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Autonomous atomic Hamiltonian construction and active
sampling of X-ray absorption spectroscopy by adversarial
Bayesian optimization
Yixuan Zhang1, Ruiwen Xie1, Teng Long 1,2, Damian Günzing3, Heiko Wende3, Katharina J. Ollefs3 and Hongbin Zhang 1✉

X-ray absorption spectroscopy (XAS) is a well-established method for in-depth characterization of electronic structure. In practice
hundreds of energy-points should be sampled during the measurements, and most of them are redundant. Additionally, it is also
tedious to estimate reasonable parameters in the atomic Hamiltonians for mechanistic understanding. We implement an
Adversarial Bayesian optimization (ABO) algorithm comprising two coupled BOs to automatically fit the many-body model
Hamiltonians and to sample effectively based on active learning (AL). Taking NiO as an example, we find that less than 30 sampling
points are sufficient to recover the complete XAS with the corresponding crystal field and charge transfer models, which can be
selected based on intuitive hypothesis learning. Further applications on the experimental XAS spectra reveal that less than
80 sampling points give reasonable XAS and reliable atomic model parameters. Our ABO algorithm has a great potential for future
applications on automated physics-driven XAS analysis and AL sampling.
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INTRODUCTION
X-ray absorption spectroscopy (XAS) is an important experimental
technique used in the investigation of material properties, where a
large number of sampling points are required to capture the fine
details and the experimental data needs to be analyzed based on
atomic Hamiltonians with undetermined parameters1,2. Various
methods have been used to interpret XAS, including density
functional theory (DFT)3,4, semi-empirical multiplet models5,6, and
DFT combined with dynamical mean-field theory (DFT+ DMFT)7.
The DFT-based methods are capable of capturing the crystalline
environment of the active ions but limited to tackle the
complications arising from the correlation effects. The DFT+
DMFT calculations simultaneously account for the chemical
realism and correlation effects, where the XAS spectra are
evaluated by solving the corresponding Anderson impurity
models (AIMs)8. Unfortunately, the DFT+ DMFT calculations
require a large amount of computational time and resources,
thus are usually performed off-site by experts.
In contrast, the semi-empirical methods based on atomic

Hamiltonians consider the essential parameterized interactions
such as the Coulomb interaction, spin-orbit coupling, crystal fields,
charge transfer and broadening parameters, resulting in transpar-
ent mechanistic understandings of XAS9–11. For instance, the
crystal field multiplet (CFM) theory and charge transfer multiplet
(CTM) theory constitute two popular models in understanding and
simulating experimental XAS of transition metal (TM) oxides. CFM
describes the atomic interaction with the surrounding ligands as a
perturbation using the effective electric fields12, however, the
neglection of covalency makes it challenging to describe the
crystal field splitting. In contrast, the CTM model takes metal-
ligand charge transfer into consideration. Sugano and Shulman
devised molecular orbital (MO) model to calculate the ligan-field
parameters and got good consistency with experimental results13.
Moreover, Fujimori and Minami used the cluster model

considering strong 3d correlations and 3d-ligand orbital hybridi-
zation to improve the interpretability of multiplet ligand-field
theory (MLFT) for the valence-band photoemission14,15. In order to
extrapolate MLFT further to understand band gaps and broad
satellite peaks in XAS of transition metals, Gunnarsson, van der
Laan and Zaanen took the large ligand hole bandwidth into the
account by employing the Anderson impurity Hamiltonian16–19.
Another practical challenge is how to perform efficient

sampling during the experimental measurements. A homoge-
neous energy grid with several hundreds of measurements within
a specific energy range is often needed, which is inefficient and
resource-costly. The quality of the spectrum varies depending on
the choice of sampling points. One way out is the so-called design
of experiments (DoE)20, which focuses on selecting the input
variables of experiments which have significant effects on
experiments’ target value, and examining how to choose the best
combination of independent variables. However, a good number
of sampling points are still needed in order to obtain a spectrum
with a sufficient signal-to-noise ratio. With the help of machine
learning (ML), DoE has undergone a transformation. Several ML-
based methods have been applied to the prediction and design of
spectroscopy experiments21–23. Nevertheless, collecting the
needed data for ML still requires a lot of effort. The active-
learning (AL) method based on Bayesian analysis can be applied
to reduce the required sampling data, where the posterior mean
and variance of the parameter space can be calculated using the
Gaussian process (GP) based on the prior distribution function24.
Mostly, AL stops once the desired level of performance is
achieved25, which can be applied to spectroscopic experiments
to design appropriate stopping criteria. For instance, the decision
to stop the measurements can be made by estimating the
physical parameters to determine the validity of the current
experimental results26,27. However, such parameter assessments
often require comparisons between the experimental and
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theoretical spectra, which are usually not available during the
experiments. Furthermore, automatic stopping criteria based on
the generalization error analysis have now been applied to
spectral AL to circumvent this complex parametric analysis
process23. While such a combination of active learning and
stopping criterion can effectively reduce the number of sampling
points, the absence of supports based on theoretical models
reduces the reliability of AL to extract points of importance.
Hence, there is a strong impetus to develop a physics-driven
stopping criterion for efficient experimental samplings in XAS.
In this work, we propose an ABO algorithm, comprising

automated parameter fitting to obtain the atomic Hamiltonians
and efficient AL-based sampling. Taking NiO as an example with
theoretical XAS obtained using Quanty9, we demonstrate that
both CFM and CTM models with up to 15 parameters can be
constructed, while keeping the number of sampling points at the
order of 30. To identify the dominant physical processes,
hypothesis learning can be done, which can distinguish the CFM
and CTM models depending on the standard real spectrum (the
ground truth in ML). It is further revealed that our ABO algorithm
can be applied on the real experimental data, providing a valuable
solution to the currently time-consuming XAS measurements and
analysis.

RESULTS
Fitting CFM with active-learning sampling
Keeping in mind that the goal of the ABO algorithm is to reach the
standard real spectrum with as few sampling points as possible.
Starting with the CFM model, there are 9 independent parameters,
including the Coulomb interaction F2dd , F

4
dd , F

2
pd , G

1
pd , G

3
pd , the crystal

splitting 10Dq , the spin–orbital coupling strength of the Ni 2p and
3d orbitals ξ2p, ξ3d , and the exchange magnetic field Bex . The Slater
integral F0dd is related to U by

F0dd ¼ Udd þ 2
63 F2dd þ F4dd
� �

; (1)

and F0pd is related to Upd by

F0pd ¼ Upd þ 1
15G

1
pd þ 3

70G
3
pd (2)

Note that as the total number of electrons is conserved in CFM,
U and Upd can be dropped out, i.e., U ¼ Upd ¼ 0.
To demonstrate the efficacy and robustness of the ABO

algorithm, it is first applied to the Ni2+ L2,3 edge of the XAS
curve produced by the 9-parameter CFM. We note that the L2,3
XAS spectra have been already well reproduced using crystal field-
based models for NiO28. In order to reduce the dimension of the
problem, F4dd is fixed based on the feature importance (FI) analyze
for all 9 parameters (cf. Supplementary Fig. 1). Figure 1 shows the
snapshots obtained based on the ABO algorithm with 3, 19, and
27 sampling points (Fig. 1a to c). For an initial dataset consisting of
three random points (Fig. 1a), it is observed that the resulting XAS
(red curve) obtained using the Hamiltonian from fBO has a big
difference compared to the theoretical standard real XAS curve
(black curve). This suggests that due to insufficient sampling
points, the Hamiltonian fitting suffers from an extremely non-
convex problem, and the resulting CFM model is trapped in one of
many possible local minima. However, such an inaccurate
Hamiltonian can still be applied to predict the next sampling
point in sBO by evaluating the deviation from the theoretical
standard real XAS curve. In follow-up iterations, CFM gets
substantially improved and the non-convexity is tremendously
reduced, reaching the theoretical standard real XAS curve
expeditiously (Fig. 1d). With 19 sampling points as shown in Fig.
1b, the algorithm is able to recover the shape of the XAS curve
and reproduce the fine structures besides peaks and valleys.
Further sampling up to 27 points allows the ABO algorithm to well
reproduce the theoretical standard real XAS curve, with the

corresponding parameters in CFM converged nicely (cf. Supple-
mentary Table 3).
Figure 1d shows the convergence indicated by the loss function

plotted with respect to the number of sampling points, where the
loss function is defined as the average deviation between all
points on the prediction and the theoretical standard real XAS
curve. Correspondingly, the convergence of model parameters is
shown in Supplementary Fig. 3, with the intermediate parameters
and the real parameters for the theoretical standard real XAS listed
in Supplementary Table 3. It is observed that G3

pd and F2pd have
relative larger deviation of, respectively, 2.07% and 1.15%
compared to the other parameters, which can be attributed to
the less FI for such parameters (see Supplementary Discussion).

Fitting CTM model with active-learning sampling
To further explore the capability of the ABO algorithm, it is applied
to the more sophisticated CTM model, which considers the charge
transfer effects. CTM for NiO has in total 15 input parameters,
including the Coulomb interaction parameters Udd , Upd , F2dd , F

4
dd ,

F2pd , G1
pd , G3

pd , the charge transfer energy Δ, the crystal field
splittings corresponding to Ni 3d and ligand orbitals 10Dq, 10DqL,
the hopping integral between O-2p and Ni-3d orbitals of t2g and eg
symmetry Vt2g , Veg , the spin–orbital coupling strength of Ni-2p and
3d orbitals ξ2p, ξ3d , and the exchange magnetic field Bex . We adapt
the algorithm by giving the physical preconditions to reduce the
difficulty of high-dimensional fitting. The adapted ABO algorithm
was then straightforwardly applied to fit the XAS curves simulated
using the CTM model.
The results are shown in Fig. 2. Initial random sampling points

are helpful to get a reasonable starting model as we observed for
CFM, thus for CTM 10 initial points (Fig. 2a) are used in order to get
a rough estimation of the overall data distribution. This helps
significantly with the convergence, in comparison with only one
initial point as shown in Supplementary Fig. 4. And as illustrated in
Fig. 2b, 23 sampling points are already enough for the ABO
algorithm to capture the essential features such as peaks and
satellites. Interestingly, as shown in Fig. 2c, we find that the ABO
algorithm can identify the critical regions and keep on improving
its accuracy therein, though the fitted curves and used parameter
values are already very close to the theoretical standard real
spectrum. The convergence of the model parameters is depicted
in Supplementary Fig. 4d, and the final fitted parameters are
summarized in Supplementary Table 5. There are four parameters
with larger deviations, i.e., Vt2g , 10Dq, 10DqL and Bex (with 3.01%,
2.83%, 2.24% and 2.11% deviations, respectively). According to the
FI analysis (see Supplementary Discussion), such parameters have
relatively less significant FI, thus the sensitivity of the final results
with respect to such parameters is marginal. Moreover, the
distribution of the selected sampling points covers mostly the
regions containing important information on the theoretical
standard real spectrum, e.g., the peaks, satellites, and the splitting.
This confirms the robustness of our ABO algorithm, i.e., the
adversarial algorithm can dynamically allocate the sampling
region to improve the XAS while continuously improving the
parameter fitting for the atomic Hamiltonian.

Automatic model selection
An interesting question is whether an appropriate atomic model
can be automatically identified, as recently demonstrated on
model selection and information fusion29 and hypothesis learn-
ing30. To verify this, we integrate both CFM and CTM models
starting with a theoretical standard real spectrum obtained based
on either CFM or CTM, and let the ABO algorithm to automatically
determine which model should be used. Since the CTM model
includes all parameters of CFM model, which means it in principle
can fully recover the theoretical standard real spectrum of the
CFM model by setting the common parameters the same and
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keeping the rest parameters of ligand field to be 0. So, in our test,
in order to allow the two models to be distinguished from each
other, we applied different peak broadening methods on different
models to ensure that the final generated XAS spectrum have
different shapes. To avoid the initial arbitrariness, five random
points are used to train preliminary models. The follow-up
convergence behaviors are shown in Fig. 3a, b, for CFM and
CTM theoretical standard real spectrum, respectively. Obviously,
there is already a clear distinguishment for the CFM and CTM
models within 22 iterations, i.e., 22 more sampling points, as
measured by the deviations between Loss_CFM and Loss_CTM.
That is, the ABO algorithm can easily distinguish the model
Hamiltonians and select the correct one based on the experi-
mental data. For instance, in Fig. 3a with a CFM theoretical
standard real spectrum, the ABO algorithm using a CTM
Hamiltonian can have comparable performance as CFM for less
than 7 sampling points (i.e., up to two steps plus the initial five

random points). As the number of iterations keeps increasing, the
results obtained using the CTM Hamiltonian deviate more from
the theoretical standard real spectrum in the beginning and then
decrease to a constant level. Therefore, we suspect that by
training several models in parallel, the important physics for a
material system can be automatically identified, e.g., whether the
charge transfer processes play an important role. It is noted that
the model selection can be performed in a more reliable way by
evaluating the Bayes factors31, which will be saved for future
study.

Experimental curve fitting based on the CTM model
After demonstrating that the ABO algorithm works on the
theoretically generated standard real XAS, we turn now to find
out its performance on the experimental data. According to ref. 9,
the charge transfer processes are critical for NiO, thus CTM is more
appropriate to describe the underlying physics in NiO and we

Fig. 1 The CFM model results. The fitting results of the CFM model for differnet sampling points: a three sampling points (Step 1);
b 19 sampling points (Step 17); c 27 sampling points (Step 25); d CFM XAS curve convergence, with the colored dots denote in order the
results of Fig. 1a to c. The upper panels in (a)-(c) show the fitted results of fBO, where the black curve denotes the standard real values of the
unknown XAS curves, the black dots are the already measured points, the red curve is the fitted result based on current sampled points using
the fBO fitting, and the magenta cross is the point to be measured in the next round, which is determined by sBO. In the lower panels are the
standardized prediction of sBO, where the black dots denote the GP predicted loss with the blue-shaded regions denoting the uncertainties.
The parameter comparison for the listed steps is shown in Supplementary Table 4.
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Fig. 2 The CTM model results. The fitting results of the CTM model for differnet sampling points: a 10 sampling points (Step 1); b 23 sampling
points (Step 14); c Final fitting results using 44 sampling points (Step 35); d CTM XAS curve convergence, with the colored dots denote in
order the results of Fig. 2a to c. The parameter comparison for listed steps is shown in Supplementary Table 6.

Fig. 3 The model fitting loss comparation. The loss comparation of the CFM and CTM model fBO fitting using different theoretical standard
real spectrum: a CFM theoretical standard real spectrum; b CTM theoretical standard real spectrum.
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consider only CTM here. Starting from the experimental XAS
results28, we firstly fit the CTM model parameters with 12 random
sampling points in order to avoid local minima and possible
sampling bias. The results of ABO fitting are shown in Fig. 4. The
comparison between all the parameters is shown in Supplemen-
tary Discussion, Supplementary Fig. 5, and the convergence plots
of the case starting with only one initial points is shown in
Supplementary Fig. 6.
As shown in Fig. 4a, because of the relatively large initial sample

set, the shape of fitted curve is already closer to the experimental
XAS, in particular for the L2 edge but not the L3 and satellite peaks.
Figure 4b to e depict the follow-up optimization snapshots.
Between Fig. 4b, c, it is observed that the sampling points are
clustered between 872 and 876 eV, trying to improve the fitting for
the L2 edge. This suggests our ABO algorithm can focus on the most
problematic points where the physical model can get most
potentially improved. In particular, after a few attempts without
improvements, the region between 872 and 876 eV is abandoned
and the ABO algorithm begins to explore the L3 peak regions
centered at 853.3 eV, as clearly marked by the suggested sampling
points in Fig. 4c–e. This can be attributed to the fact that the
covariance for sampling points between 872 and 876 eV becomes
smaller due to the accumulation of points in the region. Although
the loss in this region is still large, the ABO algorithm prefers to
explore other regions that can help improve the results, e.g., the
peak regions where the deviations are still large. Therefore, the ABO
algorithm can progressively optimize the results on its own if a
sufficient number of iterations is allowed, as evidenced by the step
descending convergence behavior around the 40-th step (Fig. 4f).
Although a perfect agreement between the model-derived XAS

and experimental standard real spectrum cannot be achieved,
detailed analysis reveals that the ABO algorithm can be applied to
construct a reasonable Hamiltonian by active-learning sampling
the experimental XAS. Unlike the previous convergence plots
using the curves generated by CFM and CTM as the standard real
spectrum where the loss drops rapidly, for the experimental
standard real spectrum, the loss function converges slowly and
eventually shows an oscillating behavior after 40 iterations (Fig. 4f
and Supplementary Fig. 5, indicating there are more than one
solution which cannot be distinguished by varying the current set
of parameters. We identify three models with distinct parameters
characterizing the oscillating region, with the resulting parameters
summarized in Supplementary Table 7. Correspondingly, it is
observed that there are four most diverged parameters (i.e., Udd ,
Upd , and F2dd , F

4
dd) among such models (the detailed convergence

behaviors of these parameters are shown in Supplementary Fig. 5).
The Slater integrals F2dd and F4dd are the integrals over the radial
wave functions in the electron-electron interaction (the details can
be found in the Supplementary Methods and can be calculated in
the Hartree-Fock approximation on a free ion using Cowan’s
code32. Physically, F2dd > F4dd and a good approximation gives a
constant ratio F4dd ¼ 0:62F2dd for 3d8 shells33. For the spherical part
of the Coulomb repulsion parameters Udd and Upd , their values
were obtained via fitting the multiplet ligand field model to the
experimental XAS spectra directly in ref. 9, which suggest that the
parameters obtained by fitting the experimental results using ABO
should be comparable with the reference values. However, this is
not the case for some fitted parameters in the oscillation zone
regarding not only Udd and Upd , but also F2dd and F4dd , thus these
possibilities in the oscillation zone are ruled out. Here, we would
also like to mention that due to the limitation of the adopted CTM
model, it is not surprising that the parameter sets obtained by
fitting the spectral shape using ABO do not always demonstrate
proper physical meaning.
Based on the loss and physical reasonableness of the fitting

parameters, the final result is shown in Fig. 4g. Obviously, XAS
obtained from the CTM Hamiltonian fitted using our ABO
algorithm exhibits good agreement with the experimental data,

in good comparison with XAS obtained using the model
parameters obtained by experts9. Table 1 summarizes the
resulting parameters from ref. 9 and the final parameters using
our ABO algorithm. For the Coulomb interaction parameters G3

pd ,
crystal field splitting 10Dq , hopping integral of eg symmetry Veg ,
and exchange magnetic field Bex , ABO results show relative strong
deviations from the results in the literature. The reason for such
deviations can be attributed to the FI of such parameters as shown
in Supplementary Fig. 2. This suggests that there is a big degree of
freedom in developing physical understanding of XAS, as the
same experimental data can be fitted by several groups of atomic
Hamiltonian parameters, entailing more detailed theoretical
calculations.

Experimental curve fitting based on the CTM model with
background subtraction and model constrains
Although our ABO fitted spectra are in good agreement with the
experimental curve, the fitted parameter sets still shows some
non-physical relations compared with the theoretical value, e.g.,
Veg < Vt2g. This can be attributed to the following three possible
reasons: 1. The calculated spectrum using the CTM model does
not include the continuum absorption background, as the
background information in the experimental spectrum is not
completely removed; 2. The algorithm sees only the local
information, i.e., only the selected-out measurement points rather
than the entire curve. The aggregation of samples caused by the
non-negligible background can lead to the overweight of regions
with concentrated sampling points and cause bias during the
parameter fitting; 3. Greedy algorithms without physical con-
straints only focus on reducing the curve differences, which may
give rise to overfitting and thus wrong physical relations.
Correspondingly, we update our model by restricting Veg>Vt2g,

and eliminate the step edge background by fitting a two-step
arctangent weighted function34–36 after each fBO process, and use
the background-eliminated data for the sampling during the sBO
process. The two-step arctangent weighted function we use is:

Backgroud xð Þ ¼ A1 0:5þ
arctan

x�u1
c1

h i
π

8<
:

9=
;þ A2 0:5þ

arctan
x�u2
c2

h i
π

8<
:

9=
;
(3)

where A is the step height, x is the X-ray energy, u is the center of
the function at the desired X-ray energy and c is the constant
controlling the slope of the step. All such six parameters
A1;A2; u1; u2; c1; c2 are fitted automatically in our Bayesian
optimization loop. The updated workflow of ABO with background
fitting can be found in Supplementary Fig. 7.
As shown in Fig. 5, compared to the previous results without

removing the background, the loss (cf. Fig. 5d) in this fitted curve
drops rapidly to below 12 within four iterations (i.e., with
16 sampling points) and stabilizes at around 10 in subsequent
fits with no significant fluctuations. We find that the sampling
points are more distributed throughput the whole energy range
(Fig. 5a–c), with a tendency to accumulate in regions with fine
features in the XAS spectra such as satellite peaks. This
demonstrates that our ABO algorithm can explore a wide region
while maintaining a high exploitation rate. And for the parameter
comparison as shown Table 2, the model can get more physically
reasonable parameters in fewer cycles and effectively identified
stable and robust backgrounds during the experiment. The
parameters with relative larger deviations are 10Dq and 10DqL.
The reason of such deviations can be attributed again to the
relative lower FI of such parameters as shown in Supplementary
Fig. 2 for 10Dq and 10DqL. From the physical point of view, for the
deviation of 10Dq , when measuring the L-edges in XAS, the 2p
electrons are mainly excited to the eg orbitals because the t2g
orbitals are fully occupied by 8 valence electrons for the Ni2+ ions.
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Fig. 4 The fitting results of the experimental XAS. The fitting results of the experimental XAS spectrum for different sampling points:
a 13 sampling points (Step 1); b 21 sampling points (Step 9); c 36 sampling points (Step 24); d 64 sampling points (Step 52); e 79 sampling
points (Step 67); f the convergence of the fitted XAS curve in comparison with the experimental curve, with the colored dots denote in order
the results of Fig. 4a to e; g the comparison of the ABO fitted XAS curve, the experimental curve, and the reference curve.
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Therefore, the magnitude of 10Dq is not expected to significantly
affect the spectral shape, but rather that the global shift of the
energy positions corresponding to the absorption peaks and the
relative heights between the different peaks. As the calculated
XAS spectra are shifted during the ABO process in order to fit the
experiment data, only the relative heights remain as a relatively

weak condition to obtain 10Dq, which can be also influenced by
the values of other parameters. Last but not least, the constraints
can be easily derived from DFT calculations, which will be
addressed systematically in the future study. We also applied the
ABO algorithm to the other material systems such as MnO and
SrTiO3 (not shown), and observed that accurate curve fitting can
be achieved, in particular with the physical constraints derived
from DFT calculations.

DISCUSSION
Although the prediction of XAS appears to be a simple one-
dimensional regression as a function of energy, it is actually a
sophisticated problem, which entails physics-driven modeling. As
it is demonstrated, by incorporating the physical Hamiltonian
model into the fitting process, our ABO algorithm can not only
predict the peak/satellite positions and fine structures of XAS, but
also can automatically select and inversely construct the physical
model simultaneously in an adversarial manner. Importantly, we
find that the sampling efficiency using our ABO algorithm can be

Table 1. The CTM model parameters comparison and the relative XAS
curve loss.

Name Udd Upd Δ F2dd F4dd F2pd G1
pd G3

pd

Ref. 9 7.30 8.50 4.70 11.14 6.87 6.67 4.92 2.80

ABO 8.05 10.80 4.84 10.74 8.53 8.25 5.83 1.81

Name Dq DqL Veg Vt2g ξ3d ξ2p Bex Loss

Ref. 9 0.56 1.44 2.06 1.21 0.081 11.51 0.12 26.96

ABO 1.60 1.20 0.49 1.22 0.120 11.35 0.29 21.57

Fig. 5 The fitting results of the experimental XAS with background fitting. The fitting results of the experimental XAS spectrum with
background fitting for different sampling points: a 17 sampling points (Step 5); b 24 sampling points (Step 12); c 32 sampling points (Step 20);
d the convergence of the fitted XAS curve in comparison to the experimental curve, with the colored dots denoting in order the results of Fig.
5a–c.
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significantly enhanced in comparison to a stopping criterion
algorithm based on Bayesian optimization as done in ref. 23. For
instance, for the CFM model-derived theoretical standard real
spectrum, the number of sampling points based on our ABO
algorithm is 24.3% of that using a single BO with the stopping
criterion being 0.025, and the corresponding ratio for the CTM
model theoretical standard real spectrum is 18.8% (cf. Supple-
mentary Table 8). That is, the physics-driven Hamiltonian obtained
via fBO is essential for more effective sampling of XAS.
Furthermore, the high accuracy and efficiency of our ABO
algorithm can be attributed to two reasons. The first reason is
that when fBO and sBO compete against each other on reducing
the loss, the algorithm is actually trying to drive the sample
distribution closer to the true data distribution. Such a distribution
not only effectively represents the important information of the
data, but also allows for a more efficient and faster fitting of the
model. The second reason is that the introduction of physical
models within fBO changes the prior of sBO in each iteration, this
makes it possible to explore extensively while maintaining a high
exploitation ratio, i.e., the high exploration rate of the fBO provides
us with a wide range of possible model spectra, which leads to
variations in losses between measurements and physical models.
While sBO with high exploitation ratio can precisely pinpoint the
maximum losses during the sampling, and thus it is able to
capture the peak/satellite positions of the XAS spectra efficiently
and accurately. However, it should not be overlooked that such
efficient sampling is based on regression analysis of the current
data using a physical model, a process that prolongs the decision-
making time in the experimental process. The current version of
ABO takes about 15 min per round of computation on a single-
core NVIDIA Tesla T4 GPU and intel core AVX512. Depending on
the complexity of the model, it usually takes between one to five
rounds of calculations to find the minimum that satisfies the
threshold. This shortcoming on the one hand can be partially
overcome by performing batch sampling in sBO or by multi-
threaded parallel fitting in fBO; on the other hand, by combining
with DFT calculation, automatically pre-determining some of the
parameters, the fitting process can be even faster, so that our ABO
algorithm can get integrated with experimental measurements in
the future. It is worth mentioning that, besides the application of
the ABO approach on XAS spectrum, this approach can be easily
transferred to other problems with physical properties derived
based on parameterized Hamiltonians, which can be correlated
with experimental measurements. For example, by employing
advanced Fourier basis in ref. 37 as the physical model, our ABO
can be applied to facilitate the fitting and sampling of EXAFS,
which will be saved for future investigation.
To summarize, we implement an ABO algorithm for physics-

informed active-learning sampling of XAS. Applying the algo-
rithm on the simulation of two different theoretical standard
real spectra, it is demonstrated that our algorithm not only
succeeds in predicting the true curve, but also accurately
predicts the parameters in the atomic Hamiltonians. Intuitive
application of the ABO algorithm shows that hypothesis learning
can be accomplished, so that the physically meaningful models
can be automatically selected. For simulations using real
experimental data, our ABO algorithm can quickly find the
optimal solution of the model for the current data and select the
sampling points most likely to further enhance the model
accordingly, and it is able to automatically adjust the XAS
spectra background and the model used to better predict the
experimental data as it evolves. We believe that the ABO
algorithm has a great potential for real-time applications in XAS
experiments with the on-the-fly construction of physical models.

METHODS
Multiplet Models
For NiO, the L2,3 edge XAS of Ni2+ can be evaluated using Quanty
with model Hamiltonians based on either CFM or CTM defined as
follows,

HCFM ¼ Hdd
U þ Hpd

U þ Hd
l�s þ Hp

l�s þ HCF þ Hex; (4)

HCTM ¼ Hdd
U þ Hpd

U þ Hd
l�s þ Hp

l�s þ Hp
o þ Hd

o þ HL
o þ HdL

hyb þ Hex;

(5)

with Hdd
U being the on-site Coulomb repulsion between the 3d

electrons of Ni, Hpd
U being the on-site Coulomb interaction

between the Ni 2p and 3d electrons, Hd
l�s and Hp

l�s being the
spin–orbital coupling corresponding to Ni 3d and 2p orbitals,
respectively, Hex being the Weiss magnetic field acting on Ni. To
understand the underlying physics, such empirical parameters
should be tailored so that the experimental XAS can be well
reproduced, which is challenging as it is a multi-dimensional
fitting problem (cf. Supplementary Methods for the complete lists
of all relevant atomic parameters). For instance, CFM and CTM
distinguish from each other by the excited charge dynamics,
where CFM allows only excitations based on the local crystal fields
(denoted by HCF in Eq. (4)), whereas virtual charge transfer
processes are considered between Ni-3d and ligand 2p orbitals in
the CTM model (represented by HdL

hyb in Eq. (5)). In the calculations
of XAS using Quanty, the two Hamiltonians defined in Eqs. (4) and
(5) were applied for both the ground states and excited states.
After calculating the ground state wave function, XAS was
evaluated using a Lanczos-based Green’s function method11,38:

G ωð Þ ¼ ΨT y 1

ωþiΓ2�Hfs
CFM=CTM

�����
�����TΨ

* +
; (6)

where Ψj i denotes the ground state, T is the transition operator
(here it represents a 2p3d dipole excitation), Hfs

CFM=CTM is the final
state Hamiltonian, ω is the energy relative to the energy of state
Ψj i, and Γ denotes the core-hole lifetime. For the specific forms of
each term in Eqs. (4), (5) and (6), please refer to the Supplementary
Methods. In order to acquire better fitting of the experimental
data, the Gaussian broadening is usually added uniformly to
mimic the broadening caused by experimental instruments while
the energy-dependent Lorentzian broadening is applied to
simulate the core-hole lifetime broadening.

Adversarial Bayeian Optimization algorithm
Following the idea of generative adversarial network (GAN)39

where both the generators and discriminators are trained
simultaneously, we combined the multiplet Hamiltonian construc-
tion and active-learning sampling together, leading to an ABO
algorithm. Similar to GAN, where a trained generator minimizes
the difference between the existing and generated data and the
discriminator aims to maximize it, the multiplet model fitting acts
like the generator to minimize the difference between the model
predicted XAS and the real XAS, whereas the active-learning
sampling behaves like the discriminator to identify the next
sampling points with large uncertainties measured by the loss
function. Correspondingly, in our ABO algorithm, there are two
coupled BO algorithms. The first one, called fitting BO (fBO), is a
trust region Bayesian optimization (TuRBO) applied on our
multiplet Hamiltonian to search for better parameters minimizing
the difference between the theoretically predicted XAS and the
real XAS values. The second one, called sampling BO (sBO), is a
simple BO, which functions to select the sampling points that
maximize the differences between the predicted and real XAS
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values. The mathematical form of ABO is expressed as:

max
sBO

min
fBO

P
Yi;experiment�Yi;Quantyj j

N

� ��
; (7)

where Yi;Quanty denotes the theoretically predicted XAS of the ith
measurement obtained using the Quanty code starting from the
multiplet Hamiltonian, and Yi;experiment indicates the real XAS of the
ith measurement obtained either from Quanty simulations (with
hidden parameters) or real experimental measurements, and N is
the size of current samples set.
For fBO, we cannot ignore the possibility that we still may end

up with a local optimum due to the high dimensionality of the
fitting problem. In order to ensure that the fitting is accurate
enough, we set a criterion that the loss between the predictions
and the truth should be smaller than a threshold, which is defined
as the average deviation between all the experiment values and
its corresponding predictions. Afterwards, the resulting para-
meters and XAS will be fed into sBO, which will evaluate the
current points and their corresponding differences, and then
calculate the location of next point, which is thought to have
maximum difference. The ABO workflow is shown in Fig. 6.

Bayesian optimization
Inside the ABO algorithm, we used an ExactGP and the scaled
Matern52 kernel implemented in Gpytorch40 to interpolate the
intensity values of sampling points of XAS by considering
similarity of points and estimating the value of functions
correspondingly24. Both fBO and sBO were constructed by using
BoTorch41. We used GP to describe the distribution of XAS
measurements. The outcomes of sampling points were first
normalized to zero mean and unit variance. Assuming the
observed inputs are Xn ¼ x1; ¼ ; xnð ÞT2 Rn and the correspond-
ing outcomes are Yn ¼ y1; ¼ ; ynð ÞT . The relation between the

inputs and the outcomes follows the rule as yi ¼ f xið Þ þ σi , where
σi is a Gaussian, which describes the noise distribution. The
Gaussian of the previous observation and the new point can be
expressed as:

Yn � GP 0; K Xn; Xnð Þ þ σ2
nI

� �
; (8)

where the K Xn; Xnð Þ þ σ2
nI is the covariance matrix between all

observations with σn the estimated noise distribution during the
measurement, I is an identity matrix. The kernel function used is
Matern52 with a characteristic length-scale l. The twice differ-
entiability of Matern52 makes it preferred to mimic the noise
behavior in ML. However, the smoothness of the simulated
function varies with respect to different dimension and location of
the parameters. Thus, with a uniform l in the whole parameter
space, the changes of local smoothness cannot be well described.
In Gpytorch, the magnitude of the kernel is scaled by a scale factor
θscale . As for the position of the parameter space, the l will be
adjusted according to samples in batch and the range of Trust
Region (TR) in BoTorch. This part will be explained later in the
Trust Region Bayesian optimization section. Since GP is closed in
the conditional action and marginalization cases, length-scale l
can be optimized by maximizing the log marginal likelihood:

argmax
l

log L Xn; Yn; lð Þð Þð Þ; (9)

where:

log L Xn; Yn; lð Þð Þ ¼ � 1
2 log K lð Þ þ σ2nI

�� ��� n
2 log 2πð Þ � 1

2 Y
T
n K lð Þ þ σ2nI
� ��1

Yn

(10)

This regression is done by Adam optimization algorithm
implemented in BoTorch.
For the next energy point x�, its posterior distribution is also a

Gaussian:

y�jYn � GP μ x�ð Þ; K x�; x�ð Þ� �
; (11)

with

μ x�ð Þ ¼ K Xn; x�ð ÞT K Xn; Xnð Þ þ σ2
nI

� ��1
Yn; (12)

K x�; x�ð Þ ¼ K x�; x�ð Þ � K Xn; x�ð ÞT K Xn; Xnð Þ þ σ2
nI

� ��1
K Xn; x�ð Þ;

(13)

where, y� is the measured value of point x� , μðx�Þ is the posterior
mean and K x�; x�ð Þ the posterior variance of point x� , K Xn; x�ð Þ ¼
ðK x1; x�ð Þ; ¼ ; K xn; x�ð ÞÞ is the vector of covariance between x�
and all observations, which only varies with the position of x� and
the noise estimation.
After obtaining the posteriors, we can use them to find the next

sampling point with the help of acquisition function, which
balances between exploration and exploitation. We used the
Upper Confidence Bound (UCB) and Parallel Upper Confidence
Bound (qUCB)42 implemented in BoTorch as the acquisition
function for sBO and fBO (with Thompson sampling), respectively.
The hyperparameters used for UCB and qUCB were adjusted
accordingly in the different tests. For the CFM model, the global
hyperparameters of sBO were set to 16; for the CTM model the
hyperparameters were 49 for the initial 10 iterations and 4 for the
remaining steps. Whereas for the tests using the experimental
data, the hyperparameters were set to 100 for the initial 18
iterations and 1 for the remaining steps. For all simulations, the
reason for using high values at the beginning is that our ABO
starts with a small initial sample size, such high exploration values
can give us a rough overall data distribution and prevent the ABO
from ending at a local minimum.

Trust region Bayesian optimization
Although the traditional Bayesian optimization shows its power in
low-dimensional gradient-free fitting, it is still limited by the

Table 2. The fitted parameters of the CTM model and arctangent
weighted function.

Ref. 9 Step 5 Step 12 Step 20

Udd 7.3 7.36 7.67 7.31

Upd 8.5 8.00 8.01 8.70

Δ 4.7 3.63 3.84 4.33

F2dd 11.14 11.20 11.84 11.54

F4dd 6.87 6.84 6.57 6.78

F2pd 6.67 6.64 6.19 6.47

G1
pd 4.92 5.94 5.82 6.03

G3
pd 2.8 3.58 3.07 1.84

10Dq 0.56 1.18 1.20 1.36

10DqL 1.44 2.09 1.92 1.42

Veg 2.06 1.21 1.58 1.80

Vt2g 1.21 0.83 1.12 0.88

ξ3d 0.081 0.17 0.12 0.15

ξ2p 11.51 11.43 11.54 11.49

Bex 0.12 0.14 0.13 0.16

A1 33.57 31.32 30.41

A2 16.61 19.53 13.57

u1 11.74 15.00 14.52

u2 6.69 4.75 3.81

c1 0.69 0.34 0.18

c2 0.77 0.46 0.06

Loss 7.40 8.07 8.63

Points 17 24 32
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exponential growth in computational complexity with high-
dimensional parameters and large sample size43–45. For the
high-dimensional black-box problem like the CFM and CTM
models, it is difficult to describe this complex distribution precisely
with a GP using a stationary kernel. In addition, the Bayesian
optimization tends to stop at a local optimum due to the non-
convexity of the problem46. To address these challenges, we
applied the trust region (TR) method in the optimization. In the TR
method, the algorithm selects the candidates according to each
different TR, introduces a separate GP surrogate model for each
TR, and optimizes its hyperparameters accordingly. Thus, within
TR, the surrogate model is sufficiently accurate to describe the
problem locally and is able to provide an optimal solution47.
During the optimization, TR is chosen to be a hyper-rectangle area
with the current best solution x* located at the center of it. The
base side length of each dimension of this hyper-rectangle is set
to be L, and the actual side length of each dimension of
parameters can be obtained by Li ¼ λiL=ðQd

j¼1 λjÞ
1
d , where λi is the

length-scale of parameters in GP. In each step we selected a batch
of candidates within the TR with the help of GP and acquisition
function. If the algorithm finds a better optimal solution than the
current one in two successive iterations, the current TR is treated
to be small enough so that the existing GP surrogate model is
already capable of predicting with good accuracy. The L of TR is
then doubled to allow the surrogate model to search in a larger
range. If the algorithm cannot find a better solution in two
iterations, the current TR is considered to be too large and will be
halved. The algorithm will stop when the side length L meets
maximum threshold Lmax or minimum threshold Lmin. It is noted
that a single TR cannot guarantee a global optimum but mostly
the local minimum. To solve this problem, a parallelization of TRs
with varying local GPs was introduced by TuRBO. The best result is
then selected by:

x tð Þ
i 2 argmin

l
argmin
x2TRl

f ið Þ
l ; (14)

where x tð Þ
i the optimal point of our selection; l 2 f1; 2; ¼ ;mg

denotes all the TRs utilized in each iteration, f ið Þ
l �

GP tð Þ
l μl xð Þ; kl x; x0ð Þð Þ is the GP surrogate model applied in TRl48.
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