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Physics guided deep learning for generative design of crystal
materials with symmetry constraints
Yong Zhao 1, Edirisuriya M. Dilanga Siriwardane 1,2, Zhenyao Wu1, Nihang Fu1, Mohammed Al-Fahdi 3, Ming Hu 3✉ and
Jianjun Hu 1✉

Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional
approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’
heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal
material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700%
compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model.
Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are
successfully optimized and deposited into the Carolina Materials Database www.carolinamatdb.org, of which 39.6% have negative
formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential
synthesizability.
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INTRODUCTION
Understanding the relationship of structures and functions is one
of the most important questions in many disciplines such as
chemistry, materials science, biology, which is critical for rational
design of structures for achieving specific e.g. molecule, protein,
or materials functions. However, the sophistication of the physical,
chemical, and geometric atomic interactions makes it challenging
to exhaustively enumerate the “design rules” for heuristic design
approaches. On the other hand, the lack of sufficient data, the
diversity of the hypothetical structure types, along with the strong
physicochemical constraints makes it hard even for data driven
approaches to structure design.
Here, we propose a physics guided deep learning model for

generative design of crystal materials. Solid crystals such as ionic
conductors, perovskites, photovoltaics, and piezoelectrics, play an
important role in modern industries. Over centuries, humanity has
dedicated significant amount of efforts to discovering high-
performance functional materials. However, to date, only around
250,000 inorganic materials have been experimentally determined
as collected by the ICSD database1, which only covers a tiny
portion of the almost infinite material design space considering
the combinatorial space with the number of elements cross the
periodic table and the total 230 possible symmetries of crystal
structures. Traditional trial-and-error tinkering methods for mate-
rials discovery are mainly reliant on domain experts’ knowledge2,
which is time-consuming and labor-intensive. To meet the high
demand for new functional materials, we need more efficient
strategies to explore the vast chemical space to accelerate the
materials discovery process.
Currently, a popular approach to generating materials is based

on element substitution of existing materials combined with high-
throughout virtual screening (HTVS)3. The whole process contains
three steps: (1) combinatorially substituting elements in known
crystal structures, (2) optimizing the candidate structures using

density functional theory (DFT) calculations, and (3) experimental
verification. Typical large computational materials databases
created by HTVS are Materials Project (MP)4 and Open Quantum
Materials Database (OQMD)5. Despite its promising usage in
material design, a fundamental drawback of HTVS is that it cannot
generate materials beyond the structural prototypes of existing
materials. It is also extremely computationally intensive and its
success rate heavily depends on experts’ intuitions.
One way to overcome the drawbacks of HTVS for discovering

materials is to perform crystal structure prediction for candidate
material compositions using global optimization techniques,
which are used to identify their stable structural phases. Simulated
annealing has been used to predict the structures of alloys6 and
boron nitride7. The minima hopping8 is another algorithm for
finding unknown crystalline structures9. Two widely used crystal
structure prediction (CSP) algorithms are USPEX10 and CALYPSO11,
which use evolutionary algorithms and particle swarm optimiza-
tion for finding crystal structures. Despite their success in a variety
of cases, these CSP based approaches for materials discovery
suffer from their limited applicability to only relative simple
structures usually with small number of atoms in unit cell.
Another promising approach to design solid materials beyond

known crystal structure prototypes is generative deep learning
models12–14, which can learn data distribution (knowledge of
forming stable crystal structures) from known materials and then
sample from it to generate materials. Variational Auto-encoder
(VAE)15 and Generative Adversarial Network (GAN)16 are two
popular generative models used to generate materials. A VAE15

model consists of two deep neural networks, an encoder and a
decoder. The encoder is trained to encode materials into latent
vectors and the decoder reconstructs the materials from the latent
vectors. After training, different strategies can be used to sample
the latent space and then use the decoder to generate materials.
iMatGen2 is believed to be the first work that uses VAE to realize
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the inverse design of solid materials. It encodes unit cells into 3D
grid based representations, and spherical linear interpolation and
Gaussian random sampling are used to sample from the latent
space to generate materials. Hoffmann et al.17 extend iMatGen by
combining a UNet module to segment reconstructed 3D voxel
images into atoms. Based on iMatGen and Hoffmann et al.,
ICSG3D18 integrates formation energy per atom into 3D voxelized
solid crystals, which enables the VAE to encode materials and
energy simultaneously. This makes it possible to generate
materials subject to user-defined formation condition. Another
approach to represent 3D crystals is to encode 2D crystallographic
representations as the combination of the real space and the
reciprocal-space Fourier-transformed features19. In CDVAE20, a
diffusion network is trained to generate material structures21, in
which a diffusion process within their diffusion variational
autoencoder moves atoms into positions in the lower energy
space to generate stable crystals. All these models have difficulty
in generation of high quality structures with high symmetry (e.g.
space group number >=62) due to their neglecting the structure
symmetry in their generation models, a major special characteristic
of periodic crystal structures. A GAN model16 consist of two deep
neural networks, a generator and a discriminator (critic). The
generator creates fake materials with inputs of random vectors
with or without conditioning on elements and space groups while
the discriminator tries to tell real materials from generated ones.
With learnt knowledge of forming crystals, the generator can
directly create materials. The first method to generate materials
using GAN is CrystalGAN22, which leverages a CycleGAN23 to
generate ternary materials from existing binaries. However, it
remains uncertain whether CrystalGAN can be extended to
produce more complex crystals. GANCSP24 and CubicGAN12 are
two GAN based generation models that directly encode crystal
structures as matrices containing information of fractional
coordinates, element properties, and lattice parameters, which
are fed as inputs to build models that generate crystals
conditioned on composition or both composition and space
group. The major difference between them is that GANCSP can
only generate structures of a specific chemical system (e.g. Mg-
Mn-O system) while CubicGAN can generate structures of diverse
systems of three cubic space groups. In CCDCGAN25, Long et al.
use 3D voxelized crystals as inputs for their autoencoder model,
which then converts them to 2D crystal graphs, which is used as
the inputs to the GAN model. A formation energy based constraint
module is trained with the discriminator, which automatically
guides the search for local minima in the latent space. More
recently, modern generative models such as normalizing flow26,27

and diffusion models have also been20 (CDVAE) or planned to be28

applied to crystal structure generation. Less related works include
MatGAN29 and CondGAN(xbp)30 developed for generating only
chemical compositions.
Despite the success of VAEs and GANs in material genera-

tion2,12,20, all current generative models have several major
drawbacks. For example, the iMatGen algorithm2 can only generate
structures of a specific chemical system such as vanadium oxides
and only several metastable VxOy materials were discovered out of
20,000 generated hypothetical materials. Similarly, GANCSP24 and
CrystalGAN22 only generate for a given chemical system (e.g. Mg-
Mn-O system and hydride systems). VAE-UNet pipeline developed
in18 expands the diversity of generated materials and can
reconstruct the atom coordinates more accurately by incorporating
UNet segmentation and conditioning on properties. However, VAE-
UNet still confines itself to cubic crystal system generation and the
number of atoms in a unit cell is restricted to no more than 40. All
above discussed works do not realize high-throughout generation
of crystal materials. CubicGAN12 is an early public example of a
high-throughput generative deep learning model for (cubic) crystal
structures, which has discovered four prototypes with 506 materials
confirmed to be stable by DFT calculations. Although CubicGAN

has generated millions of crystal structures with hundreds of stable
ones confirmed, the generated structures are limited to three space
groups in the cubic crystal system, of which the atom coordinates
are assumed to be multiples of 1/4: it is not capable of generating
generic atom coordinates. While these works open the door to
generative design of materials, several unique challenges still
remain that prevents effective generative design: (1) how to learn
the physical atomic constraints of stable materials to enable
efficient sampling; (2) how to achieve precise generation of atom
fractional coordinates and lattice parameters; (3) how to handle the
extreme bias of the distribution of materials in the 230 space
groups; (4) how to exploit the high symmetry of crystal structures
in the generation process.
In this work. we introduce a physics guided crystal generative

model (PGCGM) to exploit the physical rules for addressing
aforementioned challenges. Our contributions are summarized as
follows:

1. We present a physics guided deep generative model for
crystal generation that combines the space group affine
transformation and an efficient self-augmentation method.

2. We propose two physics-oriented losses based on atomic
pairwise distance constraints and structural symmetry to
fuse the physical laws into deep learning model training.

3. We evaluate our model against two baselines to show its
superiority and perform DFT calculations to validate our
generated structures with high success rate (93.5% can be
optimized successfully).

RESULTS
Dataset
We collect our material data from MP4, ICSD1 and OQMD (v1.4)5. In
total, 42,072 ternary materials with 20 space groups (5 crystal
systems) are curated when we start this project (The choice of
20 space groups is due to the limited structure samples for other
remaining space groups. Our model is applicable to any space
group given sufficient training samples). We use a 80–20 random
training/validation split for all of our experiments. We term the
dataset with 42,072 materials as MIO. When conducting this
project, the latest version of OQMD is just yet released. There are
9441 ternary materials that are filtered by the same criteria and are
brand-new materials in the latest OQMD (v1.5). We use these 9441
ternary materials as our test dataset TST to compare our method
with two baselines. Details regarding dataset collection are in
Dataset Curation section of supplementary materials.

Generation performance
We compare PGCGM with two latest algorithms that can generate
crystals with multiple chemical systems instead of only a special
group of materials (e.g. VxOy and Mg-Mn-O systems)2,24. FTCP19

combines real space properties (e.g., atom coordinates) and
momentum-space properties (e.g. diffraction pattern) to represent
crystal structures. Then a CNN based VAE is trained for materials
generation. CubicGAN12 trains a WGAN-GP31 to generate cubic
structures in three space groups and here we expand the original
method to 20 space groups.
The performance is shown in Table 1. For each method, we

sample 500,000 structures and for PGCGM and CubicGAN, we
perform atom clustering and merging. However, our atom
clustering and merging cannot proceed with materials generated
by FTCP and then we did not perform atom clustering and
merging on those materials. The percentage of Crystallographic
Information Files (CIFs) that are readable by pymatgen32 are
shown in the CIFs column. Here readable means it can be
proceeded by pymatgen.core.structure.Structure.
from_file. We can find that PGCGM+dist has the largest
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percentage of materials left and PGCGM+dist+coor comes next.
It tells us that distance and coordinates losses play a big part in
generating readable materials. For later percentage related
metrics, we use the number of CIFs left of each method as
denominator. Our model significantly outperforms FTCP by
36.4% in terms of distance validity and is slightly better than
CubicGAN. In terms of distance validty, our model outperforms
FTCP and CubicGAN by 6.5% and 27.0%, respectively. Since
validity are relatively weak metrics, property distribution is
further used to provide a stronger metric to evaluate whether
the generated materials are realistic. Our model significantly
outperforms both two baselines. In terms of minimum atom
distance, PGCGM decreases wasserstein distance (WD) by 1.461
compared to FTCP and by 0.402 compared to CubicGAN. In terms
of maximum atom distance, PGCGM+dist+coor decreases WD
by 0.264 compared to FTCP and by 2.986 compared to
CubicGAN. Although CubicGAN has a close minimum atom
distance distribution to PGCGM, the much bigger gap of
maximum atom distance distribution between CubicGAN and
PGCGM+dist+coor indicates that CubicGAN tends to generate
larger crystal structures. In terms of density, PGCGM+dist
decreases WD by 2.130 compared to FTCP and by 3.106
compared to CubicGAN. PGCGM also achieves the best diversity
score even though it generates more readable CIFs than FTCP,
which further shows that FTCP is not able to generate not only
physically realistic materials but also materials with restricted
diversity of formulas. We choose PGCGM+dist+coor as our
finalized model to generate materials for late analysis since
PGCGM+dist+coor has better properties distribution perfor-
mance than PGCGM and PGCGM+dist on average.

Analysis of materials optimized by Bayesian optimization with
symmetry relaxation
Bayesian optimization with Symmetry Relaxation (BOWSR)
algorithm33 is an approach that uses Bayesian optimization to
iteratively search lower energy surface to optimize the crystal
structures based on the properties predicted by deep learning
methods, such as CGCNN34 and MEGNet35. Instead of directly
using expensive DFT for relaxing generated materials, we first
use BOWSR to optimize structures generated by our model and
two baseline models and then use DFT calculation to further
relax them. We randomly select 2,000 generated materials with
less than or equal to 32 atoms for FTCP, CubicGAN and PGCGM.
We select 100 materials for 20 space groups equally generated
by PGCGM. Note that we also use the same 2,000 materials
of PGCGM for further DFT analysis. Because some space
groups are underrepresented (with less than 100 materials) in

CubicGAN-generated materials, we select all materials under
these space groups and then we select materials for the rest of
space groups proportionally to obtain 2000 materials. For FTCP,
materials that can be successfully analyzed to have space
groups by pymatgen get_space_group_info with sym-
prec=0.132 surprisingly all belong to space group P1, which
means FTCP loses the significant symmetric constraints when
generating materials. Our methods PGCGM and CubicGAN are
much better than FTCP in terms of space groups retention.
Moreover, it takes more than 10 times time to optimize
materials generated by FTCP than by PGCGM and CubicGAN
using BOWSR. We use StructureMatcher from pymatgen32

to match the generated materials with the corresponding
optimized materials by BOWSR.
Table 2 shows the match rate and RMS displacement. The

match rate is the percentage of materials satisfying the criteria
ltol=0.2, stol=0.2, angle_tol=0.5 and then we
calculate RMS displacement for the matched materials. Firstly
we find that our method has a slightly higher number of
successfully optimized materials by BOWSR. However, our
method significantly outperforms FTCP and CubicGAN by
4200% and 34.23% in terms of match rate, respectively. It seems
that FTCP has the best RMS displace but the extremely low match
rate might tell us that BOWSR is hard to optimize materials with
low symmetry, such as space group P1. CubicGAN comes next in
terms of RMS displacement.

Analysis of rediscovering materials in training and test
datasets
It would be helpful to show how fast our model can rediscover
materials in training datase MIO and test dataset TST. To do this,
we sample different number of materials and then calculate the
percentage of materials rediscovered in generated materials.
“Reduced Formula - Space Group ID - # of Atoms” is defined as
prototype to identify unique materials in the existing and
generated materials. Figure 1a shows the change of unique
crystals and rediscovery rate over size of sampling materials. We
start to sample materials from half million and the number ends at
60 million eventually. It is found that the percentage of unique
materials (cyan line) are decreasing and gradually tend to grow
flat as number of sampling materials increases. The rediscover rate
of MIO (orange bars) increases consistently over the sampling
process and it soars quickly to 42.6% when 35 million materials are
sampled. Starting from 42.6%, the percentage of rediscovered
materials in MIO grows smoothly and it reaches 52.0% when the
sampling size is 60 million. Similar growing patterns can be
observed for the rediscover rate for the test dataset, as shown by
blue line in Fig. 1a. The rediscover rate reaches 43% at the end of
60 million sampling size. This percentage is lower than that of
training dataset because of the different proportions over the 20
space groups in training and test datasets as shown in
Supplementary Table 1 and Supplementary Table 2.
After rediscovering the materials in MIO and TST from

the generated materials when sampling size is 60 million, we
utilize StructureMatcher from pymatgen32 to test whether
the generated materials match the rediscovered materials and to

Table 1. Material generation performance.

2*Method Validity (%) Prop. Dist. (%)

CIFs Distance Charge minD maxD Density Diversity

FTCP 0.88 63.28 49.89 1.685 0.754 2.895 89.9

CubicGAN 4.97 99.0 59.47 0.626 3.476 3.871 98.0

PGCGM 1.98 99.54 57.36 0.224 3.664 2.675 98.4

PGCGM
+dist

7.14 99.47 61.82 0.405 0.520 0.765 96.3

PGCGM
+dist
+coor

6.07 99.43 63.34 0.357 0.490 0.791 97.0

PGCGM+dist+coor is the model with atom distance based loss and
coordinates based loss.
PGCGM+dist is the model with atom distance based loss.
Bold entries highlight the best performance achieved.

Table 2. Bayesian optimization performance.

Method # of optimized materials Match rate (%) RMS

FTCP 1982 0.8 0.006

CubicGAN 1992 26.0 0.035

PGCGM(ours) 1994 34.9 0.052

Bold entries highlight the best performance achieved.
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calculate RMS displacement between two matched structures
considering all invariances of materials. Because one prototype
might correspond to multiple structures in existing and generated
materials, we only show the least RMS displacement by
exhausting each pair of existing and generated materials for this
prototype. The match rate is the percentage of materials satisfying
the criteria ltol=0.2, stol=0.3, angle_tol=5.0. The
match rate and RMS are 25.4% and 0.05 for training dataset and
are 17.7% and 0.085 for test dataset, respectively. Figure 1b shows
parity plot that compares generated lattice lengths against DFT
calculated lattice lengths. Surprisingly, the co-relation between
the discovered materials in test dataset and generated materials is
better than in training dataset in terms of R2. The R2 for lattice a, b,
and c in test dataset are 0.606, 0.616, and 0.606, respectively as in
Fig. 1b, which increases R2 as in training dataset by a factor of six
except for lattice c. The rediscovered materials in training dataset
have larger lattice a and b and we find that these materials mostly
are with cubic space groups. It seems that our approach tends to
generate more realistic lattice for non-cubic space groups than
cubic space groups in rediscovered materials.

DFT validation
We use the same 2000 materials as in Bayesian optimization for
DFT verification. Out of 2000 generated crystals, 93.5% (1869) are
successfully optimized, which is significantly better than 33.8% of
CubicGAN as reported in12. Figure 2a demonstrates the distribu-
tion of formation energy of successfully optimized materials after
removing 6 materials with formation energy larger than 10 eV. It is
observed that most of the materials have formation energy
around 0 eV and 39.6% of them have negative formation energy.
Negative formation energy indicates potentially stable materials.
Figure 2b shows the distribution of 1579 materials that have
energy-above-hull after removing one material with super large
energy-above-hull (1160.8 eV). The energy-above-hulls are calcu-
lated using the Pymatgen’s Phase diagram analyzer32. Energy
above hull is a stronger indicator whether the materials are stable
or not. Overall, 3 materials with energy above hull of 0 eV/atom
and 106 (5.3%) ones with energy above hull less than 0.25 eV/
atom, which further indicates our model can generate reliably
stable materials. All the optimized materials are included in the
supplementary materials.

Fig. 1 Analysis of rediscovered materials. a The discovery rate of prototypes in MIO and TST. The number of unique prototypes is 26,463
(42,072) in MIO and the number of unique prototypes is 8103 (9441) in TST. b The parity plots for lattice lengths of generated materials (red
dots) and corresponding ground truth materials that match the generated materials in MIO and TST datasets. Top row is for the training
dataset and bottom row is for the test dataset (OQMD v1.5), respectively. The blue dots represent the results generated by a perfect generator
that rediscover all training and testing samples. R2 and RMSE are also used to evaluate the performance of generated lattice lengths compared
to existing ones.

Fig. 2 The distribution of formation energy for 1863 materials and energy above hull for 1579 materials. a 39.6% materials are with
negative formation energy. b Three materials are with energy above hull equal to zero and 106 ones with energy above hull less than
0.25 eV/atom among 1579 materials.
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Pair-wise atom distance based loss not only constrains the two
atoms in a reasonable range, but also helps generate lattice
lengths close to DFT-calculated ones. To demonstrate this, we
calculate relative error, R2, RMSE, and O (outliers percentage) for
lattice lengths for 1869 materials as shown in left panel of Fig. 3
and for only 293 cubic materials by PGCGM and 14,432 cubic
materials by CubicGAN as shown in right panel of Fig. 3. In terms
of relative error, we can find that the mean relative error of lattice
lengths is much more close to zero regardless of when comparing
1869 materials or just cubic materials by PGCGM with cubic
materials by CubicGAN, which indicates that PGCGM tends to
generated precise lattice lengths. In addition, the outliers of
lattice lengths in 1869 materials by PGCGM scatter across 100%
and cubic materials from 1869 ones only have two outliers
compared to CubicGAN whose outliers cluster near to 150% even
though CubicGAN overall has a lower outliers percentage. We
also evaluate the lattice lengths generation performance
between PGCGM and CubicGAN with R2 and RMSE. For 1869
materials, the generated lattice lengths by PGCGM better fit to
the DFT calculated lattice lengths than CubicGAN in terms of R2.
In terms of RMSE, PGCGM is generally slight better CubicGAN.
When only comparing cubic materials, PGCGM significantly
outperforms CubicGAN in terms of both R2 and RMSE. Although
it is not a direct comparison between PGCGM and CubicGAN, all
this findings indicate that our model can generate high quality
materials with reasonable lattice lengths.
In Table 3, 20 structures with lowest formation energy are

selected for 20 space groups as in the dataset. Before any post-
processing, both materials has a large number of atoms. It is easily
found that the atoms of the same elements are crowded together
in column of GEN. After clustering and merging the atoms of the
same elements, the number of atoms drop rapidly, such as space
group 164 (from 36 to 14) and space group 227 (from 432 to 32) as
shown in column of MER. Column OPT shows the crystal structures
after DFT optimization. Columns of Formula (GEN) and Fromula
(MER) show the formulas before and after clustering and merging,
respectively. We can find that the formulas may be changed after
clustering and merging even though we only keep materials that
do not change space group when conducting clustering and
merging. The reason behind this is because we employ base atom
sites in generated materials. Note that line 10 of Algorithm 1 tends
to fail because of the decimal mantissa of base atom sites which in
return can easily lead to the large number of atoms when

converting from base atom sites to full atom sites via Algorithm 1,
particularly space groups with large affine matrix, such as 227 and
225 as shown in Table 3.

Case study of three example stable materials
We discovered three compounds with Mg2GaIr, SrYO6 and
ZnTe2S6 chemical formulas, which are thermodynamically stable
with negative formation energies and zero energy above hull. The
structures we found have P6_3/mc [194] (hexagonal), Pm-3 [200]
(cubic) and [148] (trigonal) space group symmetries [space group
number] (crystal systems) for Mg2GaIr, SrYO6 and ZnTe2S6
compounds, respectively. Figure 4a shows the structures of those
three materials. The lattice parameters for Mg2GaIr material are
a= b= 4.38 Å, c= 8.54 Å, α= β= 900 and γ= 1200, while that for
SrYO6 material are a= b= c= 4.61 Å and α= β= γ= 900. More-
over, the lattice parameters for ZnTe2S6 material are a= b= c=
7.57 Å and α= β= γ= 49.380. As shown in Table 4, our spin-
polarized DFT calculations show that the both Mg2GaIr and
ZnTe2S6 compounds have the non-magnetic ground states,
whereas SrYO6 material has a ferromagnetic ground state with a
total magnetic moment of 1 μB. Figure 4b contains the electronic
band structures for each stable material. It is clear that both
Mg2GaIr and ZnTe2S6 compounds are metals. However, we can
see spin-splitting in SrYO6 ferromagnetic material. In this
compound only spin-down electrons cross the Fermi level, while
spin-up electrons have a band gap of 3.09 eV. Thus, this is a half-
metal where spin-down electrons show metallic character, while
spin-up electrons are insulating. Half metallicity is widely
investigated for spintronics and it is vital for developing memory
devices and computer processors36.
Table 5 contains the elastic constants and the mechanical

properties of the stable materials. The elastic stability criteria (Born
criteria) for Mg2GaIr with P6_3/mm space group symmetry are
C11 > ∣C12∣, 2 � C2

13<C33ðC11 þ C12Þ, and C44 > 0. The Born criteria
for SrYO6 with Pm-3 space group symmetry are C11− C12 > 0,
C11+ 2C12 > 0, C44 > 0, and that for ZnTe2S6 with R-3 space group
symmetry are C11 > ∣C12∣, C2

13<0:5 � C33ðC11 þ C12Þ and
C2
14 þ C2

15<0:5 � C44 � ðC11 � C12Þ, and C44 > 037. It is clear that all
those three materials comply with their elastic stability criteria
implying they are mechanically stable. Table 5 also has the bulk (B)
modulus, shear (G) modulus and Young’s (Y) modulus and
Poisson’s ratio (ν) for Mg2GaIr, SrYO6, and ZnTe2S6 compounds.

Fig. 3 The comparison of lattice parameters P* generation performance for 20 space groups and space groups in cubic system. Lattice
angles are constrained to fixed values by virtue of crystal systems of 20 space groups. Relative error is calculate by (lengthGEN− lengthDFT)/
lengthDFT, where lengthGEN is the generated lattice length and lengthDFT is the relaxed lattice length. The error boxplot in subfigure (a) and (b)
extends from the first quartile to the third quartile of the relative error, with the line in the median. Two whiskers extend from the box by 1.5x
the inter-quartile range. Outliers lie out of the whiskers. The bounding boxes correspond to each box plot above them and R2, RMSE, and O
are used to evaluate the lattice lengths generation performance. O means the percentage of outliers in the box plots. a The error distribution
of three lattice lengths for 1869 materials generated/relaxed in PGCGM. b The error distribution of one lattice length for cubic materials
generated/relaxed in PGCGM and CubicGAN, respectively. There are 293 cubic materials optimized in PGCGM and 14,432 cubic materials
optimized in CubicGAN successfully.
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We used Hill approximation as implemented in vaspkit code38,39. It
is clear that Mg2GaIr and SrYO6 materials have approximately
same B, G, and Y values, while those values for ZnTe2S6 compound
is considerably lower. In Table 5, ν of Mg2GaIr has the highest
value, while lowest ν can be obtained from ZnTe2S6. Furthermore,
we used Phonopy code40 to calculate the phonon dispersion
relations for the above materials. As shown in Fig. 4c, there are no
imaginary phonon modes (negative frequencies) indicating those
three materials are dynamically stable at 0 K.
In this work, we propose a physics guided deep crystal

generative model (PGCGM), in which two kinds of physics based
losses are invented in the generator to improve the quality of
generated materials. The atom distance based losses constrain the
atom distance in a certain range in the generated materials and
thus the generated lattice parameters fall into reasonable range
too. To fulfill the symmetry requirements, the model transforms
the implicit rules between base atoms sites and full atom sites into

explicit cost functions. Two baseline methods are compared and
PGCGM achieves the best performance across all evaluation
metrics. In particular, PGCGM significantly outperforms the two
baseline models in terms of property distribution metric which is a
much stronger indicator to show the reality of the generated
materials20. In addition, we use BOWSR to optimize 2000 randomly
selected materials in each method. Our approach has the best
match rate calculated between the Generative model-generated
materials and BOWSR-optimized materials, which further demon-
strate our method can generate realistic materials.
In order to see how our approach can rediscover materials in

existing databases, we sample different size of materials and
calculate rediscover rate for training and test datasets. We can
observe a clear trend of increased rediscover rate over sampling
size. There is no clear saturation point of rediscover rate at the
end of 60 million sampled materials as in CubicGAN12. The
reasons are: (1) the possible design space of 20 space groups

Table 3. 20 example optimized crystals with lowest energy for 20 space group.

GEN generated, # no. of atoms, MER merged, OPT optimized, FE formation energy, SG space group.
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(5 crystal systems) in this work are much bigger than 3 space
groups (only cubic crystal systems) in CubicGAN; (2) CubicGAN
uses special fractional coordinates while PGCGM generates
fractional coordinates in full space, which means PGCGM has a
significantly broader space to explore new materials. Further-
more, 1869 out of 2000 materials are successfully optimized by
DFT calculation. Among 1869 materials, 39.6% possess negative
formation energy and 5.3% with energy above hull less than
0.25 eV/atom, indicating that invented physics guided losses

help generate stable crystal structures effectively. This research
gives a deep insight into how physics losses help generate
realistic materials and offers an approach to expand the diversity
of generated materials.
Due to the difficulty to generate 500,000 structures by the

diffusion based generative model CDVAE, we conduct a small-
scale evaluation and comparison. We generated 1100 structures
using CDVAE, among which 78.2% (860) are pymatgen readable.
We then analyzed the space groups of these 860 structures and
find out of the top 10 space groups with the most structures
(a total of 790), 97.8% (773) structures have low symmetry with
space group number less or equal to 25 and 582 (73.7%) of them
have no symmetry. However, it is shown41 that high-symmetry
materials tend to form stable structures and have larger potential
to have good functional properties. It seems that like other VAE
based generator models, CDVAE also has difficulty in generating
high-symmetry structures as PGCGM does.

METHODS
Problem statement and notations
Our data-driven generative models of crystal structures are first
trained with known crystal structures in materials databases. Since
crystal materials are periodic structures, instead of representing

Fig. 4 The structures of Mg2GaIr, SrYO6 and ZnTe2S6 and their corresponding DFT calculated properties. The (a) structures, (b) electronic
band structures, and (c) phonon dispersion of the stable materials.

Table 4. The electronic and magnetic properties of the stable
materials.

Material Material Type Band Gap (eV) Magnetic GS μ(μB)

Mg2GaIr Metal 0 NM 0

SrYO6 Half-metal Up:3.09, Down:0.00 FM 1

ZnTe2S6 Metal 0 NM 0

The material type (metal or semiconductor), band gap, magnetic ground
state: GS (non magnetic: NM or ferromagnetic: FM) and the magnetic
moment: μ are reported for each stable material. For the half-metal, the
band gaps for both spin types (Up and Down) are mentioned.

Y. Zhao et al.
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the infinite structures, the structure of an inorganic material is
represented by a unit cell in material science, which is the smallest
unit that completely reflects the arrangement of atoms in the 3D
space. Given a generated unit cell, it can be used to build the
periodic structure of an inorganic material by repeating it multiple
or infinite times along three directions to form a super cell. A
material M can then be denoted as following:

M ¼ ðE;B;P;OÞ (1)

where

(a) E ¼ ðe0; e1; e2Þ 2 E denotes elements in materials, where E
is the element set in periodic table. In this work, we only
deal with ternary materials so that there are only three
unique elements in the unit cell;

(b) B ¼ ðb0;b1;b2Þ 2 R3´ 3 denotes the base atom sites, which
are the symmetry equivalent positions. termed . bi is
fractional coordinates of an atom denoted by u; v;w½ �T .
We choose materials that one element only has one base
atom site so that three atom sites can be used to represent
the atom positions. Moreover, any one atom site of each
element can be considered as the base atom site for that
element;

(c) P ¼ ða; b; c;α; β; γÞ 2 R are six lattice parameters that
define three lengths and three angles of the unit cell;

(d) O ¼ ðt0; t1; ¼ ; tnÞ 2 Rn ´ 4 ´ 4 denotes affine matrix that
represents the symmetry operations defined by space
groups sgp. tj is one affine operator containing the rotation
and translation matrices. n is determined by space groups.
Generally the higher symmetry of a space group, the larger
n. n can be as small as 1 or as large as 192.

Now we can model the generation of materials as follows:

ðB;PÞ ¼ f θðZ; E; sgpÞ; (2)

where fθ is the generative model that learns the knowledge of
forming crystal structures given inputs of random noise Z,
element set E, and space group sgp.

Overall architecture of physics guided crystal generative
model
Our Physics Guided Crystal Generative Model (PGCGM) is shown in
Fig. 5. The PGCGM mainly consists of four major components: (1)
discriminator, (2) generator, (3) self-augmentation, and (4) atom
distance matrix/loss calculation module. In the generator and
discriminator, affine matrix is integrated into the training to
generate fake materials and tell fake materials from real ones,
respectively. Affine matrix is related to symmetry information for
space groups. The implicit combination of affine matrix and base
atom sites can help keep the symmetry when generating
materials. Self-augmentation increases the training materials for
underrepresented space groups by randomly forming base atom
sites. With three sets of base atom sites, we can not only have a
fixed size of input to the discriminator, but also deduce more
physical information for crystals to help the discriminator better
distinguish real materials from fake ones. Furthermore, we design
two kinds of physics guided losses. Any set of base atom sites can
be converted to full set of unique atom sites. When generating

three sets of base atom sites, it implicitly can be stated that the
three sets of base atom sites should be different but the full atom
sites converted from them separately ought to be same. Hence a
specific loss is invented to explicitly incorporate this rule into
training of the generator. In order to restrict the two atoms in the
3D space to be not too close or not too distant, inter- and intra-
atom distance losses are proposed. With distance loss, the
generator further can generate reasonable lattice parameters in
order to push any pair of atoms to fall into a certain range.

Discriminator. There are two input branches for crystal repre-
sentation and affine matrix in Discriminator as in sub-figure (b) of
Fig. 5. Each branch is forwarded to a 2D convolutional block and
the learnt features are concatenated together. The concatenated
vector is sent to a couple of fully connected layers to get the
discriminative score. We have three different sets of base atom
sites in our inputs and with the affine matrix branch, it helps to
implicitly learn the knowledge of how affine matrix transforms
base atom sites into full atom sites. The detailed architectures of
two convolutional blocks can be found in Table S3 in the
supplementary materials.

Generator. The architecture of generator is shown in sub-figure
(a) of Fig. 5, which contains three branches. Conditioning on
element constituents and space group, the generator outputs
three sets of base atom sites B0

fake;B
1
fake;B

2
fake

� �
and unit cell length

P*. Then we re-formalize Eq. (2) as follow:

B0
fake;B

1
fake;B

2
fake;P

�
fake

� � ¼ f �θðZ; E; sgpÞ: (3)

Taking random noise Z, space group sgp, and element properties
matrix E as inputs, the generator can generate a material with the
same lattice parameters and space group but different representa-
tions of the base atom sites when merely sampling one material.
Our goal here is that the generated three sets of base atom sites
belong to the same material. Random noise Z is mapped to a dense
vector a fully connected layer. The space group branch is the same
as in discriminator. Element matrix E is forwarded to a 1D
convolutional layer (Conv1D). The outputs of random noise and
space group branches are combined together as the inputs to a
multi-layer perceptron (MLP) block to generate unit cell length P�

fake.
The outputs of random noise and element branches are combined
together as the inputs to 2D deconvolutional layers (ConvTran2D)
to generate three sets of base atom sites ðB0

fake;B
1
fake;B

2
fakeÞ. The

detailed descriptions for MLP, Conv1D, and ConvTran2D can be
found in Supplementary Table 4.

Physics guided loss function. The original GAN16 is notoriously hard
to train because of saturation and mode collapse in discriminator.
We take advantage of WGAN-GP31 with gradient penalty to enhance
the training stability in our network. WGAN-GP changes the Sigmoid
function of the discriminator to a 1-Lipschitz function while
introducing a gradients penalty term to enforce the norm of
gradients to be close to 1. The loss function is described in Eq. (4):

M̂� ¼ ϵM�
real þ ð1� ϵÞM�

fake; ϵ � Uð0; 1Þ;
Ldis ¼ D M�

fake

� �� D M�
real

� �þ λd ∇M̂�DðM̂�Þ
��� ���

2
� 1

� �2
;

Ladv ¼ �D M�
fake

� �
;

(4)

Table 5. The elastic constants (Cij), bulk (B) modulus, shear (G) modulus and Young’s (Y) modulus in GPa and Poisson’s ratio (ν) for the stable materials.

Material C11 C12 C33 C13 C44 C66 B G Y ν

Mg2GaIr 177.32 98.68 132.77 52.04 36.276 36.276 96.44 40.67 106.96 0.315

SrYO6 181.61 60.18 181.61 60.18 37.951 37.951 100.66 45.85 119.42 0.302

ZnTe2S6 83.13 31.49 4.56 0.85 0.382 25.821 15.34 7.69 19.77 0.285
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where M̂�
is linearly interpolated between real materials M�

real
and fake materials M�

fake and ϵ is uniformly sampled from 0 and 1.
Ldis and Ladv represent the loss function of the discriminator and
adversarial loss for generator respectively. The third term in Ldis is
the gradient penalty and λd is set to 10. D(.) means the score result
from the discriminator.
Atom Distance Losses. To ensure that the atoms in generated

crystal structures are not crowded or not too far apart from each
other, we introduce the inter- and intra-atom distance based
losses as following:

Linter ¼ 1
9N

PN
i¼1

max Hinter ;ϕ
upper
inter Sinter

� �� ϕupper
inter Sinter

� �2n

þ min Hinter ;ϕ
lower
inter Sinter

� �� ϕlower
inter Sinter

� �2o
;

Lintra ¼ 1
9N

PN
i¼1

max Hintra;ϕ
upper
intra Sintra

� �� ϕupper
intra Sintra

� �2n

þ min Hintra;ϕ
lower
intra Sintra

� �� ϕlower
intra Sintra

� �2o
;

(5)

where Linter constrains the distance in Hinter which describes inter-
atom distance matrices. maxðHinter ;ϕ

upper
inter SinterÞ � ϕupper

inter Sinter
� �2

enforces the atom distance to be smaller than ϕupper
inter Sinter and

minðHinter ;ϕ
lower
inter SinterÞ � ϕlower

inter Sinter
� �2

enforces the atom distance
to be bigger than ϕlower

inter Sinter . Sinter are atom radius sum
corresponding to each pair of atoms in Hinter and ϕupper

inter and
ϕlower
inter are control weights for upper and lower bound of inter-

atom distance, respectively. In this way, the distance of two atoms
is constrained to be in the grey area indicated by two circles in
sub-figure (d) of Fig. 5. Similarly, Lintra constrains the distance in a
range in Hintra which describes intra-atom distance matrices. Sintra
are atom radius sum corresponding to each pair of atoms in Hintra

and ϕupper
intra and ϕlower

intra are control weights for upper and lower

bound of inter-atom distance, respectively. N is batch size and 9 is
the number of distance value in Hinter and Hintra.
Symmetry-compliant Base and Average Full Coordinates Losses.

The generator generates three sets of base atom sites
ðB0

fake;B
1
fake;B

2
fakeÞ which are used to generate the full site

coordinates using the symmetric operation defined by the
space group. The averaged transformation to ðF0fake; F1fake; F2fakeÞ
from base atom sites should be exactly same. With these implicit
rules, we design two losses to explicitly enforce them in the
generator as expressed below:

Lfull ¼ 1
9N

PN
i¼1

max 0; cos
F0fake
F0fakek k2

;
F1fake
F1fakek k2

	 
	 
�
Lbase ¼ 1

9N

PN
i¼1

1� cos
B0
fake

B0
fakek k2

;
B1
fake

B1
fakek k2

	 
	 
�

þmax 0; cos
F1fake
F1Ffakek k2

;
F2fake
F2fakek k2

	 
	 

þ 1� cos B1

fake

B1
fakek k2

;
B2
fake

B2
fakek k2

	 
	 


þmax 0; cos
F0fake
F0fakek k2

;
F2fake
F2fakek k2

	 
	 
�
; þ 1� cos

B0
fake

B0
fakek k2

;
B2
fake

B2
fakek k2

	 
	 
�
;

(6)

where cos is cosine similarity function. We normalize each
coordinate value across the mini-batch of size N. 9 is the number
of coordinates.
Full Generator Loss. By combining above losses, we can achieve

our full loss for the generator:

Lgen ¼ Ladv þ λ1Linter þ λ2Lintra þ λ3Lfull þ λ4Lbase (7)

where λ1, λ2, λ3, and λ4 are balancing parameters.

Crystal symmetry based self-augmentation. Data augmentation is
commonly used for images in which operations such as rotation of
an image does not change its label. Similarly, self-augmentation as
we define here is used to do data augmentation based on the
symmetry-oriented Wyckoff position representation of CIF files. In
the representation of symmetric crystals, the coordinates of the
non-equivalent positions (Wyckoff positions) are just one of a set

Fig. 5 The overview of physics guided crystal generative model (PGCGM). The PGCGM comprises four components. a The generator takes
affine matrix O, random noise Z, and element properties E as inputs. The affine matrix and random noise are projected to two vectors by 2D
convolutional networks and fully connected layers, respectively and then the two vectors are merged and projected to generate lattice
parameters P* by fully connected layers. The element properties are projected to a vector by 1D convolutional networks and then it is merged
with the vector projected from random noise to generate three sets of base atom sites ðB0

fake;B
1
fake;B

2
fakeÞ. b The discriminator has two input

branches. It shares with the same affine matrix branch as in the generator. The assembled crystal representation matrix from three sets of base
atom sites, lattice parameters, and properties calculated from them is used as the input to 2D convolutional networks. The assembled matrix is
zero-padded to form a matrix with shape of 3 × 8 × 8. c The self-augmentation performed on the base atom sites. We choose three sets of base
atom sites from three elements randomly and with space group, we can calculate more crystal information to assemble the input matrix for
the discriminator. d Inter- and intra-atom distance matrices (Hintra and Hinter) are calculated from three sets of base atom sites for both real and
fake materials. Then we design distance based losses to constrain the distance between two atoms in a certain range as shown in the grey
area form by two circles.
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of possible positions as defined by the symmetric operations of
the space group. So, for each structure file, we can use the set of
symmetric operations of the space group to transform the
Wyckoff position coordinates without changing the structure,
which can then generate more equivalent structure samples.
The generation of atom coordinates that meet the symmetry
constraints is one of the most challenging tasks in crystal
generation. In order to make the fixed size of representation for
crystals (details in Table 7), we use base atom sites. As shown in
sub-figure (c) of Fig. 5, we can use any atom site of each element
to form a set of base atom sites. Instead of randomly selecting
them, we choose three atoms for three elements individually
using steps as shown in below:

1. Randomly select the first element e0 and one atom position
b0 for it;

2. Randomly select the second element e1 from the rest two
elements and find the closest atom b1 to atom b0 in the
first step;

3. Calculate the atom distance from the atoms of the last
element e2 to the atom b0 and the atom b1 respectively,
then sum the atom distance element-wise and the atom of
the last element with the smallest sum is considered as the
closest atom b2 to the selected atoms in the first and
second steps;

4. Repeat Steps 2, 3, and 4 three times to obtain three sets of
base atom sites ðB0

real;B
1
real;B

2
realÞ;

5. Repeat last five steps 31 times.

In Step 4, we use three sets of base atom sites as part of inputs
to the discriminator so that we can obtain more information from
crystal structures. In this work, we obtain three sets of base atom
sites 32 times repeatedly as in Step 5.

Atom clustering and merging. For crystals with high symmetry,
the number of atoms in the unit cell tends to be very large after
conversion by Algorithm 1. We propose a post-processing method
to reduce the number of atoms by clustering and merging. Firstly,
we cluster the nearby atoms of the same elements by forming flat
clusters from hierarchical clustering42,43. The maximum atom
distance allowed in our research is 1.2 times the atom radius sum.
Secondly, we merge the atoms in the same clusters considering
periodic attributes of crystal structures.

Implementation details
Materials representation. We use M ¼ ðE;B;P;OÞ to completely
describe a crystal material. As shown in mainframe of PGCGM,
however, we use three sets of base atom sites (B0, B1, B2). Thus
here we re-formulate a material as M� ¼ ðB0;B1;B2;P; E; sgpÞ.
The space group sgp is used to link to the affine matrix O. We can
use (B0, B1, B2) in M� to calculate physical properties as inputs to
the discriminator and to design physics-based losses. Three sets of
base atom sites are useful for two reasons: (1) we want to add

more crystal information for the discriminator and let the
discriminator have enough information to tell real materials from
fake ones; (2) With more base atom sites, we can calculate more
atom distances as the physical constraints in the generator and
the inputs to the discriminator.
All Fractional Coordinates We use affine matrix O to acquire the

whole atom sites in the unit cell as shown in Algorithm 1. Since
the number of affine operators in O varies in space groups,
we zero-pad the affine matrices as large as 192 × 4 × 4. We then
transform each base atom site by the affine matrix and get a
coordinates matrix Fall with shape of 192 × 3 × 3. Affine transfor-
mation leads to duplicate fractional coordinates. In material
science, practitioners usually remove the duplicates. However,
uniqueness calculation is not differentiable and it requires lots of
time to do it. We choose to average along with the first dimension
of Fall to get three sets of averaged full fractional coordinates
(F0, F1, F2), each of which is with shape of 3 × 3.
For a real material, base atom sites ðB0

real ;B
1
real;B

2
realÞ can be

transformed into the same average full fractional coordinates,
which means F0real ¼ F1real ¼ F2real . When generating a fake material,
base atom sites ðB0

fake;B
1
fake;B

2
fakeÞ are supposed to belong to the

same fake material, which hopefully results in F0fake ¼ F1fake ¼ F2fake .
However, the transformation of ðB0

fake;B
1
fake;B

2
fakeÞ might slightly

deviate from the goal. Thus using (F0, F1, F2) in real and fake
materials implicitly adds physical constraints, which somehow
pushes the generator to generate different sets of base atom sites
for a same material, which increases chances to generate good
materials in return.
Base Cartesian Coordinates Three sets of Cartesian coordinates

can be calculated for each set of base atom sites by Eq. (8) and we
denote them by (C0, C1, C2).
Atom Distance Matrices Given three sets of base atom sites

(B0, B1, B2), we calculate the atom distance matrices Hinter and
Hintra as shown in sub-figure (d) of Fig. 5. We firstly calculate pair-
wise different atom distance matrix for each base atom site
Bj, j= 0, 1, 2 and return only values in upper triangle of
corresponding distance matrix termed by Hinter. Then we select
three atoms belonging to the same element to form a set of three
atom sites for three elements and calculate pair-wise same atom
distance matrix and again return only values in upper triangle of
corresponding distance matrix termed by Hintra. The final shape of
Hintra and Hinter both is 3 × 3.
Lattice Parameters The volume of the unit cell can be calculated

by lattice parameters P. We repeat the scalar volume three times
to get the volume vector V. We also use the lattice matrix A in
Eq. (9) as part of the inputs to the discriminator.
Element Properties We use 23 properties as shown in Table 6 to

formalize element matrix E.
Now we list all parts of inputs to the discriminator in Table 7.

P* only contains the lengths because the angles are either (90°,
90°, 90°) or (90°, 90°, 120°) in the training materials. Thus instead of
generating three angles in P for fake materials, we build a map

Table 6. 3 element properties used for element embedding in PGCGM.

Properties Properties Properties

Atomic number Average ionic radius Noble gas or not

Pauling electronegativity Average cationic radius Transition metal or not

Periodic table row Average anionic radius Post transition metal or not

Periodic table group Sum of all ionic radii Metalloid or not

Atomic mass Maximum oxidation state Alkali or not

Atomic radius Minimum oxidation state Alkaline or not

Mendeleev number Average all common oxidation states Halogen or not

Molar volume Average all known oxidation states
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between angles and the space group sgp. Then we concatenate
all parts and a zero matrix of shape 3 × 3 into a matrix of shape of
3 × 64. The matrix is finally reshaped into 3 × 8 × 8 as the inputs to
the discriminator.

Mathematical conversion in crystal representations. Fractional
coordinates can be converted to Cartesian coordinates x; y; z½ �T
using44:

x

y

z

2
64

3
75 ¼ A �

u

v

w

2
64

3
75; (8)

where A is a lattice matrix calculated by lattice parameters P using:

A ¼
a b cos γ c cos β

0 b sin γ c cosα�cos β cos γ
sin γ

0 0 V
ab sin γ

2
64

3
75; (9)

where V ¼ abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2α� cos2β� cos2γ þ 2 cosα cos β cos γ

p
is the volume of the unit cell.
In order to acquire all atom positions in the unit cell, each base

atom site can be converted by affine matrix O. The conversion
procedure is summarized in Algorithm 1. Different materials vary
from the number of atoms and the number of elements. In order
to make a fixed size of inputs, we only use ternary materials in this
research. After conversion shown in Algorithm 1, the number of
atom (sites) also differs from materials. That is the reason why
base atom sites (one element one base site) are used to represent
atom positions. In addition, it should be noted that the calculation
of the uniqueness at line 10 of Algorithm 1 is not differentiable
and time-consuming.

Algorithm 1. Generate unique coordinates using base sites () and
affine matrix
Require: The space group sgp, the base atom sites B
1: O← GetAffineMatrices(sgp)
2: n← len(O)
3: coords← an empty list
4: for i← 1 to 3 do
5: add 0 to bi

6: uniq← an empty list
7: for j← 1 to n do
8: c← bi ⋅ tj− ⌊bi ⋅ tj⌋
9: pop last element from c
10: if c not in uniq then
11: add c to uniq
12: end if
13: end for
14: add uniq to coords
15: end for
16: return coords

Evaluation metrics
Past studies in crystal generation used different evaluation
metrics, making it hard to compare different methods. Here, we

create a set of metrics to evaluate our method and two baselines.
(1) Validity20. Following18, we consider a crystal structure as valid
when the shortest distance between any two atoms is bigger than
0.5Å. Following CubicGAN, we calculate the overall charge of a
crystal structure using pymatgen32 and if it is neutral, then it is
valid. Also, we count the number of structures after post-
processing in our method and we apply the same post-
processing onto the CubicGAN. (2) Property distribution20 We
calculate wasserstein distance (WD) between the property
distribution of generated materials and materials in test dataset
TST. The properties we used are minimum atom distance,
maximum atom distance, and density. (3) Diversity. We calculate
the diversity of compositions, which means the ratio of unique
number of compositions in generated structures. (4) DFT
validation of generated structures. We find that both the pair-
wise atomic distance and property distribution based perfor-
mance metrics are indirect weak criteria in crystal structure
generation as the major challenge in such models is to generate
stable structures. It is thus critical to check the success rate of DFT-
based structural relaxation, the thermodynamic stability (e.g.
evaluated by DFT phonon dispersion calculation), and synthesiz-
ability (e.g. based on energy-above-hull calculation).

DATA AVAILABILITY
The raw crystal dataset is downloaded from http://www.materialsproject.org.

CODE AVAILABILITY
The source code to generate crystals can be obtained from github at https://
github.com/MilesZhao/PGCGM.
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