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Small data machine learning in materials science
Pengcheng Xu1, Xiaobo Ji2, Minjie Li 2✉ and Wencong Lu 1,2,3✉

This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by
small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data
were introduced, including data extraction from publications, materials database construction, high-throughput computations and
experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level;
active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine
learning in materials science were proposed.
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INTRODUCTION
As an interdisciplinary subject covering computer science,
mathematics, statistics and engineering, machine learning is
dedicated to optimizing the performance of computer programs
by using data or previous experience, which is also one of the
important directions of artificial intelligence development1,2. In
recent years, machine learning has been widely used in many
fields such as finance, medical care, industry, and biology3–10. In
2011, the concept of material genome initiative (MGI) was
proposed to shorten the material development cycle through
computational tools, experimental facilities and digital data. Under
the leadership of the MGI, machine learning has also become one
of the important means for materials design and discovery11,12.
The core of machine learning-assisted materials design and
discovery lies in the construction of machine learning models
with good performance through algorithms and materials data to
achieve the accurate prediction of target properties for undeter-
mined samples13. The constructed model could be further used to
discover and design materials or explore the patterns and laws
hidden behind the materials data. In the past decades, machine
learning has become more and more developed and favored by
researchers as a powerful tool to assist in the design and discovery
of various materials, including alloys, perovskites, polymers,
etc14–17. A lot of related studies have proved that compared with
the trial-and-error method based on experiment and experience,
machine learning can quickly obtain laws and trends from
available data to guide the development of materials without
understanding the underlying physical mechanism. Data is the
cornerstone of a machine learning model, which directly
determines the performance of the model from the source. It is
widely accepted that we are in an era of big data where the data
keep exploding all the time to allow machine learning to play such
a big role. However, in the field of materials science, some
questions about data are worth thinking deeply. Has the materials
data really entered the era of big data? How much data can be
considered big data? What is the difference between big data and
small data?
Some statisticians consider the ‘big’ of big data refers to the

scale of the data, including the amount of samples or the number
of variables18. We believe that the definition standard of big data
needs to be determined by combining the sample size and the
number of variables. The amount of data needed should vary

depending on the size of the space and the complexity of the
target system. However, there are few specific quantitative indices
about the data size to definite the big data, and there is also
obscure to make a clear distinction between big data and small
data. The concepts of big data and small data are relative rather
than absolute. The small data discussed in this review focuses on
the limited sample size. Some scholars believed that the data
generally obtained from large-scale observations or instrumental
analysis could be regarded as big data, mainly used for simple
analysis of prediction; while the data derived from human-
conducted experiments or subjectively collection could be
regarded as small data, mainly used for complex analysis of the
exploration and understanding of causal relationships18. From this
point of view, although the development of materials synthesis
and characterization as well as the data storage technology has
led to the increase in the amount of materials data, most of the
data used for materials machine learning still belong to the
category of small data. An important development direction in
materials machine learning is the interpretation of the relationship
between descriptors and material properties, which can also be
viewed as an exploration of causal relationships. However, the
applications of the models depend on the accurate prediction
ability of the model, so even for small data, there remain some
requirements for the prediction ability of the model. The
acquisition of materials data requires high experimental or
computational costs, leading to the dilemma where researchers
must make a choice between simple analysis of big data and
complex analysis of small data within a limited cost in the process
of data collection. If the goals of the research can be achieved with
smaller data, most researchers tend to favor the collection of small
samples under the controlled experimental conditions instead of
large samples with the unknown origin19. The quality of the data
trumps the quantity in the exploration and understanding of
causal relationships. In addition, the uncertainty assessment of
models constructed with small data is simpler than that of big
data, and the conclusions drawn from small data will remind users
to use more cautiously. The essence of working with small data is
to consume fewer resources to get more information.
Small data tend to cause the problems of imbalanced data and

model over fitting or under fitting due to the small data scale and
too high or too low feature dimensions, which has always been
one of the pain points in materials machine learning. There are
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two ways to solve the problems caused by small data: One is from
the data perspective, to increase the data size in the process of
data collection. The other is from the machine learning
perspective, to select a modeling algorithm suitable for small
datasets or to improve the predictive accuracy of the model
through machine learning strategies. As shown in Fig. 1, this
review aims to introduce the general process of machine learning-
assisted materials design and discovery combined with the
cutting-edge research achievements and summarize the methods
of dealing with small data in the process. The methods of dealing
with small data were introduced from the three levels, including
data extraction from publications, materials database construc-
tion, high-throughput computations and experiments from the
data source level; modeling algorithms for small data and
imbalanced learning from the algorithm level; active learning
and transfer learning from the machine learning strategy level. In
addition, the future directions with challenges of small data in
materials machine learning are also summarized.

WORKFLOW OF MATERIALS MACHINE LEARNING
One of the most direct goals of machine learning-assisted
materials design and discovery is to apply the algorithms and
materials data to construct models for the prediction of the
material properties. As shown in Fig. 2, the workflow of materials
machine learning includes data collection, feature engineering,
model selection and evaluation, and model application20–23.
Materials data are required to be collected after clarifying the

research object and relevant properties. The data are generally
divided into two parts: The target variable reflecting the property
of the materials and the descriptor reflecting the information of

the materials themselves. The data of target variable could be
collected from published papers, materials databases, lab experi-
ments, or first-principles calculations24. Although collecting data
from the publications can access the latest research data, it also
requires the huge cost to search for a large number of
publications along with the data of mixed quality. Besides, even
for the same property of the same materials with the same
synthesis and characterization methods in different publications,
there could still exist some inconsistency in the property values,
which may bring the challenges of data uncertainty assessment
and the complicated data preprocessing15. A large amount of data
can be obtained from the materials databases in a short time.
However, due to the cycle delay of the entry and check of the
materials data, the data in the latest research could not be
available from the materials databases. The quality of data
obtained through experiments or calculations tend to be high
because of the unification of experimental and computational
conditions, but the cost of some materials such as alloys
containing precious metal elements is too high to obtain a large
amount of data through experiments. The emergence of first-
principles calculations has made up for the limitations of
experiments. The first-principles method is based on the quantum
mechanics, in which the calculation process only requires the
involved atomic species and the position coordinates to become
one of the preferred methods for the design and exploration of
materials25–27. But the calculation accuracy is also affected by the
level of material systems and computer hardware. Descriptors can
be divided into three scales from microscopic to macroscopic:
element descriptors at the atomic scale; structural descriptors at
the molecular scale; and process descriptors at the material scale.
The element descriptors reflect the composition information of
the materials. The acquisition of element descriptors requires the
composed chemical elements of the materials and their stoichio-
metric ratios. Structural descriptors reflect not only compositional
information, but also the 2D or 3D structural information of the
materials, which can be generated by descriptor generation
software or toolkits like Dragon, PaDEL, and RDkit28–31. Process
descriptors do not reflect information about the materials
themselves, but rather reflect the influence of experimental
conditions in synthesis or characterization on the properties. In
addition to the above three types of descriptors, generating
descriptors based on domain knowledge to construct interpre-
table machine learning models is also one of the research
hotspots in recent years. Lian et al.32 used machine learning based
on domain knowledge to obtain descriptors from empirical
formulas containing unknown parameters to predict the fatigue
life (S-N curve) of different series of aluminum alloys. Compared
with models constructed without domain knowledge, the model
predicted ability was greatly improved. For materials data, we
have been always insisting that every piece of data is precious and
machine learning is able to fulfill its potential value. Descriptors

Fig. 1 The power of small data in materials science. The dilemma
of small data faced by materials machine learning and correspond-
ing dealing methods.

Fig. 2 The workflow of machine learning. The workflow of materials machine learning.
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generated from domain knowledge could assist machine learning
algorithms to better capture the key information and improve the
predicted accuracy of the model.
Feature engineering is an integral part of machine learning.

Feature engineering refers to the selection of optimal descriptor
subsets from the original descriptors with a series of engineered
methods for modeling, including feature preprocessing, feature
selection, dimensionality reduction, and feature combination.
Data preprocessing aims to improve the quality of the
incomplete, inconsistent, and unusable data. The specific
methods include normalization or standardization to perform
interval scaling on descriptor data, and convert data with units
into data without units to unify data metrics by removing the
influence of units to make data processing faster and more agile.
For the missing values of the descriptors, the mean, median,
before or after values can be used to fill in, or the data
corresponding to the missing values can be directly deleted.
Materials descriptors, especially those generated by software,
tend to be high in the dimension and contain redundant
information while describing materials information. The process
of removing redundant descriptors is called feature selection.
According to the relationship between the feature selection
algorithms and modeling algorithms, the commonly used feature
selection methods can be divided into filtered, wrapped and
embedded33,34. In addition to the feature selection, the descrip-
tors of the original high-dimensional space can also be
reorganized to reduce the dimensionality by projecting the
descriptors of the original high-dimensional space into the low-
dimensional space, which is called dimensionality reduction35,36.
The difference between dimensionality reduction and feature
selection is that feature selection aims to remove and delete the
redundant descriptors, while dimensionality reduction is to form
descriptors through the reorganization of descriptors and does
not retain any of the original descriptors. Common dimensionality
reduction methods include principal component analysis (PCA)
and linear discriminant analysis (LDA)37–39. Feature combination
could deal with the problem of under fitting caused by too low
descriptor dimensions. The core of feature combination is to
generate a lot of combined descriptors by combining the original
descriptors with the simple mathematical operation for further
feature selection and modeling. The Sure Independence Screen-
ing Sparsifying Operator (SISSO) is a compressed sensing-based
data analysis method that can perform feature engineering
transformations based on given descriptors to generate a large
number of features, from which the optimal low-dimensional
feature subset could be found40,41.
There are various modeling algorithms to choose for either

regression or classification tasks. For the same data, models
constructed with different machine learning algorithms have
different performance, which requires the evaluation of the
modeling algorithms to select the optimal model without any
under fitting and over fitting. The most used evaluation methods
are K-fold cross-validation (K-fold CV), leave-one-out cross-
validation (LOOCV), and leave-out method42–44. K-fold CV
randomly divides the original data into K parts by non-
repetitive sampling and selects 1 part as the test set each time,
while the remaining K-1 parts are used as the training set for
modeling. After repeating K times, total K models are obtained
after training on each training set to test the performance with
the corresponding test set. The average of the K-group test set
results is used as a performance indicator to evaluate the model
performance under the K-fold CV. LOOCV is a special case of K-
fold CV, where K is equal to the number of samples N. Therefore,
for N samples, there are N-1 samples selected each time to train
the model, leaving one sample as the test set to evaluate the
model. The leave-out method refers to dividing the original
dataset D into two mutually exclusive subsets S and V. The
training set S is used to train the model, while the test set V is set

as the unknown data used to evaluate the generalization ability
of the model. It should be noted that the K-fold CV and the leave-
out method have certain requirements on the data size.
Especially when the number of samples is less than 30, LOOCV
is generally considered to be the most recommended evaluation
method. In case the division of the dataset may have an impact
on the performance of the model, the repeatability measure
named y-scrambling can be used to further verify the stability of
the model45,46. By randomly dividing the dataset into training set
and test set for multiple times to evaluate the stability of the
model, the problem of random fluctuations caused by dataset
division can be avoided. After the evaluation method is
determined, specific indicators are needed to quantify the
performance of the model. For regression tasks, commonly used
evaluation indicators include mean absolute error (MAE), mean
relative error (MRE), root mean square error (RMSE), correlation
coefficient (R), and the determination coefficient (R2) between
the predicted value and the true value. For classification tasks,
commonly used evaluation indicators include classification
accuracy, true positive rate (TPR), false positive rate (FPR), recall
rate, precision rate, etc. In model selection and evaluation, it is
necessary to consider the influence of algorithm parameters on
the model. The process of parameters optimization aims to
adjust the model parameters to further improve the prediction
ability of the model.
The most basic function of a model is to predict the properties

of the unknown materials. According to this function, the model
can be applied to virtual screening, online server and theoretical
discovery. Virtual screening refers to artificially generating a large
number of virtual samples for the constructed models to predict
properties and quickly screen out the materials that meet the
requirements for further experimental or computational valida-
tion47,48. Virtual screening avoids the experience-based experi-
ments to a certain extent and realizes the data-driven way to
design and discover materials. However, the generated virtual
samples often cannot cover the entire search space and huge
computing resources are still consumed in the prediction of too
many samples. The online server allow the constructed models to
be imported into the back-end server and then the corresponding
user interaction page is developed on the front-end49. Before
researchers conduct experiments of the designed materials, the
properties can be quickly obtained through model prediction
once the user inputs the necessary information for unknown
samples. The advantage of the online server lies in the sharing of
models, where the models can be used anytime and anywhere
with only electronic equipment and network. Both virtual screen-
ing and online server are the most intuitive applications of the
model without any exploration of the laws and patterns contained
in the materials data. While the theoretical discovery could explore
the relationship between the important material descriptors and
properties with the assistance of statistics and domain knowledge
to better understand the nature of the materials properties and
guide the design of materials. However, we should be cautious
when using the rules mined from small datasets because the rules
are only more suitable for small data and the generalization ability
remains to be verified.

INCREASE THE DATA SIZE BEFORE/IN THE DATA COLLECTION
In this part, some methods for small data in materials machine
learning before/in data collection will be introduced with the
combination of cutting-edge and typical cases. As has been
illustrated above, the materials data tend to be collected from
publications, materials database, first-principles computations and
experiments. Therefore, data extraction from publications, materi-
als database constructions as well as high-throughput computa-
tions and experiments could help obtain the data size from the
data source.
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Data extraction from publications
The publications often contain data of the most cutting-edge
studies. Most of the data collected from publications in the
materials machine learning work rely more on the human
resources to search and read publications for data collection.
The most famous inorganic crystal database, the database of
materials platform for data science (MPDS) created by the team of
Villars, obtains the data by manual review of publications before
entering the data into database15. Nevertheless, manually
extracting data from publications is rather expensive and labor-
intensive. In addition, in the process of manual data collection, the
bias of data caused by subjective factors would occur, leading to
the situation where the data not conducive to modeling tend to
be ignored or directly removed. The model construction in the
bias of the data is extremely detrimental to the model
applications. With the development of natural language proces-
sing (NLP) and text mining (TM) technology, the ideal of automatic
data extraction from publications is expected to be realized50,51.
The commonly used software and platform in TM could be
available in Supplementary Table 1.
The main steps of automatically extracting data from publica-

tions through NLP and TM technology include: (1) document
retrieval and conversion into plain text; (2) text preprocessing,
including sentence labeling and segmentation, text normalization,
part-of-speech labeling and dependency parsing; (3) information
retrieval; (4) data management52,53. The retrieval of documents
mainly refers to the search of published papers in different
journals. However, many journal papers are not open access and
require plenty of money to subscribe. Besides, the format and
layout of papers in different journals vary a lot, leading to the
barriers in automatically data extraction. In addition to journal
articles, documents such as conference papers, patents, technical
reports, etc. also contain the required information. Documents in
journals are mostly in the form of HTML or PDF files. The HTML can
be parsed and marked up with programming tools, while the PDF
files are complex in the form where the arrangement of text is
interspersed with tables, figures and equations, which affects the
accuracy of conversion to original text and increases the difficulty
of extracting plain text from PDF files. In the process of converting
PDF documents, errors often occur due to the superscripts and
subscripts in chemical formulas or equations. Such errors require
advanced optical character recognition (OCR) to avoid54. Creating
an OCR for scientific texts is an area of active research in computer
science and TM. The labeling and segmentation of sentences is
the key step in information extraction to better understand the
logical components in sentences. The labeling of sentences
requires the explicit labeling criteria, usually marked with special
symbols; while the segmentation of sentences aims to determine
the boundaries in the text55. However, the complexity of materials
terminology and non-standard naming conventions in academic
papers often lead to labeling errors and over-segmentation of
sentences, which would propagate along the TM process to affect
the accuracies of results. Text normalization can be understood as
stem extraction56. The same word usually has different existence
in different tenses and voices. Extracting the stem of the word
would help to reduce the complexity of language. Part-of-speech
(POS) labeling refers to identifying and marking the grammatical
properties of words, such as verbs, nouns, adjectives, etc., which is
used to provide the language- and grammar-based lexical features
to TM models57. But in scientific texts, the ambiguity caused by
the context of words brings challenges to POS labeling and
requires adjustments to the underlying NLP model. Dependency
parsing could map linear sequences of sentence tokens to
hierarchies by parsing the internal grammatical dependencies
between words, which is highly sensitive to the accuracy of
punctuation marks and word forms58. In scientific papers, to
describe the objectivity of facts, the authors tend to use a lot of

passive voice and past tense, resulting in that the general
dependency parsing models cannot accurately capture the
features of the sentences. Information retrieval (IR) refers to the
use of NLP techniques to extract various types of data from
the preprocessed text, of which the most common IR method is
named entity recognition (NER), which classifies text tokens into
specific categories59,60. In scientific texts, named entities can be
technical terms as well as physicochemical parameters and
properties. Chemical NER is a widely used IR method that usually
involves the identification of chemical and materials terms in the
text with early applications focusing on the extraction of drug and
biochemical information61. Data in academic papers exist not only
in text, but also in figures and tables that are embedded in the
text. Extracting data from journal figures and tables requires both
TM and image recognition techniques. The challenges to data
retrieval caused by the format of figures and tables in academic
papers include: (1) Figures and tables exist not only in text, but
also in external links such as the supporting information. (2) The
forms of figures and tables are very complex. For example, the
figure could be mixed with a table; the figure could contain
multiple sub-figures; and the table row and column could be
merged. Although image recognition technology has been widely
used in materials science, it is more used to explore the
morphology and structure of the materials in figures through
deep learning, rather than to separate the figures embedded in
scientific texts.
At present, manual data extraction from publications is still the

mainstream. The ambiguity of materials naming standards, the
complexity of the chemical formulas, the diversification of
languages, and the professional terminology have all caused
great challenges to apply NLP and TM technology to automatically
extract data from publications. Although automated data extrac-
tion from publications is still in its infancy, TM and NLP may play a
key role in enabling more data-driven materials research. Swain
et al.62 has developed the toolkits called ChemDataExtractor for
automatic extraction of chemical information from scientific
publications. ChemDataExtractor provides a layout analysis tool
for complex PDF files built on the PDFMiner framework to group
text into headings, paragraphs and captions using the position of
images and text characters. Besides, ChemDataExtractor could
group text into headings, paragraphs and captions using image
and text character positions. For text labeling and segmentation,
ChemDataExtractor provides a sentence splitter using the Punkt
algorithm based on Kiss and Strunk, which detects sentence
boundaries through unsupervised learning of common abbrevia-
tions and sentence beginnings. The Punkt algorithm has been
proved to be widely applicable to multiple languages and text
domains, performing the best when trained on text from the
target domain. For words derived from unannotated publications,
Brown clustering is used to implement hierarchical clustering
based on the context of word occurrence to improve the
performance of lexical labeling and named entity recognition in
various domains. The POS tagger of ChemDataExtractor is trained
with a linear chain conditional random field (CRF) model using the
orthant-wise limited-memory quasi-Newton (OWL-QN) method
implemented in the CRFsuite framework. A CRF model-based
recognizer combined with a dictionary-based recognizer and a
regular expression-based recognizer are used for chemical named
entity recognition. For chemical identifier disambiguation, the
Hearst and Schwartz algorithms are used to detect the definition
of chemical abbreviations and labels, which could generate a list
of mappings between abbreviations and their corresponding full
non-abbreviated names, merging the data defined for different
identifiers into a single record for each chemical entity. In addition
to extracting data from text, ChemDataExtractor can also parse
tables to extract data. For tables where each row corresponds to a
single chemical entity and each column describes the value of that
entity’s attributes, ChemDataExtractor can extract information
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using a dedicated version of the natural language processing
pipeline by treating each individual table cell as a short, highly
formulaic sentence. Currently, the team has released ChemDa-
taExtractor version 2.0, which retains all the features of
ChemDataExtractor while providing a complete approach to
ontology auto-population in the scientific domain63. ChemDataEx-
tractor 2.0 supports extraction from publications from 155 papers
as an evaluation set, using extracted data from each compound
with 18 sets of nested crystallographic features, which generated
an overall accuracy of 92.2% across 26 different journals, achieving
the construction of a framework for seamless integration from
publications to data-driven methods. Yukari et al.64 developed a
web-based system called Starrydata2 to automatically extract
numerical data from figures of scientific papers and the chemical
composition of the corresponding samples. The visualization
capabilities of Starrydata2 allow for the display of data files in a
variety of formats, including line plots, heat maps, and multiple
scatter plots. Starrydata2 has successfully collected experimental
data from mapped figures of more than 11,500 samples of
thermoelectric materials. The electronic structure differences of
the parent compounds PbTe, PbSe, PbS, and SnTe were revealed
by combining a partial experimental dataset of 434 rock salt-based
thermoelectric materials with first-principles calculations. The
evaluation of the electronic relaxation time τel by combining the
computational and experimental data revealed that achieving a
long τel is considered essential to improve the thermoelectric
quality factor.

Materials database construction
Materials data have the characteristics of high reliability require-
ments, strong correlation, many influencing factors, complex
acquisition process and wide distribution of data, which is one of
the reasons for the dilemma of small data in materials science.
The materials database could collect the fragmented materials
data conveniently for users to store, update and retrieve large
amounts of data more quickly, safely and accurately. In the design
and discovery of materials with data-driven methods, the
acquisition of the materials properties, the mechanisms under
special conditions, materials performance improvement, materials
selection and safety evaluation are all inseparable from the
support of materials database platforms. Obtaining a large
amount of materials data through databases for further analysis
and knowledge mining is one of the important directions of
materials machine learning. The most common way to use the
data in the database is to be taken as the training set to train the
machine learning model combined with the algorithms. In
addition to the training set, the data in the database can also
be used as a test set to evaluate the performance of the
constructed model, or used as a candidate set in combination
with the model to filter out the materials with the properties
meeting the requirements. Many databases in recent years tend
to have high-throughput computing frameworks, machine learn-
ing toolkits, and statistical analysis tools, which indirectly provide
support for machine learning research.
The commonly used materials databases are shown in

Supplementary Table 2. According to the data types in the
materials databases, materials data can be divided into computa-
tional and experimental data. Computational data refer to
theoretical data on materials, usually derived from high-
performance and high-throughput computations based on first
principles. It should be noted that the computational data need to
be combined with experimental data and empirical data to
process and analyze large-scale materials data to be fully mined
and utilized. Most of the experimental data mainly exist in the
publications or the private database where the researchers could
enter the data after the experimental synthesis and characteriza-
tion. Both computational and experimental data could be

automatically extracted from publications through NLP and TM
techniques. The 35,675 solution-based databases of inorganic
materials synthesis procedures were extracted from over 4 million
publications using NLP, TM and machine learning by Ceder et al.65

Each of these procedures contains the basic synthesis information,
including the parent ion, target materials, quantities, synthesis
action and corresponding properties. The experts verified the
completeness and accuracy of the data by randomly extracting
data combined with domain knowledge. In addition, the diversity
of the extracted data was further analyzed in relation to the spatial
extent of the materials covered. The results of the analysis show
that the common targets and their corresponding precursors in
the dataset cover materials that have attracted extensive attention
over the last two decades. The database contains a large-scale
solution-based dataset of inorganic material synthesis procedures,
providing a basis for testing and validating the existing empirical
synthesis rules, improving prediction accuracy, and even mining
rules to guide synthesis. For both the computational data and the
experimental data, the most intractable difficulty in the construc-
tion of a material database is the evaluation and verification of
data quality. Although there are many materials databases, each
one has its own standards for the evaluation and verification of
data quality, which are not uniform. Even though many scholars
are working on developing material data standards, there is few
specific standard for the evaluation and verification of materials
data quality66. Therefore, it is necessary to learn the research
experience of data quality evaluation in other fields, combining
the characteristics of materials data to carry out research on the
data quality evaluation methods, corresponding managements
and applications. It can be found from Supplementary Table 2 that
many materials databases are established according to the types
of materials, but the classification of materials can be divided into
many types according to the different standards. The obscure
classification standards of materials also bring obstacles to the
construction of material databases. Materials can be defined by
their chemical composition and structure, while most databases
use only chemical composition or chemical formula to identify
materials, which could cause the situation where the materials of
different structures are often indistinguishable. Xu et al. proposed
the MatML, a specification designed for material information
exchange, which uses chemical composition and processing
conditions to describe materials, based on research experience
on materials such as single crystals, ceramics, alloys, polymers, etc.
and the basics of materials science67. Materials could be divided
into four levels according to MatML in Fig. 3: chemical system,
compound, substance and material. Chemical systems are the
basis of all materials to represent one or more elements that make
up a material. Compounds are the second level to identify
materials at the molecular level. For most inorganic materials, a
compound can be defined by the chemical formula. However, for
organic or polymer materials, the molecular structure must be
specified. The third level is substance, which determines the state
of the compound such as gas, liquid or solid. For solid state, the
crystal state and crystal structure should also be given. A
substance should correspond to a phase in a phase diagram.
The fourth level is the materials. To define a material, many types
of information are required, such as the form, dimensions,
microstructure, process conditions, etc. In addition, the polymer
database is extremely limited in the materials databases, which
may be due to the structural properties of polymer materials.
Experimentally synthesized polymers are often rarely single
entities. The same polymer material with different polymerization
degrees leads to different molecular weight distributions, which
has created great difficulty to the database construction. Also, the
complex monomeric structures and sequences of polymers lead to
the lack of standard naming rules. The challenges currently faced
in the construction of polymer databases include appropriate
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descriptors, elements associated with properties, details of
characterization, and sources of data68.
The materials database has developed for decades to store the

materials data, but the construction of the materials database still
faces great challenges. Firstly, there are many scientific research
institutions establishing the materials databases in the world,
which leads to the fragmentation of materials databases and low
utilization rate of the materials data due to the uneven data
quality of the database. In addition, the materials database is still
in the stage of simultaneous construction and use. The construc-
tion and maintenance of the database have been the long-term
work, requiring a lot of capital and human resources as well as the
professional supervision for the collection, update and main-
tenance of the data. Secondly, the lack of uniform and complete
materials classification standards and data quality evaluation
methods would lead to uneven data quality. Lastly, the sharing of
the materials data is limited due to intellectual property issues. In
the establishment of the materials databases, the management of
the intellectual property rights of the data should be strength-
ened; the quality and sharing of the data in the database should
also be improved69. Even though the construction of the material
database faces many challenges, the rapid acquisition of data
from the materials database has alleviate the problem of small
data to become an important way of data collection for materials
machine learning.

High-throughput computations and experiments
Materials data are rather precious because of the high experi-
mental and computational costs. But the presence of high-
throughput technology makes it possible to obtain a large amount
of high-quality data by experimental or computational methods in
a short period of time. The concept of high-throughput stems
from gene sequencing. The first-generation sequencing can only
measure one sequence of one sample at a time to generate
relatively small data, while high-throughput sequencing can
measure a large number of samples at a time, resulting in data
in the dozens of gigabytes even hundreds of gigabytes70,71. One
of the characteristics of high-throughput lies in the ability of
processing a lot of samples in a short time to obtain more data.
With the development of first-principles, high-performance
computers and materials preparation and characterization tech-
nologies, obtaining a large amount of high-quality materials data
through high-throughput computations and experiments com-
bined with machine learning to develop materials is also a
solution to small data in materials machine learning.
First principles are the cornerstone of high-throughput compu-

tations, which enables accurate computation of various electronic
structures and total energy-related properties under atomic
structure, including the properties of thermodynamics, kinetics,
electromagnetism, and mechanics72,73. The development of high-
performance computer and computational simulation technology
makes the first-principles-based high-throughput computations to
screen materials a potential direction in the materials design and
discovery. Prior to experimental design, high-throughput

computations can be used to screen out the stable structures
that meet the requirements. The commonly used high-throughput
computation toolkits are shown in Supplementary table 3. The
essence of materials design based on high-throughput computa-
tions is to apply the concepts of ‘blocks construction’ and ‘high-
throughput screening’ in combinatorial chemistry to the computer
simulation of materials. After determining the basic building
blocks of composition through materials calculations, a large
number of compounds are constructed to obtain the correspond-
ing properties through high-throughput computations, where
machine learning could integrate data, program, and materials
calculation software to map the quantitative relationship models
of material composition, structure, and properties to guide the
design of materials. As shown in Fig. 4, the workflow of the
materials screening by high-throughput computations is generally
divided into five steps: the construction of the samples for high-
throughput computations and screening; screening based on
thermodynamic stability; preliminary screening based on basic
descriptors with limited precision; specific screening based on
high-precision descriptors; screening based on other conditions74.
High-throughput computations use the density functional theory
(DFT) methods to quantitatively or qualitatively calculate the
relevant properties of a large number of initial input material
structures for screening, while machine learning combines the
data to construct models to explore the patterns and laws behind
the data. Both high-throughput computations and machine
learning could essentially extract valuable information from data.

Fig. 4 The funnel model of high-throughput computational
screening. The funnel type model of high-throughput computa-
tional screening74.

Fig. 3 The material identification system. Four-level material identification system67.
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However, high-throughput computations are more inclined to
complete the specified work according to the set rules such as
calculating the properties of materials according to first-principles
methods, which do not have the generalization ability. While
machine learning tends to perform the good generalization ability
because of the decision-making nature of the modeling algo-
rithms. Combining high-throughput computations with machine
learning to fully take the advantages of the parameters
standardization and large-scale of high-throughput to solve the
problem of small data in machine learning is expected to further
improve the efficiency of screening and development of materials.
High-throughput experiment, also known as high-throughput

preparation and characterization technology, is an important part
of MGI75. The core idea of high-throughput experiment is to
change the original sequential iteration method into parallel or
efficient serial experiments. Commonly used high-throughput
preparation and characterization techniques are shown in
Supplementary table 4. The high-throughput preparation of
materials is also called the combined preparation of materials,
which refers to the preparation of a large number of materials
with different components in a short time by a certain
experimental method. After the materials preparation, high-
throughput characterization techniques are required to obtain
sample information in a relatively short time for further
experiments or detailed characterization. The materials design
processes of traditional way and the high-throughput experiments
are shown in Fig. 575. The traditional materials design includes the
loop of experimental design, material synthesis/characterization,
and materials property analysis. Compared with traditional
methods, the materials design based on high-throughput experi-
ments takes the database as the center of the loop, integrating the
data collection, storage, management, and mining to make full
use of data to promote the development and applications of
materials. High-throughput experiments can rapidly accumulate a
large amount of experimental data to facilitate the screening or
optimize the applications of materials.
High-throughput computations and experiments have become

significant methods to provide sufficient materials data for
machine learning research. Hu et al.76 obtained 640 2D halide
perovskites A2BX4 (A= Li, Na, K, Rb, Cs; B= Ge, Sn, Pb; X= F, Cl, Br,
I) and corresponding adsorption energies with Li+, Zn2+, K+, Na+,
Al3+, Ca2+, Mg2+, and F− by using high-throughput computations.
After filtering out 13 descriptors with the Pearson correlation
coefficient, k-nearest neighbors (KNN), Kriging, Random Forest,
Rpart, SVM, and XGBoost were adopted for modeling. The results
revealed that XGBoost performed the highest prediction accuracy
with the R2 and RMSE of the training set being 0.998 and 0.128 eV,

respectively. After modeling, various methods were used to rank
the importance of descriptors, and different ranking methods
consistently showed the great importance of ionic adsorbent
density on the adsorption energy of hybrid systems. After high-
throughput screening, 5 candidates were screened from a virtual
design space consisting of 11,976 ion/perovskite for DFT
verification, which proved to be applicable to ion batteries.
Hayashi et al.77 developed an open-source Python library named
RadonPy for fully automated polymer property calculations using
all-atom classical molecular dynamics (MD) simulations, and
successfully performed high-throughput computations on more
than 1,000 amorphous polymers with a wide range of thermo
physical properties. Machine learning techniques were success-
fully applied to calibrate the bias and variance of MD calculations.
8 amorphous polymers with high thermal conductivity and the
underlying mechanisms were identified after high-throughput
screening by RadonPy. The construction of a database using
RadonPy will rapidly yield a large amount of high-quality data on
polymer properties to facilitate the development of polymer
informatics. Zhao et al.78 explored the optimal stability conditions
for organolead iodide perovskite cells using a high-throughput
experiment-based robotic system and machine learning. The
robotic system synthesized more than 1,400 perovskite battery
samples under different material compositions, experimental
conditions, test conditions, and measured the battery perfor-
mance decay time as the battery stability standard. Taking the
material composition, experimental conditions and test conditions
as the descriptors, and the battery performance decay time as the
target property, a gradient boosting tree model was constructed
with the RMSE of the test set being 169 h. According to the
optimal experimental conditions obtained from the feature
analysis and the optimal composition of the optimal organic
lead-iodine perovskite MA0.1Cs0.05FA0.85PbI3, a perovskite battery
with the highest performance degradation time of more than
4000 h was successfully synthesized, far exceeding the vast
majority of reported battery devices. This work has obtained the
effect of optimal experimental conditions on battery performance
degradation through high-throughput experiments and machine
learning analysis, which effectively promotes the progress of
perovskite battery stability research.
Both high-throughput computations and experiments in the

above researches are providing the sufficient sample size for
modeling. However, since high-throughput computations are
developed based on first-principles calculations, the computa-
tional characterization also brings more potential application
possibilities in combination with machine learning. Machine
learning can also be used to improve the precision and accuracy

Fig. 5 The process of materials design. a Traditional materials design process; b The high-throughput experiments schema of modern
materials75.
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of DFT calculations. James et al.79 trained a neural network called
DeepMind21 (DM21) on molecular data and fictitious systems with
fractional charges and spins to overcome systematic errors due to
violations of the mathematical properties of exact generalized
functions. DM21 provides a solution to the accuracy and precision
problems associated with DFT calculations, demonstrating the
success of combining DFT with modern machine learning methods.
For different DFT computational data, it is often necessary to
construct different machine learning models to ensure model
accuracy. Developing machine learning models with general
applicability to different DFT data is also one of the current research
directions for combining machine learning with DFT computations.
Takamoto et al.80 trained a generalized neural network potentials
(NNPs) model called prefiring potentials (PFP) using 20 datasets of
DFT calculations. PFP is capable of handling any combination of 45
elements and has general applicability in different application fields,
including lithium diffusion in LiFeSO4F, molecular adsorption in
metal-organic frameworks, anorder–disorder transition of Cu-Au
alloys, and material discovery for a Fischer–Tropsch catalyst. PFP can
greatly alleviate another limitation of atomic simulations caused by
time and space scales. The combination of DFT and PFP or
experiments using PFP-based screening will also accelerate the field
of materials discovery.

ALGORITHMS FOR SMALL DATA IN MODELING
In the modeling process, some algorithms have good compat-
ibility with small datasets and unbalanced data to obtain the ideal
results. This part will introduce small data modeling algorithms
and algorithms for dealing with imbalanced data.

Modeling algorithms for small data
The performance of machine learning models is not only
dependent on the quantity and quality of the data, but also
highly dependent on the modeling algorithm. Some algorithms
are well appropriate for modeling with small data. Combined with
the case study of materials machine learning, algorithms suitable
for modeling with small data include support vector machine,
Gaussian process regression, random forest, gradient boosting
decision tree, XGBoost and symbolic regression.
Support vector machine (SVM) is a kernel-based algorithm. The

kernel functions would efficiently complete the space transforma-
tion to convert the original nonlinear problem into a linear
problem in a high-dimensional space and turn a linear inseparable
problem in a low-dimensional space into linearly separable81. The
basic principle of the SVM is to map the input vectors to a high-
dimensional space, finding an optimal hyperplane as the criterion
for sample classification to achieve the best compromise between
model complexity and learning ability to obtain the best
robustness82. According to the machine learning tasks of
classification and regression, SVM can also be called support
vector classification (SVC) and support vector regression (SVR). The
goal of SVC is to obtain the classification line of the largest edge
hyperplane, where samples of different classes could be the
farthest from each other. SVR uses the insensitive channel ε to
deal with the trade-off between empirical risk and structural risk.
The error is ignored when the predicted value ŷi satisfies |yi-ŷi| ≤ ε,
otherwise the error is |yi-ŷi|-ε. In the empirical risk calculation, only
the deviation is considered when it is greater than ε. The concept
of “margin” in SVM has provided a structured description of data
distribution, thereby reducing the requirements for data size and
data distribution.
Gaussian process regression (GPR) is a non-parametric method

with Gaussian Process (GP) priors to perform regression analysis
on data83. The model assumptions of GPR include regression
residuals and Gaussian process priors. Without restricting the form
of the kernel functions, GPR is theoretically a universal

approximator for any objective function in the compact space.
In addition, GPR could provide the posterior distribution of the
predicted result with an analytical form when the regression
residuals are normally distributed, which has proved that GPR is a
probabilistic model with generalization ability and interpretability.
As a non-parametric Gaussian process model, the complexity of
GPR depends on the training data. Based on the characteristics of
Gaussian process and the kernel functions, GPR is usually used for
regression modeling of low-dimensional and small data.
Random forest belongs to the Bagging type ensemble

algorithm. By combining multiple weak classifiers, the final result
is obtained by voting or average to improve the prediction
accuracy and generalization performance of the overall model. A
random forest consists of multiple decision trees and each tree in
the forest jointly determines the final output of the model84. First,
bootstrap sampling is applied to randomly select k samples from
the original training set with replacement to form training
samples. Then, the models of k decision trees are constructed
for each of the k samples to randomly combine to form the
random forest. Finally, each record is voted to determine the final
classification according to the k classification results. For
classification tasks, each decision tree in the random forest will
give the final category, and finally the output category of each
decision tree in the forest is comprehensively considered by
voting. For regression tasks, random forest takes the average
output of each decision tree as the final output.
Gradient boosting decision tree (GBDT) is an iterative decision

tree algorithm consisting of multiple decision trees that generate
multiple weak learners in series85. By fitting the negative gradient
of the loss function of the previous accumulated model of each
weak learner, the accumulated model loss after adding the weak
learner is reduced in the direction of the negative gradient. Each
tree can make predictions on part of the data to get the final result
by adding the conclusions of all the trees. Gradient boosting can
be used for both classification and regression tasks.
XGBoost is an efficient system of Gradient Boosting, which

realizes to form the tree with the difference between the result of
the basic learner and the actual value to reduce the difference
between the model value and the actual value to avoid over
fitting86. When using classification and regression trees (CART) as
the base classifier, XGBoost explicitly adds a regular term to
control the complexity of the model, which is beneficial to prevent
over fitting and improve the generalization ability of the model.
GBDT only takes the first-order derivative information of the loss
function during model training, while XGBoost performs second-
order Taylor expansion on the loss function to use both the first-
order and second-order derivatives at the same time. The
traditional GBDT uses CART as the base classifier, while XGBoost
supports multiple types of base classifiers, such as linear classifiers.
Traditional GBDT uses all the data in each iteration, while XGBoost
adopts a strategy similar to random forest, which supports
sampling of data. The traditional GBDT is not designed to deal
with missing values, while XGBoost can automatically learn the
processing strategy of the missing values.
Symbolic regression is a genetic programming-based machine

learning technique designed to identify an underlying mathe-
matical expression87,88. It first builds a stochastic formula to
represent the relationship between known independent and
dependent variables to predict data. Each successive generation
procedure evolves from the previous one, selecting the most
suitable individuals from the population for genetic operations
such as crossover, mutation and reproduction. The mathematical
expression generated by symbolic regression is a combination of
operator functions, variables and constants, which is essentially
a combinatorial optimization process based on symbolic sets
and intelligent algorithms. Currently, symbolic regression has
been widely used in the field of materials machine learning to
explore the relationship between important descriptors and
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material properties as well as to construct interpretable machine
learning models.
Some of the works have proved that some algorithms have

ideal performance in small data modeling. Weng et al.89 used
symbolic regression to design a simple descriptor for describing
and predicting the oxygen evolution reaction (OER) activity of
oxide perovskite catalysts to rapidly identify oxide perovskite
catalysts with improved OER activity. 18 known perovskite
catalysts were first synthesized experimentally, 4 samples of each.
Each sample was subjected to 3 OER tests under the same
conditions and the reversible hydrogen electrode voltage (VRHE)
was measured at 5 different current densities, resulting in 1080
data points. The electronic parameters such as the number of d
electrons for TM ions, electronegativity values χA and χB, valence
states QA, ionic radii RA, the tolerance factor t and the octahedral
factor μ were combined with symbolic regression and hyper
parametric grid search to generate about 8,640 mathematical
formulas. After evaluating the accuracy and complexity of the
generated formulas, the 9 mathematical formulas at the Pareto
front meet the criteria of high accuracy and low complexity, with
the descriptor of μ/t being the best compromise between
complexity and accuracy. The descriptor of μ/t is able to reveal
the pattern between the OER activity of oxide perovskite catalysts
and the structural factors. Smaller μ and larger t would lead to
higher OER activity, so the use of large cations at the A-site and
small cations at the B site of the perovskite structure enable
further development of a large number of previously unexplored
OER catalysts. After screening 3545 oxide perovskites in combina-
tion with virtual screening, 13 samples with minimum μ/t values
were selected for experimental validation. The experimental
results show that 5 pure oxide perovskites possess OER activity,
with Cs0.4La0.6Mn0.25Co0.75O3, Cs0.3La0.7NiO3, SrNi0.75Co0.25O3 and
Sr0.25Ba0.75NiO3 exhibiting OER activity exceeding that of oxide
perovskite catalysts reported in the publications. Shi et al.90

collected 50 ABO3-type perovskites and corresponding experi-
mental specific surface area (SSA) values from the publications as
target property, 40 of which were used as training set and 10 as
test set. The descriptors of atomic parameters and sol-gel process
parameters are combined with genetic algorithm (GA) and SVR to
select the optimal feature subset and construct the model for SSA
prediction. The RMSE values of the training set and test set of the
model are 3.745 and 1.794 m2 g−1, respectively, indicating the
high prediction accuracy of the model. In addition, sensitivity
analysis was used to analyze the quantitative impact of 5
important descriptors on SSA and 5 candidates with higher SSA
were screened out by virtual screening. The author also developed
a web server to realize real-time sharing of the model, laying a
foundation for machine learning-assisted design of ABO3-type

perovskites with high SSA. Lu et al.91 collected experimental
interlayer spacing data for 85 layered double metal hydroxides
from publications, 68 of which were used as training set and 17 as
test set; and atomic parameters were collected from Lang’s
handbook of chemistry as descriptors. The algorithms of GA
combined with XGBoost, SVR and artificial neural network (ANN)
were adopted to select features and construct the model. It is
found that the XGBoost model with 6 descriptors performs the
best. After randomly splitting the dataset 4 times, the average R of
LOOCV and test set could reach 0.91 and 0.87, respectively. After
parameters optimization, the LOOCV and test set R values of
LOOCV are as high as 0.94 and 0.89. After virtual screening with
the constructed model, Co0.67Fe0.33[Fe(CN)6]0.11•(OH)2 with the
interlayer spacing up to 12.4 Å was screened out to applied to
super capacitors.
In addition to modeling algorithms for small data, our team

have integrated various algorithms through ensemble learning to
improve the predicted accuracy of the model constructed with
small data. Chen et al.92 proposed a step-by-step design strategy
based on small data to aid in the design of low melting point
alloys. Ridge regression, XGBoost and SVR were applied to screen
out three sets of optimal feature subsets and respectively
constructed the melting point prediction models of low melting
point alloys. After evaluating model performance with 10-fold CV,
it was found that the performance of the three models was similar,
and the R of the models were all higher than 0.94. In order to
obtain a model with more stable prediction ability and higher
accuracy, the R-X-S (Ridge regression-XGBoost-SVR) ensemble
model was obtained through arithmetically integrating the three
models by taken the average value. The R of the R-X-S model in the
test set reached 0.990, which was higher than the highest single
model. As shown in Fig. 6a, in order to further verify the
generalization ability of the model, an external validation set was
used to verify the four models, and the R of the four models were
all higher than 0.97, which has proved that the R-X-S model has
strong generalization compared with 0.968 of the original value in
the publication. Besides, Lu et al.93 carried out a study on
predicting the bandgaps for hybrid organic-inorganic perovskites
(HOIPs) by using ensemble learning. The authors collected
1201 samples from the publications from 2009–2021, and
generated 129 atomic descriptors, including atomic radius, atomic
chemical potential, tolerance factor, tau factor, octahedral factor,
etc. Then the various modeling algorithms were adopted to
construct the models. And the top 4 models, involving CatBoost,
XGBoost, LightGBM and gradient boosting machine (GBM) were
selected as the sub-models for the ensemble learner namely, the
weighted voting regressor (WVR). The WVR model complimented
the weakness of each sub-model, and achieved a comprehensively

Fig. 6 Ensemble models for small data modeling. a The calculated values in the publication, the experimental and predicted values of the
validation set on different models92. b Bandgap distribution after iterations by PSP93.
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superior performance than the sub-models. The R2 and RMSE in
LOOCV of WVR reached 0.95 and 0.079 eV respectively, while the R2

and RMSE in test set of WVR achieved 0.91 and 0.106 eV
respectively. Based on the ions collected from the formulas of
the dataset, the authors constructed a gigantic material space
compromising over 8.2 × 1018 combinations for exploring HOIP
structures with suitable bandgaps. The proactive searching
progress (PSP) method was developed to efficiently search the
material compositions with expected bandgap values from the
universal chemical space. As the result of PSP method shown in
Fig. 6b, the 20,242, 733,848, 764,883, and 746,190 non-Pb samples
were designed for the HOIPs with the bandgaps of 1.20 eV, 1.34 eV,
1.70 eV and 1.75 eV, respectively. To validate the searching result of
PSP method as well as the predicting ability of the WVR model, the
HOIP components of MASnxGe1-xI3 (x= 0.85, 0.74, 0.66) were
synthesized and characterized as the experimental validation,
where the average error between experiments and predictions was
only 0.07 eV. The data in Lu’s work have reached up to 1201 and
may be far from small data. But the constructed ensemble model
with the superior performance to the sub-models indeed indicates
that integrating various algorithms through ensemble learning
could improve the predicted accuracy of the model.

Imbalanced learning algorithms
Imbalanced learning algorithms aim to deal with the imbalanced
data caused by the small data in the classification. Imbalanced
learning is aimed at classification tasks, which is mainly
manifested in that data size in different categories is unbalanced
due to the limited samples in the minority class94. The minority
samples of unbalanced data can be divided into absolutely and
relatively few in terms of data size95. Absolutely few data refer to
the data size of the minority class itself is rather scarce to lead to
the limited information contained in data, which would be difficult
for the classifier to capture the information of the minority class
samples. Relatively few data mean that the minority class samples
only occupy a small proportion compared with the majority class
samples to blur the boundary of the minority class sample and
reduce the recognition ability of the minority class samples.
Traditional classification methods usually process data when the
data size of each category is almost equal, but the data categories
in materials science are often unbalanced.
Imbalanced learning aims to deal with imbalanced data from

two levels of data preprocessing and algorithm. The introduction
of the commonly used imbalanced learning algorithms are
available in Supplementary table 5. The most basic data
preprocessing method is sampling, including undersampling,

oversampling, and mixed sampling95. Undersampling balances
the minority class by reducing the number of majority class
samples, while oversampling by increasing the number of samples
in the minority class to balance the data. Mixed sampling
combines the oversampling and the undersampling to balance
the data size of different categories. Algorithm-based imbalanced
learning strategies include clustering algorithms, deep learning,
cost-sensitive learning, and extreme learning machine (ELM)96.
The clustering algorithm could divide the samples in the space
into different clusters, where the samples in the same cluster have
similarities. After clustering the dataset, sampling the data
according to representative samples such as cluster centers can
effectively ensure the balance of the data size of different clusters.
Deep learning uses the characteristics of algorithms to capture
patterns in the imbalanced data to make classification and
prediction more accuracy. Cost-sensitive learning guides the
imbalanced learning process with the concept of ‘cost’. The
optimization goal of the algorithm is to minimize the total cost of
classification errors by focusing on the samples with higher error
costs. ELM, as the basic classifier of the ensemble network, can
guarantee the accuracy of a single network with the combination
of the ensemble methods to well improve the classification
performance of imbalanced datasets. Lu et al.97 collected an
imbalanced formability dataset of experimental HOIPs, including
539 HOIP and 24 non-HOIP samples. As shown in Fig. 7a, b, 9
different sampling methods including undersampling, oversam-
pling and mixed sampling were introduced for unbalanced
learning, while 10 different supervised and semi-supervised
algorithms were used to select the best modeling algorithm to
construct the model. After comparison, the mixed sampling
method SMOTEENN has the best performance with the LOOCV
accuracy and precision of the corresponding model have both
reached 100%, and the accuracy of the test set has reached 95.5%.
The LOOCV average accuracy of 100 random partitions and the
average accuracy of the test set also exceeded 99.0%, respectively.
The method of SHapley Additive exPlanations (SHAP) was used to
extract and analyze important features of A-site atomic radius,
A-site ionic radius, and tolerance factor to reveal the relationship
with formability.

MACHINE LEARNING STRATEGIES FOR SMALL DATA
Machine learning strategies including active learning and transfer
learning have been shown to be effective methods of handling
small datasets in materials science.

Fig. 7 The accuracy and precision of imbalanced learning. a Accuracy and b precision metrics of various classification models in LOOCV
based on different sampling methods97.
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Active learning
Active learning, also known as adaptive learning, is one of the key
technologies for solving small data problems. The core of active
learning is to select the samples from a large number of unlabeled
data for labeling to make the information in the small data
represent the large unlabeled data as much as possible to realize
the analysis and processing of big data under small data98. The
active learning workflow consists of the following steps: (1) train
the model based on the labeled training set; (2) use the model to
evaluate the acquisition function in the pool of unlabeled samples;
(3) label the data points with the highest acquisition function
scores; (4) add the labeled data points to the training set to train
the model. The learning steps of active training, scoring, labeling,
and acquisition are repeated until the model reaches sufficient
accuracy. In the materials design based on active learning shown
in Fig. 8a, the machine learning model would be constructed to
design or screen out the candidate materials for further
experimental or computational validation99. Then the verified
candidate samples are taken back to the training set for modeling.
Active learning can continuously enlarge the data size and
improve the accuracy of the model in the process to realize the
two-way optimization of data and model to be applied widely in
materials machine learning with small data.
The core steps in the active learning workflow include the

sampling, labeling, validation and evaluation of the significant
samples from the unlabeled sample pool. The data sampling
strategy used in the active learning process to filter out data
points from the unlabeled sample pool is rather critical to
improving the prediction accuracy of machine learning models.
Common data sampling strategies include manual empirical

sampling and Bayesian optimization sampling100. Manual empiri-
cal sampling refers to the manual labeling of data samples by
experts using expertize and traditional experience, which high-
lights the importance of domain knowledge in machine learning.
Bayesian optimization algorithms can automatically label the
samples by using prior knowledge to approximate the posterior
distribution of the unknown objective function. The basic idea of
Bayesian optimization sampling is to balance the needs of
‘exploration’ and ‘exploitation’. The ‘exploitation’ samples the
most likely optimal solution region based on the posterior
distribution; while the ‘exploration’ is usually to obtain sampling
points in areas with low sampling density in order to improve the
prediction accuracy of the model and reduce the fluctuation of
prediction values101. The ‘exploration’ strategy is preferred in the
initial stage when data size is insufficient, and it is more focused
on improving the model prediction accuracy. As the data size
gradually increases and the model prediction accuracy improves,
the strategy gradually shifts to the ‘exploitation’ strategy, focusing
on finding the optimal target value. The acquisition function is one
of the cores of Bayesian optimization, which is used to evaluate
and filter the most informative sample points from the unlabeled
samples to be back to the original training set to perform active
learning. Common acquisition functions include upper confidence
bound (UCB), probability of improvement (PI) and expected
improvement (EI), and Thompson Sampling101. In materials
science, validation and evaluation of the selected labeled samples
are usually performed through experiments or first-principles
calculations. Active learning is an iteration process. Even if the
model constructed with the original small data is not ideal, the
size of modeling data and model accuracy can be improved

Fig. 8 The workflows of active learning and transfer learning. The workflows of a active learning98 and b transfer learning17 in materials
science.
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through the iteration of active learning. In addition, active learning
also integrates machine learning well with experiments or first-
principles calculations. The application of active learning in
materials is no longer only in the theoretical stage, but combined
with experiments or calculations through machine learning
models to achieve the purpose of optimization.
In recent years, active learning has been widely applied in

materials machine learning with small data. Xue et al.102 collected
22 Ni-Ti-based shape memory alloys and the thermal hysteresis
property. The algorithm of SVR combined with efficient global
optimization (EGO) search was applied to construct the thermal
hysteresis prediction model to design Ni-Ti-based shape memory
alloys with low thermal hysteresis. Models were trained multiple
times and cross-validated with initial alloy data. After the model
construction, EGO was used to search for 4 samples with low
thermal hysteresis from the 800,000 searched spaces for experi-
ments. After experimental validation, the 4 samples were put back
into the training set for modeling-search-experiment iteration. Of
the 36 samples searched after 9 iterations, 14 samples have
thermal hysteresis smaller than any of the 22 samples in the
original dataset, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 having the smallest
thermal hysteresis of 1.84 K. Zhao et al.101 developed an effective
active learning model to describe the relationship between
elemental composition and hardness of 6061-aluminum alloy by
combining high-throughput experiments and Bayesian optimized
sampling strategy. First, 32 6061-aluminum alloys with different
composition ratios were prepared and characterized for hardness
using a full-flow high-throughput alloy preparation and character-
ization system. 309 descriptors were constructed as initial features
by elemental composition and alloy domain knowledge. After
feature selection with variance, maximum information coefficient,
weight coefficient, Pearson correlation coefficient, and sequence
backward selection, the remaining 5 significant features were
screened out for model construction. After comparing various
algorithms, the SVR algorithm with kernel function of radial basis
function was used to construct model to predict the hardness of
aluminum alloys. Then, bootstrap was used to generate 1000
training datasets containing 32 samples by random sampling, and
the above training datasets were used to obtain 1000 correspond-
ing machine learning models for predicting the hardness of 33,600
candidates in the potential component space. Manual empirical
sampling and Bayesian optimized sampling were used to select
samples from the candidates for labeling and subsequent
experiments, where the Bayesian sampling strategy specifically
used 4 methods: the EGO algorithm, the knowledge gradient (KG)
algorithm, the maximum hardness distribution method and the
maximum error distribution method, each taking 4 data points
and designing a total of 16 experimental alloy components for the
next iteration of experiments at each step. The experimental data
were returned to the initial dataset for further iterations of feature
selection and model construction before convergence conditions
were reached. After three iterations, the results showed that the
adaptive sampling strategy of the Bayesian optimization algorithm
could guide the experiments more effectively than manual
empirical sampling, with a 63.03% reduction in MAE and a
53.85% reduction in RMSE. The hardness prediction RMSE of final
model is 4.49 HV, which is close to the experimental error of 4.05
HV for the test sample. This work achieves the composition
optimization of the hardness properties of 6061-aluminum alloy
by the active learning strategy after Bayesian sampling optimiza-
tion, which provides guidance for the design and performance
optimization of other multi-alloy materials.

Transfer learning
Transfer learning refers to the acquisition of knowledge in a given
source domain and learning task to help improve the learning of
the predictive model in the target domain103. Transfer learning

can be divided into model-based transfer learning, relation-based
transfer learning and sample-based transfer learning according to
transfer methods104. The model-based transfer learning method is
to improve the prediction accuracy by adjusting the parameters of
the pre-trained model. Relation-based transfer learning utilizes
relations for analogical transfer such as cooking according to a
recipe can be compared to conducting a scientific experiment
according to a report. The sample-based transfer learning method
is to directly assign different weights to different samples to
complete the transfer. As shown in Fig. 8b, in the materials filed,
transfer learning generally refers to model-based transfer learning
by serving the small data in the target domain from the big data in
the source domain105. After using the materials big data of the
source domain to construct the pre-trained model, the parameters
of the pre-trained model are adjusted in combination with the
small data of the target domain to improve the prediction
accuracy of the model to the small data.
Wu et al.106 developed a high-precision polymer thermal

conductivity prediction model through transfer learning and
Bayesian molecular design algorithm to screen out thousands of
polymers with high thermal conductivity, of which 3 candidates
were successfully synthesized and characterized after the experi-
mental feasibility evaluation. A lot of polymer samples and the
properties data were collected from the databases of PoLyInfo and
QM9 to construct a pre-trained model107,108. After comparing
different models, it was found that the pre-trained model of the
heat capacity Cv owned the highest prediction accuracy. Then, the
parameters of the pre-trained model were adjusted to be
transferred to the prediction of thermal conductivity by the
28 samples with thermal conductivity. The results showed that the
MAE of the model after transfer learning reached 0.0204W
(m · k)−1, which is 40% lower for directly trained models on each
data point. Combined with Bayesian algorithm, a lot of repeating
unit structures were designed for screening. Finally, 24 molecular
structures were screened, of which 3 were successfully verified by
experimental synthesis and characterization. The experimental
results showed that the thermal conductivity of polymers assisted
by transfer learning and Bayesian molecular design was higher
than that of polymer materials in published papers. This research
achievement also confirms that transfer learning and Bayesian
molecular design can be successfully applied to the design and
discovery of polymer materials. Lee et al.109 applied a crystal graph
convolutional neural network (CGCNN) to a transfer learning
model (TL-CGCNN) to improve the accuracy of material machine
learning models with small data and quantitatively explored the
effect of the sample size of the pre-trained and target models on
the accuracy of the transfer learning model. The crystal structures
and their corresponding bandgaps Eg and stratigraphic energies
ΔEf were first collected from the Materials Project Database (MPD),
a first-principles computational database. Then, three large
datasets containing 10,000, 54,000, and 113,000 data, respectively,
were used to train the pre-trained models in conjunction with the
CGCNN. In addition, bulk modulus (KVRH), dielectric constant (εr)
and quasiparticle bandgap (GW-Eg) data were also collected to
confirm the robustness of CGCNN for more cases with insufficient
data volume. The prediction accuracy of Eg and ΔEf from pre-
trained models with different sample sizes and comparison with
conventional machine learning models reveals that the accuracy
of TL-CGCNN models is much better than that of conventional
machine learning models and the improvement of prediction
ability is greater when the pre-trained models are trained with
more data. The predictions of KVRH, εr and GW-Eg are also
consistent with the above pattern and it is found that TL-CGCNN
may be better for prediction model affected by small amount of
data. The prediction of attributes in the target model by TL-
CGCNN becomes more accurate when the pre-trained model is
trained with larger data and the high correlation between the pre-
trained model and the target model. Yamada et al.110 developed a
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pre-trained model library called XenonPy.MDL for transfer learning
between different materials and their properties. The library has
over 140,000 pre-trained models covering a wide range of
materials including small molecules, polymers and inorganic
crystalline materials. These pre-trained models are used to
successfully span superior transferability between different
materials and their properties, even beyond the different
disciplines of materials science. This work provides a successful
processing paradigm for small data materials machine learning
using transfer learning and confirms the interconnectedness of
almost all tasks in materials science, forging a bridge between
small molecules and polymers, organic and inorganic materials. If
the amount of collected target property data is very limited, but
the amount of property data related to the target property is
relatively abundant, transfer learning could be a very good choice.

CONCLUSION AND OUTLOOK
In this review, we discussed the dilemma of small data in materials
machine learning and introduced the commonly used methods to
deal with the small data machine learning from the aspects of
data sources, algorithms, and machine learning strategies,
including data extraction from publications, material database
construction, high-throughput computations and experiments,
small data modeling algorithms, imbalanced learning, active
learning, and transfer learning. At present, the data size of most
materials machine learning is still in the small data stage and will
remain in the small data stage for a long time due to the
inconsistency in the development progress, including the different
types of materials, materials synthesis and characterization
technology, materials classification and naming standards, data-
base development technology, modeling algorithms and other
factors. Therefore, handling small data modeling in materials
machine learning is also one of the important directions. Here, we
propose some future directions for further small data machine
learning in materials science:

(1) Data management: In the past, data could be regarded as a
series of apparent observations used to gain knowledge. But
in the future, data would be more considered the
information representing the results of complicated effects
form multiple factors, which puts forward higher require-
ments for data management111. Data management includes
the processes of data collection, storage, screening, labeling,
annotation, augmentation, evaluation, ablation and virtua-
lization, which is a long-term process and requires the
efforts of scholars and governments around the world. In
addition, the dataset tends to be fixed and the machine
learning is only mainly on the specific dataset in the
previous materials machine learning process. But now, data
iteration has been becoming the focus and more efforts are
concentrated on improving the model performance through
iterative models such as active learning, which also requires
a more systematic approach to data management112.

(2) Methods combination: This review introduced a variety of
small data machine learning methods and strategies in
materials science. These methods and strategies should be
used in combination to pursue better model performance,
such as the combination of experiments and calculations,
active learning, and materials database construction to
develop a materials development system that integrates
machine learning, database, experiments and computations.
Besides, these methods should be more attached to the
material design philosophy. Most applications of model in
this review tend to screen materials or use patterns
discovered by models to design materials, which is called
forward design. In the future, inverse design based on small
datasets to deduce the composition and structure of

materials according to the required properties is also one
of the future development directions.

(3) Machine learning algorithms and strategies: In addition to
materials data, machine learning algorithms and strategies
are also important factors to determine the applications.
This review introduced several modeling algorithms
suitable for small datasets, but different algorithms are
only suitable for the specific data, and there is no modeling
algorithm that is generally applicable to small data.
Therefore, more modeling algorithms suitable for small
data still need to be developed. Similarly, machine learning
strategies suitable for small data, including active learning
and transfer learning, also have great potential for
application and development.

This development should take into account both data and
algorithms, not only to establish a complete database or use the
existing technologies to integrate materials data to increase the
data size, but also to continuously develop small data modeling
algorithms and machine learning strategies. In the future, machine
learning will continue to occupy an increasingly important place in
materials design and discovery. Especially for experimenters, this
review would help better handle the precious and limited
experimental data with machine learning methods to accelerate
material design and discovery. A drop of water can refract the
brilliance of the sun. Similarly, small materials data can also be
used to explore mysterious and interesting patterns in the vast
world of materials through machine learning.
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