal plot is that it allows

for a quick and convenient method of analyzing all the factor
effects, since outliers can be identified from visual inspection.
However, a drawback is the lack of a clear-cut measure for
significance, requiring a large dose of subjective judgement.
Therefore, the half-normal plots will be complemented with
statistical hypothesis testing using regression models, and also
jointly evaluated with physical domain knowledge found pre-
viously in Section “Inferences from physics-based domain knowl-
edge” to validate the results of the visual analysis.

Interaction plots
In an interaction plot, the response variable of interest Y, i.e., melt
pool depth, is plotted on the vertical axis. An input factor Xi1 is
plotted on the horizontal axis with the domain spanning from its low
to high level. Another input factor Xi2 that has suspected interaction
with Xi1 is also varied simultaneously from its low to high level. This
yields two separate lines characterizing the effect of Xi1 on the
response, corresponding to the low and high levels of Xi2
respectively as shown in Fig. 9. Simple visual inspection of the two
lines allow us to quickly study how interactions affect the relationship
between the factors and the response. If the two lines are parallel,
this indicates that there is no interaction between factors Xi1 and Xi2 .
This is because the effect of Xi2 on the response variable when Xi1 is
at its low level, Xi2 jXi1

�, is the same as that when Xi1 is at its high
level, Xi2 jXi1

þ. Hence this shows that the interaction effect,
Xi1 � Xi2 ¼ Xi2 Xi1

þ � Xi2j jXi1
�ð Þ=2 ¼ 0, and the factor level of Xi2

does not affect the effect of Xi1 on the response. On the other hand,
non-parallel lines indicate the presence of an interaction effect
between Xi1 and Xi2 .

Standard deviation plots
The main effects model, YXi1 , is a parsimonious model that can be
used to obtain quick results on uncertainty propagation via the
one-factor-at-a-time (OFAT) method.

YXi1 ¼ β0 þ β1PA þ β2λþ β3μþ β4γ þ β5ð�dγ=dTÞ þ ϵ1: (4)

The model coefficients in β are assumed to be fixed42, and act
as weights attached to the individual Xi’s which are normally
distributed:

Xi � N 0; σXið Þ i ¼ 1; 2; ¼ n: (5)

Hence, the response Y—melt pool depth, will also be normally
distributed with a mean and variance of

Y ¼ Pn
i¼1 βixi ;

σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 βi
2σ2

Xi

q
:

(6)

In addition, β can be defined by the partial derivative of the
response Y versus the individual variable Xi, ∂Y∂Xi

42. By applying (6) to
the input factors in our study (PA, λ, μ, γ,− dγ/dT), we have

σY ¼

∂y
∂PA

� �2

σ2PA

� �
þ ∂y

∂λ

� �2

σ2
λ

� �þ ∂y
∂μ

� �2

σ2
μ

� �
þ ∂y

∂γ

� �2

σ2
γ

� �
þ ∂y

∂ð�dγ=dTÞ
� �2

σ2
�dγ=dT

� �s
:

(7)

Equation (7) serves as a function to approximate uncertainty
propagation, on which we apply an OFAT approach to investigate
how each factor’s input uncertainty—represented by the factor’s
standard deviation, affects the output uncertainty, i.e., standard
deviation of melt pool depth σY. This approach involves varying
each input standard deviation σXi in steps of 0.01 to analyze the
influence of small perturbations in input standard deviation onto
the output standard deviation. Plots of input-output standard
deviation are then made to assess how the input uncertainties
propagate to the output uncertainty. The graphical results are
displayed in Section “Data visualization”.

Multiple linear regression
A multiple linear regression (MLR) model is an empirical model
that relates the chosen response variable of interest, melt pool
depth Y, to the p predictors stored in vector X, where each
predictor can be a main or interaction effect12. The MLR model
takes on the general form of

Y ¼ Xβþ ϵ; (8)

where

Y ¼

y1
y2

..

.

yn

2
66664

3
77775; X ¼

1 x11 x12 � � � x1p
1 x21 x22 � � � x2p

..

. ..
. ..

. ..
.

1 xn1 xn2 � � � xnp

2
66664

3
77775; β ¼

β0

β1

..

.

βp

2
66664

3
77775; and ϵ ¼

e1
e2

..

.

en

2
66664

3
77775:

In (8), the total number of observations from the thermal-fluid
simulations is denoted by n, which is equal to 32. An actual
observation obtained from the thermal-fluid simulation is denoted
by lowercase yi for i = 1,..., n, and ϵ is the error term. The error term
is represented by the vector of residuals ei for i= 1, . . . , n, where
ei ¼ yi � ŷi , which is the difference between each observation
from the thermal-fluid simulation, yi, and the corresponding fitted
value from the regression, ŷi . The parameters βj, j= 0, 1, . . . , p are
the predictor coefficients, which are calculated using the least
squares estimator, β̂. The vector of β̂ minimizes the sum of square
of errors,

Pn
i¼1 e

2
i and is given by

β̂ ¼ X0Xð Þ�1X0Y: (9)

Fig. 9 Interaction plot of an input factor Xi1 on the X-axis and the
response variable on the Y-axis. Another input factor Xi2 is varied
simultaneously to produce two lines corresponding to the low and
high levels of Xi2 respectively.
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Let Xi denote a main effect, where i = 1,...5, and all main effects in
this study are coded inputs that have been scaled according to

Xi � Xilow þ Xihigh

� �
=2

Xihigh � Xilow

� �
=2

; (10)

to be between the range of [−1, 1], with a mean of zero and
standard deviation of one12.
In this study, we consider seven different MLR models—the full

model, the 4-factor interactions model, the 3-factor interactions
model, the 2-factor interactions model, the main effects model,
the best subset model and the LASSO model. Each model contains
p predictors, where p = 31, 30, 25, 15, 5, 25, 10 for the seven
models respectively, and m denotes the total number of main
effects in the model.
Let YXi1 represent the main effects only model given by

YXi1 ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4 þ β5X5 þ ϵ1; (11)

where this model comprises the intercept term β0, and the 5 main
effects of input factors: PA, λ, μ, γ,− dγ/dT (denoted by X1, X2, X3,
X4, X5 respectively).
Let YXi1Xi2 represent the 2-factor interaction model given by

YXi1Xi2 ¼ β0 þ
P5
i1¼1

βi1Xi1 þ P10
i1; i2ð Þ 2 ½m�2

i1≠i2

βi1 ;i2Xi1Xi2 þ ϵ2;
(12)

where this model comprises the intercept term, the 5 main effects
and all 5

2

� �
possible 2-factor interactions, Xi1 � Xi2, (e.g. PA � λ).

Let YXi1Xi2Xi3
represent the 3-factor interaction model given by

YXi1Xi2Xi3
¼ β0 þ

P5
i1¼1

βi1Xi1 þ P10
i1; i2ð Þ 2 ½m�2

i1≠i2

βi1;i2Xi1Xi2þ
P10

i1; i2; i3ð Þ 2 ½m�3
i1≠i2≠i3

βi1;i2;i3Xi1Xi2Xi3 þ ϵ3;

(13)

where this model comprises the intercept term, the 5 main effects,
all 5

2

� �
2-factor interactions, and all 5

3

� �
possible 3-factor interac-

tions, Xi1 � Xi2 � Xi3, (e.g. PA � λ � μ).
Let YXi1Xi2Xi3 Xi4

represent the 4-factor interaction model given by

YXi1Xi2Xi3 Xi4
¼ β0 þ

P5
i1¼1

βi1Xi1 þ
P10

i1; i2ð Þ 2 ½m�2
i1≠i2

βi1;i2Xi1Xi2 þ
P10

i1; i2; i3ð Þ 2 ½m�3
i1≠i2≠i3

βi1;i2;i3Xi1Xi2Xi3

þ P5
i1; i2; i3; i4ð Þ 2 ½m�4

i1≠i2≠i3≠i4

βi1;i2 ;i3 ;i4Xi1Xi2Xi3Xi4 þ ϵ4;

(14)

where this model comprises the intercept term, the 5 main
effects, all 5

2

� �
2-factor interactions, all 5

3

� �
3-factor interactions,

and all 5
4

� �
possible 4-factor interactions, Xi1 � Xi2 � Xi3 � Xi4,

(e.g. PA � λ � μ � γ).
Let YXi1Xi2Xi3 Xi4 Xi5

represent the full model given by

YXi1Xi2Xi3 Xi4 Xi5
¼ β0 þ

P5
i1¼1

βi1Xi1 þ
P10

i1; i2ð Þ 2 ½m�2
i1≠i2

βi1 ;i2Xi1Xi2 þ
P10

i1; i2; i3ð Þ 2 ½m�3
i1≠i2≠i3

βi1 ;i2 ;i3Xi1Xi2Xi3

þ P5
i1; i2; i3; i4ð Þ 2 ½m�4

i1≠i2≠i3≠i4

βi1;i2 ;i3 ;i4Xi1Xi2Xi3Xi4

þ P1
i1; i2; i3; i4; i5ð Þ 2 ½m�5

i1≠i2≠i3≠i4≠i5

βi1;i2;i3 ;i4;i5Xi1Xi2Xi3Xi4Xi5 þ ϵ5;

(15)

where this model comprises the intercept term, the 5 main effects,
all 5

2

� �
2-factor interactions, all 5

3

� �
3-factor interactions, all 5

4

� �
4-factor interactions and the 5-factor interaction, Xi1 � Xi2 � Xi3 �
Xi4 � Xi5 (i.e., PA � λ � μ � γ � �dγ=dT).

Best subset selection
Since these 5 MLR models have been formed via manual selection
of variables, it is possible that all five candidate models do not
contain the optimal number of variables and the best combination
for them. Hence, the best subset selection algorithm is used to
search through all possible combinations of variables, choosing
the best model with the optimal number and combination of
variables. The best subset model, denoted by YXk , has been
formed via the best subset selection algorithm as follows43.

Algorithm 1. Best Subset Selection Procedure
1. Let Y0 denote the null model, which contains no predictors.
2. for j= 1, 2,…p : do

(a) Fit all p
j

� �
models that contain exactly j predictors.

(b) Pick the best among these p
j

� �
models, and term it as Yj.

(Here best is defined as having the smallest RSS, or equivalently
largest R2.)
end for
3. Select a single best model from among Y0,…, Yp using

performance metrics such as Cp or adjusted R2, and term this
model as YXk .

In Algorithm 1, a separate least squares regression is fitted for
each possible combination of p predictors, producing 2p models in
total. In our study, the maximum value for p= 30 due to the lack
of degrees of freedom for fitting the full model, and this will be
further discussed in Section “Variable selection and model
analytics”.
Step 2 identifies the best model for each subset size (j) based on

the smallest residual sum of squares (RSS), hence reducing the
number of models for consideration to p+ 1. The RSS is defined as

RSS ¼ Pn
i¼1

yi � ŷið Þ2

¼ Pn
i¼1

eið Þ2:
(16)

Among these p+ 1 models, a single best model is selected using
Mallow’s Cp and adjusted R2, which serve as performance metrics
for assessing goodness of model fit. The selected model with the
optimal metrics is then termed as the best subset model YXk . The
Mallow’s Cp is defined as

Cp ¼ 1
n

RSSþ 2jσ̂2� �
: (17)

The adjusted R2 is defined as

Adjusted R2 ¼ 1� RSS =ðn� j � 1Þ
TSS =ðn� 1Þ : (18)

A low Cp and high adjusted R2 indicates a good model fit.

LASSO regression
The LASSO (Least Absolute Shrinkage and Selection Operator) is
a regularized regression method that shrinks the coefficients of
less important variables towards zero, and can effectively
perform variable selection as well. Given a set of predictors X
and a response variable Y, the LASSO coefficients, β̂λreg are
obtained by minimizing the following optimization problem
shown in Eq. (19):

β̂λreg ¼ argmin
β

1
2n

jY� Xβj22 þ λregjβj1 (19)

where β is the vector of regression coefficients, n is the number of
observations, λreg is a tuning parameter that controls the strength
of regularization43. The L1 norm, represented by ∣β∣1, performs the
regularization of the coefficients. The L2 norm, denoted by
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1
2n jY� Xβj22, corresponds to the residual sum of squares (RSS) of
the model. The value of λreg controls the strength of regularization,
and determines the number of variables included in the final
model. A smaller value of λreg will result in a model with more
variables, while a larger value of λreg will result in a model with
fewer variables. The choice of λreg can be obtained using cross-
validation techniques such as leave-one-out cross-validation. The
LASSO regression is chosen over other regularization methods
such as the ridge regression due to it’s variable selection
capability, which can complement the best subset selection
method to provide a comprehensive variable selection with robust
results. Both techniques can be used to identify a smaller set of
variables that are less prone to overfitting, which may then be
compared to check if the same variables are selected by both
methods. This can help to increase the confidence in the selected
variables, yielding a stable and interpretable set of predictor
variables that are relevant to the response. By removing variables,
the LASSO method can also perform model refinement, resulting
in a more parsimonious and intepretable model. We denote the
LASSO-regularized regression model as YXL .

Cross-validation
Cross-validation (CV) is a technique used to evaluate the
performance of a model by dividing the data into a training
set and a test set. The model is trained on the training set and its
performance is evaluated on the test set. A popular cross-
validation method is leave-one-out cross-validation (LOOCV),
which is particularly well-suited for the full factorial design used
in this study, as it does not require the typical train-test split of
the data. Given our small sample size, the use of LOOCV allows
us to utilize all available data to fit our model. Hence we employ
the LOOCV technique to evaluate the performance of our
models. It is also used to determine the optimal value of λreg for
the LASSO regression. In LOOCV, the data is split into a train and
test set by leaving out one observation from the dataset as the
test set, and using the remaining observations as the training
set. This process is repeated for each observation in the dataset,
resulting in n test sets and n corresponding train sets, where n is
the number of observations in the dataset.
In cross-validation, the Mean Squared Error (MSE) is a commonly

used performance metric for the test set. The MSE measures the
average of the squared differences between the predicted values
from the model fitted using the train set, and the true values from
the test set, as shown in Eq. (20):

1
n

Xn
i¼1

ðyi � ŷiÞ2 (20)

where yi is the true value, ŷi is the predicted value, and n is the
number of observations. The MSE for the test set (test MSE)
provides an estimate of the model’s performance on unseen data,
while the MSE for the training set (train MSE) assesses how well
the model is fitting the training data. The ratio of the test MSE to
the train MSE is used to evaluate model performance and assess
overfitting. A model that is overfitting will have a higher ratio of
test MSE to train MSE, indicating that the model performs well on
the training set, but has poor performance on the test set.
Conversely, a model that is not overfitting will have a lower ratio
of test MSE to train MSE, which suggests that the model performs
well on both the training and test sets.

Parameter ranking
In the coded variable analysis, the magnitudes of the model
coefficients in β, are directly comparable since they are
dimensionless. This allows us to determine the relative sizes
of factor effects. These standardized model or regression
coefficients measure the effect of changing each design factor

over a one-unit interval, and are equivalent to the partial
derivatives of the model response with respect to each input
factor12. The raw values of regression coefficients are seldom
used as they incorporate the original units of design factors,
which makes the results difficult to interpret12. According to
Saltelli et al.42, β can be a robust and reliable measure of
sensitivity. Therefore, the respective regression coefficients in β
is used to rank all the parameters in terms of their relative
importance on the response variable. In addition, the corre-
sponding p-values of the model coefficients can indicate
statistical significance of the terms.
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