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Resolution-enhanced X-ray fluorescence microscopy via deep
residual networks
Longlong Wu 1,2✉, Seongmin Bak 3, Youngho Shin4, Yong S. Chu3, Shinjae Yoo1, Ian K. Robinson 2,5✉ and Xiaojing Huang 3✉

Multimodal hard X-ray scanning probe microscopy has been extensively used to study functional materials providing multiple
contrast mechanisms. For instance, combining ptychography with X-ray fluorescence (XRF) microscopy reveals structural and
chemical properties simultaneously. While ptychography can achieve diffraction-limited spatial resolution, the resolution of XRF is
limited by the X-ray probe size. Here, we develop a machine learning (ML) model to overcome this problem by decoupling the
impact of the X-ray probe from the XRF signal. The enhanced spatial resolution was observed for both simulated and experimental
XRF data, showing superior performance over the state-of-the-art scanning XRF method with different nano-sized X-ray probes.
Enhanced spatial resolutions were also observed for the accompanying XRF tomography reconstructions. Using this probe profile
deconvolution with the proposed ML solution to enhance the spatial resolution of XRF microscopy will be broadly applicable across
both functional materials and biological imaging with XRF and other related application areas.
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INTRODUCTION
Accurately resolving elemental distributions and morphological
information inside functional materials at the nanoscale is critical
for understanding their physical and chemical properties and for
investigating the related device performances. Advances in
multimodal imaging, combining measurements with different
contrasts at the same time, have recently led to the ability to make
maps of various properties of functional materials, which can be
utilized to address their physical, chemical, and structural proper-
ties simultaneously1–6. As a powerful coherent imaging technique,
X-ray ptychography can reconstruct complex phase information
with high spatial resolution from coherent diffraction patterns of
the functional materials, measured with overlapped X-ray probe
positions7,8. When an appropriate phase retrieval method is
applied, the incident X-ray probe profile and scanned sample
information can be obtained with the same high spatial
resolution9. X-ray fluorescence (XRF) can provide intrinsic trace
element distributions within materials10. However, XRF is very
sensitive to the incident X-ray beam profile information, resulting
in lower spatial resolution than a ptychographic image from the
same scanning experiment. For a scanning-probe XRF experiment,
the resolution of the obtained XRF image is mainly limited by the
size of the used X-ray beam profile, resulting from the convolution
between the X-ray beam profile and the local illuminated region.
Consequently, the related elemental analysis, for example, XRF
tomography analysis which utilizes a series of XRF images by
rotating the sample to obtain the three-dimensional inside
morphological information of the measured sample, will suffer
from the same low spatial resolution. Although many dedicated
computational methods have been developed for image deblur-
ring11–14, they are not suited for the current convolutional
problem between the obtained XRF data and the known X-ray
probe profile, where the physical relationship (discussed below)
between the incident X-ray probe, low-resolution and high-

resolution XRF data is not insured, due to the scanning process
inherent to XRF microscopy.
Recently, the deep learning method has shown remarkable

potential for solving many computational imaging problems15–21,
such as phase retrieval22–25, phase unwrapping26, image denois-
ing27,28, and image super-resolution29. Especially, the image super-
resolution problem has been receiving increasing attention for
decades. Computational deep residual networks exhibit out-
standing performance in computer vision problems from low-
level to high-level tasks30. These developed machine models can
reconstruct a high-resolution (HR) image from one or more low-
resolution (LR) images. However, the relationship between the
input LR and the original HR image is usually a bicubic relation,
aiming to generate a visually pleasing HR image from its degraded
LR image. While plenty of image super-resolution algorithms
based on ML have been proposed to tackle this problem, the
application of the ML method to solve the convolutional problem
between the X-ray beam profile and the XRF image is still a
nascent field.
In this paper, we demonstrate an ML-based method to

reconstruct super-resolved XRF images using multimodal raw
XRF and ptychography data, measured simultaneously. The
proposed residual dense network (RDN) model does not require
numerical modeling and is instead based on training a generative
RDN model to transform the LR XRF image, limited by its X-ray
probe profile, to a super-resolved one. With this RDN model, we
experimentally demonstrate that merging the X-ray probe profile
from ptychography with the developed RDN model can recon-
struct the HR XRF image with two different hard X-ray nanoprobes,
focused by a Fresnel Zone Plate (FZP) and Multilayer Laue Lenses
(MLLs), respectively. When applied for experimental LiNi0.6Mn0.2-
Co0.2O2 (NMC) particles, much better spatial-resolved elemental
distributions were observed for the subsequent XRF tomography
reconstruction using the obtained HR XRF images from different
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X-ray nanoprobes. This data-driven approach to enhance the
spatial resolution of XRF microscopy can be applied to various
other XRF imaging systems so long as the profile of the incident
X-ray probe profile can be obtained. We believe that the current
work represents a remarkable advancement in further improving
the spatial resolution of XRF microscopy.

RESULTS AND DISCUSSION
Multimodal ptychography and XRF experiment
Generally, for an XRF mapping experiment in a fly-scan mode31–33,
the collected XRF yield from different elements obeys the
convolution equation:

Yj Z; rð Þ ¼ σðZ; λÞ
Zt0þΔt

t0

Z1

�1
P r� vtð ÞN Z; rþ rj

� �
dr dt; (1)

where, σ(Z, λ) is XRF cross sections34, N(Z, r) is the elemental
distribution of the measured sample, and P(r) is the X-ray probe
intensity distribution (see Methods for details). rj is the jth X-ray
nanoprobe scanning position on the sample, Z is the atomic
number, λ is the wavelength of the incident X-ray, and Δt is the
detector dwell time. Since the incident X-ray beam profile P(r) on
the measured sample can be retrieved via ptychographic
reconstruction by using the collected transmitted coherent X-ray
diffraction patterns, it is possible to further utilize the obtained
X-ray probe profile P(r) and the measured LR XRF image Yj(Z, r) to
recover a high-resolution XRF image, where the corresponding
resolution will be much closer to N(Z, r), compared to Yj(Z, r).
During the scanning of the X-ray beam, the fine features
presented in the probe function P(r), coupling to the XRF
signal according to Eq. 1, represent a convolution operation that
can be de-convolved with an appropriate computation, as we
demonstrate here.
To demonstrate the technical feasibility of the proposed

method, combined nano X-ray scanning experiments were
conducted at the Hard X-ray Nanoprobe Beamline (HXN, 3ID) of
the National Synchrotron Light Source (NSLS-II). As shown in Fig. 1,
after being selected by a Si (111) monochromator, the mono-
chromatic X-ray beam was pre-focused on the secondary source
aperture (SSA) with a mirror in the horizontal direction and a set of
compound refraction lens in the vertical direction. The microscope

sits about 15m downstream from the SSA, and an FZP with a 30-
nm outmost zone width (or a pair of MLLs with higher resolution)
was utilized to focus the monochromatic X-ray beam to a nano
spot. The incident X-ray energy was set to 9 keV. During the
measurements, 2D on-the-fly raster scans33 with the nanobeam
were produced for both X-ray fluorescence images and far-field
diffraction patterns. As shown in Fig. 1, a pixel-array detector was
used to record transmitted far-field diffraction patterns, and an
energy-dispersive detector (Vortex, Hitachi) was placed at 90° with
respect to the sample to collect corresponding X-ray fluorescence
signals. The obtained X-ray diffraction patterns were used to
generate complex phase images and the incident X-ray wavefront
information with a higher spatial resolution after the ptycho-
graphic reconstruction (see Methods for details). As a result, with
this simultaneous measurement, the obtained X-ray wavefront
information on the measured sample and X-ray fluorescence
image was further utilized to reconstruct a higher resolution
resolved XRF imaging using the proposed ML model.

ML model training and testing
The architecture of the proposed RDN model is shown in Fig. 2a. It
mainly includes three sub-modules: feature extraction, fusion, and
up-sampling reconstruction35,36. The model directly uses the
measured low-resolution XRF image as input. It fully utilizes all
the hierarchical features extracted from the original LR XRF image
to recover the original HR XRF image. In the model, the first two
convolutional layers were used to extract the shallow features of
the input XRF image. Then these extracted features are used as
input to the following residual dense blocks (RDBs) to further
extract hierarchical features with global feature fusion and global
residual learning. After extracting local and global features in the
LR space, an up-sampling reconstruction net is utilized to tune the
result further fine in the HR space, which is mainly achieved by
using three parallel RDBs. Here, the up-sampling operation (i.e.,
marked as “Upscale” in Fig. 2a) is performed by utilizing an
Efficient Sub-Pixel Convolutional Neural Network37. Finally, follow-
ing one more convolutional block (i.e., 3 × 3 convolution +
LRLU+ 1 × 1 convolution + LiSHT), the RDN model outputs the HR
XRF image after stacking all the features obtained from the three
parallel residual dense blocks in the HR space. Here, LRLU refers to
leaky rectified linear unit. LiSHT refers to a non-parametric linearly
scaled hyperbolic activation function which is applied at the final
layer and is proposed by linearly scaling the Tanh activation
function (see Methods for details)38.
Figure 2b shows the detailed architecture of RDB used in the

proposed RDN model. The RDB is mainly based on the
convolutional operation to extract features from its input, which
consists of densely connected layers and local feature fusion with
residual learning. In the RDB, each convolutional layer is
connected directly with all the subsequent layers to preserve
shallow and deep features that need to be preserved. Additionally,
a global feature fusion is also used to adaptively preserve the
hierarchical features in a global way. In the LR space, each RDBs
has 16 convolutional blocks (i.e., 3 × 3 convolution + LRLU+ BN,
where BN refers to batch normalization), followed by a 1 × 1
convolutional layer to adaptively control the output information.
The corresponding growth rate is 64 for the RDBs in the LR space.
In the HR space, there are three parallel RDBs following the up-
sampling operation and each RDBs has two convolutional blocks.
The corresponding growth rate is 32.
As a typical ML-based method, the proposed RDN model

attempts to learn a mapping function from a large amount of
labeled data (i.e., paired LR and HR images prepared according to
Eq. 1, see Methods for details) to predict the HR XRF image when
an LR XRF image is input. To fully demonstrate the performance of
our proposed RDN model, we applied two different types of
focused hard X-ray beams to generate the training dataset for the

Focusing optics

X-ray beam

Fluorescence

Diffraction pattern

Rotation

Fig. 1 Schematic illustration of using the Hard X-ray Nanoprobe
(HXN) beamline of NSLS-II for multimodal measurements. While
the sample is raster-scanned by a nano-focused X-ray beam, both
X-ray fluorescence images and transmitted coherent diffraction
signals are collected simultaneously. A series of XRF maps and
phase-contrast ptychographic images are collected while the
sample is rotated in the beam to obtain 3D images. At the HXN
beamline, the X-ray beam can be focused by an FZP or MLLs. The
central beamstop is not shown to simplify the schematic.
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RDN model. As shown in Fig. 3a, g the two different X-ray beam
wavefronts are obtained via the ptychographic reconstructions
from an FZP and MLLs at HXN, respectively (see Methods for
details). The composition and structure of real-world materials can

vary a lot from sample to sample. However, the relation between
the measured LR XRF images and the measured materials can
always be described by Eq. 1. To increase the diversity of the
training dataset and the generality of the model, we use the

a

b

LR XRF
HR XRFResidual Learning

+

+

Local Residual Learning

Conv Conv RDB RDB RDB Conc+Conv Conv
Upscale

RDB

RDB

Conv 3×3  
Conv 1×1 
LRLU + BN
Conc

LiSHT

Fig. 2 Architecture of our proposed residual dense network (RDN) for super-resolution X-ray fluorescence image reconstruction. a Overall
layout of the ML model. b Detailed layout of residual dense block. For these RDBs, the input and output of each layer are fed into other layers
as inputs. The curved lines show the feeding operations. Here, Conv represents the convolutional operation, and Conc refers to the
concatenation of the feature map.
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Fig. 3 The representative results for the performance of the RDN model in testing with different X-ray nanoprobes. a X-ray probe from an
FZP. b, c Corresponding input testing LR XRF patterns from the FZP. d, e The ground truth. f, g The corresponding bicubic interpolation.
h, i The predicted HR images from the RDN model. j X-ray probe from MLLs. k, l Corresponding input testing LR XRF patterns from the MLLs.
m, n The ground truth. o, p The corresponding bicubic interpolation. q, r The predicted HR images from the RDN model. Here, the insets show
the center marked by the red boxes.
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Caltech-256 Object Category39 to prepare the training data for the
RDN model, where the data has significantly different features.
With the obtained hard X-ray nanoprobes and Caltech-256 Object
Category database, two labeled XFR training datasets were
constructed separately for the proposed RDN model (see Methods
for details). According to Eq. 1, the LR images were generated by
convoluting the HR images with the X-ray profiles obtained from
ptychographic reconstruction and integrating signals from con-
tinuous probe shifting over scan steps modeling the on-the-fly
data acquisition process (see Supplementary Fig. 1 for details).
When training the model, we used a combined loss function

(i.e., a combination of the mean square error and Pearson
Correlation Coefficient, see Methods for more details) to optimize
the model. The RDN model was implemented based on the
PyTorch platform40 using Python. We adopted the Adam
optimizer41 to optimize the weight and bias parameters of the
model. The learning rate is initialized to 10-3 for all layers and
decreases by half for every 15 epochs. During the training, the
upscaling factor is determined by the ratio between the pixel size
of XRF images (scanning step size) and the pixel size of the
obtained X-ray probe profile from the ptychographic reconstruc-
tion. In this study, the upscaling factors are 7 and 10 in each
dimension for the FZP and MLLs, respectively. Supplementary Fig.
2 shows the training and test loss as a function of the number of
training epochs. The loss for the test data is gradually decreasing.
After 50 training epochs, the loss for the test data is seen to reach
8.4 × 10−3, which illustrates that the proposed RDN model has
provided a highly accurate reconstruction of the super-resolution
XRF image from the corresponding low-resolution XRF image. To
further demonstrate the performance of the trained RDN model,
Fig. 3 shows four representative predicted results from test LR XRF
images, which were not used for training the ML model.
As shown in Fig. 3b–i and Fig. 3k–r, we present the quantitative

predictions from the trained RDN model as well as the images
using the traditional bicubic interpolation with the same upscaling
factor for the FZP and MLLs, respectively. Compared with their
corresponding ground truth, these small features in the predicted
images from the RDN model can be well reproduced. The
proposed RDN model successfully reconstructs the detailed
textures and edges compared with the original HR images.
However, the obtained HR images from bicubic interpolation
show a relatively poor performance compared with the results
from the RDN model. As shown in Fig. 3, the calculated peak
signal-to-noise ratios from bicubic interpolation are less than that
from the RDN model. It should also be noticed that the physical
relationship (i.e., Eq. 1) is not insured for the bicubic interpolation.

Comparison between experimental and resolution-enhanced
XRF data
To demonstrates the ability of our RDN model on experimental
data, we applied our RDN model to the experimental XRF datasets
from NMC cathode material with compositional gradient structure
from the core to the surface of the particle, using X-ray beams
focused by an FZP and a crossed pair of MLLs, respectively. The
concentration gradient NMC cathode material system in electrical
vehicle applications has received much attention due to its high
capacity, low cost, and long cycling life. This material system also
offers tremendous scientific interest for entangled relation
between microstructure/morphology with chemical heterogeneity
and functionality, as the Ni-rich core provides high energy density
and the Mn-rich surface enhances thermal and structural
stability42,43. In addition, a chemo-mechanical degradation
mechanism related to the formation of micro-cracks, voids, and
fractures during cycling is considered the main drawback of this
system44,45. Therefore, questions on how the primary particles
aggregate to form second particles, how the cracks are initialized
in the primary particle gap level during cycling, and how the

elemental distribution (i.e., Ni, Mn concentration gradient struc-
ture changes) are changed during the cycling are critical for
further understanding the structure-property relations and enhan-
cing the electrochemical performance of this material. Such
morphological/structural information requires high spatial resolu-
tion at the nanoscale and high chemical contrast to provide more
precise information. Up to date, such investigations on this
specific materials system utilize scanning/transmission electron
microscopy techniques with cross-sectioned particles mostly46,47.
However, this approach has many limitations, such as (1) requires
many efforts in sample preparation (usually requires using a
focused ion beam), (2) impossible for in situ investigation, (3)
possible sample damage during the manipulation of the sample
and to the electron beam, and (4) lack of data statistics due to the
limited number of measurements. X-ray microscopy/imaging, a
non-destructive technique, can overcome such limitations. There-
fore, the high-resolution XRF/ptychographic imaging of concen-
tration gradient NMC material in this study is not only a great case
to prove our concept but also provides ground-truth information
to answer many important scientific questions related to this
materials system that could not be given from the previous
studies.
The multimodal experiments were performed at the HXN

beamline, as described in Fig. 1. During the measurement, the far-
field coherent diffraction pattern was recorded simultaneously
with the X-ray fluorescence signal at each scan position. The
corresponding wavefronts of the incident X-ray beam can be
obtained from ptychographic reconstructions. As shown in Fig. 3
and h, the profiles of the two X-ray probes have significantly
different characteristics.
By using these two X-ray probes, the RDN model trained with

the simulated LR and HR image pairs, was further applied to raw
XRF projections at all angles for each tomography dataset. The
enhanced XRF projection images were then used to reconstruct
3D XRF images by tomography reconstruction. The central slices
of the 3D reconstructed structures are presented in Fig. 4 for using
the FZP and MLLs, separately. As shown in Fig. 4, the proposed
RDN model has successfully recovered a far more detailed
chemical mapping of the elemental distribution inside the NMC
particles, which can provide far better information on the micro-
cracks, voids, and fractures of the sample compared with the
directly measured LR XRF images. As the Nickel element
concentration is >60% of the total for the NMC particle, the Ni
XRF image should be representative of the major structural
features. Indeed, in both cases (i.e., using the X-ray probe from the
FZP and MLLs, respectively), the fine details in the enhanced XRF
images are highly consistent with the structures obtained from
the corresponding phase-contrast image using ptychography, as
shown in Fig. 4. This consistency suggests that the image
enhancement process imposed by the RDN model decouples
the impact of the X-ray beam profile and the scanning scheme,
which is similar to the reconstruction process in ptychography. In
general, the resolution of a directly obtained XRF image depends
not only on the X-ray beam intensity distribution but also on the
scanning step size, which is caused by the convolution of the X-ray
beam intensity and sample information. As shown in Fig. 4, the
estimated resolution of the LR XRF image for the FZP by using two
experimental datasets for each NMC sample48, is 94.8 nm and is
57.4 nm for MLLs (see Supplementary Fig. 3 for details). However,
for the obtained HR XRF images shown in Fig. 4, the X-ray beam
information has been deconvolved from the sample. Using the
Fourier shell correlation (see Supplementary Fig. 4), we further
estimated the resolution of these resolution-enhanced XRF
images, as presented in Fig. 4. The corresponding resolution can
be improved to 22.0 nm for the FZP and to 24.5 nm for the MLLs,
respectively. In our experiments, as the X-ray probe size from the
MLLs is smaller than that from the FZP, it will be expected that the
performance of RDN model on the XRF image from the MLLs
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should be better than that from the FZP. This exception is
probably due to a greater upscale factor (i.e., scanning step size)
when the RDN model was applied to the XRF images from the
MLLs, since the performance of the RDN model is dependent on
the upscale factor. Nevertheless, enhanced spatial resolutions
were observed on experimental XRF datasets from both the FZP
and MLLs, respectively. From these comparative results, it can be
concluded that the RDN model demonstrates high potential as a
general method and provides comparably good enhancements
for both probe profiles utilized.
Furthermore, in realistic applications on different material

systems, the quantitative elemental information encoded in the
raw XRF data should be preserved during the image enhancement
process. Thus, we further calculated the main elemental percen-
tage concentration for the three major components (i.e., Ni, Mn,
and Co) presented in the presented NMC particles (i.e., Fig. 4),
which can help to understand the degradation mechanism of this
material. Figure 5 shows the corresponding concentration
distribution of the three main elements in these particles before
and after applying the RDN model for the experimental XRF
images from the FZP and MLLs, respectively (see also Supple-
mental Fig. 5 for the corresponding LR and HR XRF images). As
presented, it can be seen that as the convolutional effect between
the X-ray probe profile and XRF images is deconvolved, the RDN
network redistributes the elemental concentration distribution
slightly among these three main elements. However, the overall
concentration distribution profiles of the three main elements
remain similar after this image enhancement process. This further
indicates the robustness of the proposed RDN model for
enhancing the resolution of XRF images from different elements.
Note that the RDN model training is solely performed on the

simulated images. Thus, the capability of the RDN model might be
restricted by the limitations in simulated training data. However,
the RDN model can still perform excellently on these experimental
data. When training the model, the RDN model attempts to learn a
direct mapping function from the paired LR and HR XRF images
dataset. Indeed, with all the above-demonstrated results, it can be
concluded that the learned mapping function works remarkably
well not only for these testing images but also for the
experimental data. These results illustrate the robustness of the
proposed RDN model. Because ML model is very easily
parallelized, it can gain a speed advantage over the traditionally

method. We expect a further improvement of the RDN model
performance with a large and more diverse training dataset as
well as incorporating the physical model for the training dataset,
for example, including the self-absorption effect. Meanwhile, the
proposed RDN depends sensitively on the exact X-ray beam
profile due to the deconvolution nature of the problem. Thus,
when the X-ray beam profile is changed, retraining the RDN model
is required, but use of transfer learning (i.e., using the parameters
from the pre-trained model) will speed up the analysis. Another
prospect might be to further develop the current RDN model to
include the incident X-ray beam profile as an input. Since the XRF
experiment utilizes multimodal imaging, one can always use the
corresponding ptychographic result as a reference to check the
reliability of the HR XRF image. As a scanning-type method, the
effective overlap ratio between the adjacent scanning spots plays
a crucial role in determining the up limitation of the enhancement
of the RDN model. When increasing the overlap ratio, the RDN
model is expected to give a better enhancement, and vice versa.
As multimodal imaging of functional materials continues to grow
in importance, we believe our deep learning solution for
enhancing the spatial resolution of an XRF microscope will see
major opportunities not only in materials science, but in
biomedical applications.
In conclusion, we have presented an ML approach to enhance

the spatial resolution of scanning X-ray fluorescence images from
focused hard X-ray beams by including information measured
simultaneously by X-ray ptychography. Both simulated and
experimental data were used to demonstrate the performance
of our proposed RDN model to enhance the spatial resolution of
XRF images as well as the related 3D tomographic reconstructions.
Extensive benchmark evaluations demonstrate that our RDN
approach can achieve better spatial resolution over state-of-the-
art conventional scanning methods. The improved spatial resolu-
tions are obtained with both simulated as well as experimental
data. Especially when applied to the experimental data, we further
showed that enhanced resolutions are observed for two different
focusing methods, using the FZP and MLLs. Given the many
important applications of XRF microscopy, we believe the current
ML method will provide a new path for imaging both biological
and functional materials via the scanning XRF method, which
reveals element-specific chemical distributions in 3D. Our results
show that the addition of probe information from ptychography
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Fig. 4 Comparison of experimental low-resolution XRF images and resolution-enhanced XRF images. In each image, the central slices of
the 3D reconstructed structures of NMC particles are displayed. The experimental datasets were collected using different scanning X-ray
probes, respectively. The left column shows the central slice of the raw XRF tomography reconstruction for the Nickel signal. The middle
column shows the corresponding central slice of the 3D tomography reconstruction using the spatial resolution-enhanced Ni XRF results from
the RDN model. The right column shows the central slice of the phase-contrast image from the ptychographic tomography reconstruction.
Here, the insets indicate the area marked by the red boxes and all the scale bars are 2 μm.
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coupled with the proposed ML-based computation method can
obtain much higher resolution XRF tomography images, whose
spatial resolution is mainly limited by the used incident X-ray
probe size. This ML-enhanced method will likely see very broad
applications in X-ray nanoprobe imaging and related research
fields.

METHODS
Sample preparation
Concentration gradient structured hydroxide precursor with an
average composition of [Ni0.6Mn0.2Co0.2](OH)2 were synthesized
via the coprecipitation method using a 20 L batch reactor.
NiSO4·6H2O, CoSO4·7H2O, MnSO4·5H2O, NaOH, and NH4OH were
used as starting materials. The prepared [Ni0.6Mn0.2Co0.2](OH)2
precursor was filtered, washed, and dried for 20 h at 100 ˚C. The
dried precursor was mixed with LiOH·H2O, and portions of the
mixture were calcined at 800 ˚C for 20 h under oxygen flow.
Details of the synthesis method are described in the previous
reports49,50.

Simultaneous data collection for Ptychography and XRF
The ptychography and XRF experiments were performed at the
Hard X-ray Nanoprobe Beamline (HXN, 3ID) of the National
Synchrotron Light Source II (NSLS-II) at Brookhaven National
Laboratory. The incident X-ray energy was set to 9 keV. The
microscope sits about 15 m downstream from the SSA, and a
Fresnel zone plate (Applied Nanotools Inc.) with 30-nm outmost

zone width or MLLs51 were used to focus the beam to a nano spot.
An energy-dispersive detector (Vortex, Hitachi) was placed at 90°
horizontally with respect to the sample to collect fluorescence
signals, and a pixel-array detector (Merlin, Quantum Detectors)
was positioned 0.5 m downstream to record the transmitted far-
field diffraction patterns. The simultaneously acquired far-field
diffraction patterns were used to generate phase images with a
higher spatial resolution via ptychographic reconstruction.

Ptychography and tomography data processing
The ptychographic reconstruction was completed by using a GPU-
accelerated iterative method. Each 2D projection image was
reconstructed with 1000 iterations of the Difference Map
algorithm. 5 illumination modes were included in the reconstruc-
tion to handle the blurring introduced by the on-the-fly scan
scheme27. The intensity summation of the obtained probes was
used as the beam profile for training the RDN network. The
tomography reconstructions for both the XRF and ptychographic
images were performed by using the TomoPy package52 with 100
iterations of the ordered-subset penalized maximum likelihood
algorithm. After tomographic reconstructions with the obtained
LR and HR 2D XRF images, for the FZP, the LR 3D XRF image sizes
are 120 × 105 × 120 with a voxel size of 66.7 nm and the
corresponding HR 3D image sizes are 840 × 735 × 840 with a
voxel size of 10 nm. For MLLs, the LR 3D XRF image sizes are
120 × 120 × 120 with a voxel size of 50 nm and the corresponding
3D HR image sizes are 1200 × 1200 × 1200 with a voxel
size of 5 nm.
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Fig. 5 Three main elemental concentrations of the NMC particles before and after the XRF image enhancement process. The main
elemental concentration distributions of the NMC particles from directly obtained XRF images measured with the (a) FZP and (b) MLLs,
respectively. c, d Corresponding main elemental concentration distribution of the NMC particles for the resolution-enhanced XRF images
using the FZP and MLLs, respectively.
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Training dataset and RDN model training
Typically, for the X-ray fluorescence mapping experiment in a
step-scan mode, the collected X-ray fluorescence yield Y obeys
that:

Yj Z; rð Þ ¼ σðZ; λÞ
Z1

�1
P rð ÞN Z; rþ rj

� �
dr; (2)

However, in a fly-scan mode, the XRF yield from a continuously
moving sample becomes:

Yj Z; rð Þ ¼ σ Z; λð Þ Rt0þΔt

t0

R1
�1

P rð ÞN Z; rþ rj þ vt
� �

dr dt

¼ σ Z; λð Þ Rt0þΔt

t0

R1
�1

P r� vtð ÞN Z; rþ rj
� �

dr dt;

(3)

where, Δt is the detector dwell time and v is the scan speed. N(Z, r)
is the elemental distribution of the measured sample, σ(Z, λ) is XRF
cross sections, and P(r) is the X-ray probe intensity distribution. rj
is the jth X-ray nanoprobe scanning position on the sample, Z is
the atomic number and λ is the wavelength of the incident x-ray.
According to Eq. 3, the labeled XRF training datasets were
generated, using the Caltech-256 Object Category database with
different hard X-ray nano probes, separately. The LR images were
generated by convoluting the HR images with the X-ray probe and
integrating signals from continuous probe shifting over scan
steps, modeling the on-the-fly (step-scan) data acquisition process
(see Supplementary Fig. 2 for the simulation and effect of different
scanning methods on the LR image). For the FZP, each input LR
image size is 105 × 120 with a pixel size of 66.7 nm, and the
corresponding HR image size is 735 × 840 with a pixel size of
10 nm. For the MLLs, each input LR image size is 120 × 120 with a
pixel size of 50 nm, and the corresponding HR image size is
1200 × 1200 with a pixel size of 5 nm. The X-ray probe image sizes
are 128 × 128 for the FZP and MLLs, and the corresponding pixel
sizes are 10 nm and 5 nm, respectively. For the FZP, the total
number of the paired LR and HR images is 17640 and for MLLs, it is
17648. For both FZP and MLLs, when training the model, 95% of
the paired LR and HR images were used to train the model, and
the rest of them were used as validation. The test dataset was
prepared and applied separately. To avoid overfitting, an early
stop strategy was applied, whereby the test or validation loss
should not be greater than two times the training loss. The batch
size was 2.
The RDN model was implemented in PyTorch with Cuda, where

the RDN model was initialized with the default initialization
method in PyTorch. During the training, we applied the following
loss function l, to optimize the weights and bias of the RDN model:

l ¼ 1
α1 þ α2

α1L1 Hp;Hg
� �þ α2L2 Hp;Hg

� �� �
; (4)

where Hp is the predicted result from the RDN model and Hg

is the corresponding ground truth. In Eq. 4, L1 is the
modified correlation coefficients, which is defined as

L1ðHp;HgÞ ¼ 1� ΣnðHp�HpÞðHg�HgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΣnðHp�HpÞ2�½ΣnðHg�xgÞ2 �

p . L2 is the relative squared

error, which is given as L2ðHp;HgÞ ¼ ΣnðHp�HgÞ2
Σn H2

g
. Generally, L1(Hp, Hg)

is the statistical metric that measures the similarity between two
variables53 and L2(Hp, Hg) is dominated by the strong part of a XRF
image. Here, both α1 and α2 are set to 1 without bias.
On our current hardware, the network took about 60 h on

average for 50 epochs of training. At the final layer of the RDN
model, the non-parametric linearly scaled hyperbolic activation

function is applied, whose expression is given by:

LiSHT xð Þ ¼ x ´ tanh xð Þ: (5)

For the large positive inputs, the behavior of the LiSHT is
close to the LRLU, i.e., the output is close to the input. The
training process was conducted on a computer with two NVIDIA
V100 GPUs and 256 GB of RAM. The PSNR used in the
paper is defined as PSNR ¼ 20 ´ log10 MAX

MSE

� �
, where MSE=

1
mn

Pm�1
i¼0

Pn�1
j¼0 I1 i; jð Þ � I2 i; jð Þ½ �2 for 2D data, and

MSE= 1
lmn

Pl�1
i¼0

Pm�1
j¼0

Pn�1
k¼0 I1 i; j; kð Þ � I2 i; j; kð Þ½ �2 for 3D data.

MAX is equal to 1. I1 and I2 are the corresponding input data.
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