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Learning the right channel in multimodal imaging: automated
experiment in piezoresponse force microscopy
Yongtao Liu1, Rama K. Vasudevan 1, Kyle P. Kelley 1, Hiroshi Funakubo2, Maxim Ziatdinov 1,3✉ and Sergei V. Kalinin 4✉

We report the development and experimental implementation of the automated experiment workflows for the identification of the
best predictive channel for a phenomenon of interest in spectroscopic measurements. The approach is based on the combination
of ensembled deep kernel learning for probabilistic predictions and a basic reinforcement learning policy for channel selection. It
allows the identification of which of the available observational channels, sampled sequentially, are most predictive of selected
behaviors, and hence have the strongest correlations. We implement this approach for multimodal imaging in piezoresponse force
microscopy (PFM), with the behaviors of interest manifesting in piezoresponse spectroscopy. We illustrate the best predictive
channel for polarization-voltage hysteresis loop and frequency-voltage hysteresis loop areas is amplitude in the model samples. The
same workflow and code are applicable for any multimodal imaging and local characterization methods.
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INTRODUCTION
Multimodal imaging methods underpin multiple areas of funda-
mental and applied sciences. Conventional intermittent contact
mode atomic force microscopy yields topographic, phase, and
error signals that highlight different aspects of surface struc-
ture1–3. In combination with detection modes such as electro-
static4–6, magnetic7–9, and Kelvin probe force microscopy10–14,
these technique offers multiple information channels containing
information on dissimilar aspects of materials functionality. In
optical imaging in biology, specific dies are used to highlight
different elements of cell structure and are visualized with
different color filters or spectral range in hyperspectral methods.
In energy-dispersive electron microscopy and electron energy loss
spectroscopy (EELS)15,16, different energy ranges highlight con-
centrations of individual elements17.
In many cases, imaging is used to define objects of interest for

more detailed studies18–21. In scanning probe microscopy (SPM),
the structural or functional images can be used to select
locations for force-distance or current-voltage measurements22,
or locations for local sampling for chemical studies. In optical and
scanning electron microscopy, the imaging data can be used to
select locations for e.g., nanoindentation23. In mass-spectro-
metry, the sampling points are often selected based on the
optical or SPM imaging24,25. This paradigm of imaging followed
by selection of specific location(s) for detailed studies is common
across physical, chemical, and biological imaging. Currently,
these studies are often performed as guided by human operator
intuition, via a classical point and click approach. However, in this
case the process is slow and heavily biased by operator
experience and expectations. An alternative approach is that of
dense grid-based measurements, such as force-volume26, piezo-
response spectroscopy, piezoresponse nonlinearity measure-
ments in SPM27–31, hyperspectral electron energy loss
spectroscopy (EELS) measurements in scanning transmission
electron microscopy (STEM)32, photoluminescence lifetime mea-
surement in optical microscopy19, or electron diffraction

measurement in electron microscopy29. However, the grid
measurements tend to be time consuming and are often limited
or impossible for circumstances where the probe or the sample
degrade rapidly with measurements.
An alternative in multimodal imaging is thus naturally of

interest, enabling a spectroscopy workflow within an automated
experiment framework. In this framework, the locations for
spectroscopic studies are selected based on the features of
interest in multimodal image. Here, the direct problem—
performing measurements at a known location of interest—can
be engendered via (by now) standard computer vision algorithms.
For example, we can choose the specific objects such as domain
walls or molecules, to identify locations for detailed spectroscopic
measurements18,21,33–36.
However, the inverse problem—discovering the features of

interest in the right channel, e.g., topography, or piezoresponse,
or conductivity image channel, that are best predictive of
behaviors of interest—is poorly amenable to human operation.
For example, we aim to discover which microstructural element
has the best predictive capacity for the functional property
encoded in polarization hysteresis loop or resonance frequency
hysteresis loop such as maximal loop area, imprint bias, or more
complex functionals of the loop shape. For unimodal imaging,
this approach have recently been demonstrated for STEM-EELS,
4D STEM, and band excitation piezoresponse spectroscopy
(BEPS)27,32,37,38. In these studies, we have discovered which
features in image space are most predictive of the specific
functionalities determined via spectral measurements, for exam-
ple localization of the hysteresis loops with the maximal area at
specific domain walls or emergence of low energy plasmons at
the edges of 2D material flakes.
Here, we develop a framework for the automated discovery of

the best predictive channel in multimodal imaging for the
behavior of interest within a spectroscopic data set. Traditionally,
such analysis is based on physical intuition using a priori
expected physical relationships. However, this approach often
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leads to significant operator biases and precludes the discovery
of the phenomena of interest. Here, we develop the experi-
mental framework toward the discovery of the channel that
offers best predictability for the behavior of interest in multi-
modal imaging. We have chosen to illustrate these using
piezoresponse force microscopy (PFM) as the method that
allows multichannel imaging and extensive set of spectro-
scopies39. However, this approach is universal and applies to
other forms of multimodal imaging.

RESULTS
Model materials
As model systems, we explored three thin film samples: lead
titanate (PTO)40, lead zirconate titanate (PZT), and bismuth ferrite
(BFO), these films are grown on SrRuO3 layers. Band excitation
piezoresponse force microscopy (BEPFM) measurements were
performed on three model thin film materials to investigate their
domain structure. These results are shown in Fig. 1. The PTO thin
film indicates both 180° ferroelectric domain structures—dark
domain and bright domain in phase image (Fig. 1b), and non-180°
ferroelastic domain structures—dark and bright stripe domains in
amplitude image (Fig. 1a). The ferroelastic domains exhibit
different strain and elastic properties due to the variation in
crystallographic orientation, resulting in visible domain contrast in
resonance frequency image (Fig. 1c). Topography image (Fig. 1d)
also illustrates the ferroelastic domain features. In contrast, the
PZT thin film only exhibits non-180° ferroelastic domain structures,
displaying in BEPFM amplitude (Fig. 1e), phase (Fig. 1f), resonance
frequency (Fig. 1g), and topography (Fig. 1h) images. The BFO
majorly shows 180° ferroelectric domain structure (Fig. 1i, j), where
the domain wall contrast is also visible in resonance frequency
image (Fig. 1k). Notably, a few ferroelastic domains with weak
contrast also show in amplitude image (Fig. 1i).

Multiple-channel deep kernel learning
Next, we perform a multiple-channel deep kernel learning (DKL)
measurement utilizing the ensembles of DKL models and basic
reinforcement learning policy. Earlier, we showed how combining
the structured Gaussian process with the epsilon-greedy policy
allows one to learn a correct model of the system’s behavior and
use it to drive the exploration of the configuration space41,42.
However, that approach is limited to low-dimensional spaces and
is not suitable for the structure-property relationship problems in
the multimodal imaging. Here we use DKL43 that is a hybrid of a
neural network and a Gaussian process to circumvent the
dimensionality problem. As the fully Bayesian implementation of
DKL is computationally too slow for real-time feedback and
control, we approximated it with the ensembles of DKL models44.
In this setup, each neural network in the ensemble is initialized
independently resulting in different embeddings connected to
separate Gaussian processes and the final prediction for each
channel is an ensemble average.
The process of channel learning with ensemble-DKL is shown in

Fig. 2a, b. The BEPFM images including amplitude, phase,
frequency, and topography are used as four possible input
channels. Each image is featurized by splitting it into patches that
are used as inputs. The behavior of interest is encoded in
polarization or resonance frequency hysteresis loops for each
patch as a scalar target. Here we use the hysteresis loop area, but
any functional of the spectroscopic signal can be selected. At the
beginning of the channel learning experiment, a small, custom-
defined number of warm-up steps is taken, at which a separate
ensemble of DKL models is trained for each channel. In this
process, the channel that produces the lowest mean predictive
uncertainty on the unmeasured points is given a positive reward.
This rewarded model is also used to derive the next measurement

point corresponding to the largest uncertainty value in the
prediction. After the warm-up steps, an epsilon-greedy policy45 is
used to sample a single channel at each exploration step and
derive the next measurement point.
We implement this ensemble-DKL workflow on an Oxford

Instrument Asylum Cypher microscope. As shown in Fig. 2c, to
accelerate the DKL training and prediction we send the real-time
measurement data to an Nvidia DGX-2 GPU server for analysis.
Specifically, the custom DKL code written in JAX46 is run on a docker
container residing on the GPU server. Via a combination of port
forwarding and socket programming, data is sent directly from the
instrument computer to the DGX-2 device without file I/O, and then
processed within the container, taking advantage of the high
processing capabilities on the server. For the data transfer, we utilize
the mlsocket package (https://pypi.org/project/mlsocket/), which is
a wrapper around the low-level python socket interface and enables
sending and receiving of numpy arrays. The server houses 16 Nvidia
Tesla V-100 GPUs each with 32GB of memory, enabling the different
ensemble models to run in parallel. Practically, we select between
multi-GPU “parallel” and single GPU “vectorized” approach for the
ensemble-DKL training based on the size of image patch and
complexity/depth of the neural network. For the image patch size of
20 × 20, the 3-layer fully-connected neural network, and 20
ensemble models, each iteration takes ~30 s when utilizing a single
GPU, whereas for a comparison, the same iteration takes ~300 s on
the CPU. As such, the connection to edge computing is critical for
efficiency and viability of the proposed workflow.

Automated experiments
Here, we performed two sets of measurements—the
polarization-voltage loop area and frequency-voltage loop area
are used as target property descriptors, which measure the
energy loss during switching and voltage-induced irreversible
dynamics, respectively—on three model samples. First, a small
number of randomly sampled points are measured as seed
points for training. In these measurements, we start with 0.25%
of the total measurement points as the seed data for DKL
training, then perform 20 warm-up steps and 200 exploration
steps. In the warm-up steps, each channel is trained in parallel
and the one with the lowest mean uncertainty is used to derive
the next measurement point. After the warm-up, a single channel
is sampled at each step according to the epsilon-greedy policy
with epsilon decreased uniformly (“annealed”) from 0.4 to 0.1
during the 200 exploration steps.
Shown in Fig. 3 are the evolution of channel reward, mean

predictive uncertainty, and channel selection during the
ensemble-DKL driven measurement for three samples. For the
PTO sample, when the target property is polarization-voltage
loop area (Fig. 3a), amplitude channel shows the highest
reward and the phase channel is the second-best. Although
the resonance frequency shows a very low reward (Fig. 3a), the
evolution of uncertainty (Fig. 3b) indicates that the predictive
uncertainty based on resonance frequency channel gradually
decreases during the experiment, which implicates that the
elastic variation displayed in frequency image has an effect on
polarization dynamics. However, the topography channel shows
both low reward (Fig. 3a) and no decrease of prediction
uncertainty (Fig. 3b). When the frequency-voltage loop area is
used as the target property, we observe an increase of reward to
the resonance frequency and phase channels at the end of
experiment (Fig. 3c), accompanied with larger decrease rate of
predictive uncertainty from the resonance frequency and
phase channels (Fig. 3d). The behavior of resonance frequency
channel is due to the directly correlated property from loops
and image data. The behavior of phase channel can be
understood as the electrostatic effect on the detected cantilever
resonance frequency, where the up and down polarized
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Fig. 1 Band excitation piezoresponse force microscopy (BEPFM) image results of three model samples. a–d BEPFM amplitude, phase,
resonance frequency, and topography images of PTO sample, respectively. e–h BEPFM amplitude, phase, resonance frequency, and topography
images of PZT sample, respectively. i–l BEPFM amplitude, phase, resonance frequency, and topography images of BFO sample, respectively.

Fig. 2 BEPFM experimental process driven by ensemble DKL. a Ensembel DKL workflow. b BEPFM image channels are used to predict a
functional property, e.g., polarization loop area or resonance frequency loop area. The image data have four channels: amplitude (Channel 1),
phase (Channel 2), resonance frequency (Channel 3), and topography (Channel 4). The goal is to identify the best channel for predicting the
functional property. c A schematic showing hardware connected in the workflow, including a Cypher SPM, a PC, and a GPU server.
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domains (shown as dark and bright contrast in phase image)
may associate with different surface charge states that induce
different electrostatic effect.
The PZT results (Fig. 3e–h) is very similar to those of PTO. We

ascribe this similarity to the fact that most variability of the
phenomena on epitaxial film surfaces are related to ferroelastic
domain structure. However, note that predictive uncertainty from
topography channel (Fig. 3f, h) slightly decreases during experi-
ment in the PZT sample.
For the BFO results (Fig. 3i–l), when the polarization-voltage

loop area is used as target property, the reward to amplitude
channel (Fig. 3i) quickly stabilized around 0.5–0.6 after ~50
exploration steps, while other channel rewards drop quickly.
Interestingly, the predictive uncertainties of four channels are
distinct (Fig. 3j)—the uncertainty corresponding to amplitude
channel keeps decreasing, the phase channel uncertainty is also
very low but shows a slight increase in the middle of the
measurement, and the uncertainties corresponding to frequency
and topography channels are very high. When the resonance
frequency-voltage loop area is used as target property, the
evolution of channel reward and uncertainty (Fig. 3k, l) is similar
to that of polarization-voltage loop area as target property.
This is most likely because both phenomena are ferroelectric
domain related.

After the ensemble-DKL exploration measurement, we can use
the ensemble-DKL model to predict the target property at
unmeasured points. Notably, the prediction can be made from
each channel. Shown in Figs. 4 and 5 are the prediction of
polarization-voltage loop area and frequency-voltage loop area of
three samples from each channel, respectively. For the PTO and
PZT samples, predictions from topography (Figs. 4d, h and 5d, h)
display some features also showing up in the predictions from
other channels, presumably because the ferroelastic domains also
show in topography.
The model selection during exploration steps is based on both

the current channel reward (partially from warm-up steps) and
the exploration/exploitation balance with epsilon-greedy policy.
For the PTO and PZT results of using frequency-voltage loop area
as target property, even if ensemble-DKL used the amplitude
channel originally, the frequency channel reward starts increasing
at the end of measurements (Fig. 3c, g) and the frequency
channel uncertainty decreases faster than amplitude channel in
some cases (Fig. 3d, h). Therefore, to investigate more details of
the channel behaviors when using frequency-voltage loop area as
target property, an additional experiment with enlarged explora-
tion steps and different exploration/exploitation rate in epsilon-
greedy policy was performed. In this measurement, we perform
20 warm-up steps and 480 exploration steps. In the exploration
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Fig. 3 Experimental process of three model samples when the functional property is set as polarization loop area and resonance
frequency loop area. a–l Results for PTO, PZT, and BFO samples, respectively. The first and second columns show the evolution of channel
reward and the mean predictive uncertainty as a function of experimental steps for the ensemble DKL when the functional property is a
polarization loop area. In this case, ensemble DKL identifies the channel with best structure-polarization loop area relationship. The third and
fourth columns show the evolution of channel reward and the mean predictive uncertainty as a function of experimental steps for the
ensemble DKL when the functional property is resonance frequency loop area. In this case, the ensemble DKL identifies the channel with best
structure-frequency loop area relationship. In these measurements, the ensemble DKL analysis starts with 0.25% of total number of points
available for measurements and use 20 warm-up states. During the warm-up states, all four channels are evaluated in parallel and the one
with the lowest uncertainty is used for next evaluation point. After the warmup phase, we sample a single channel at each step based on the
epsilon-greedy policy with epsilon decreased uniformly from 0.4 to 0.1 during the 200 steps. In the uncertainty evolution plots, the color
represents the selected channel at a specific step, which allows us to visualize the correlation of channel selection and uncertainty changes.
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Fig. 5 Ensemble DKL prediction of frequency loop area from each channel after experiment. a–l Ensemble DKL predictions of PTO, PZT,
and BFO, respectively. a, e, i DKL prediction of frequency loop area from amplitude image; b, f, j DKL prediction of frequency loop area from
phase image; c, g, k DKL prediction of frequency loop area from resonance frequency image; d, h, l DKL prediction of frequency loop area
from topography image.
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Fig. 4 Ensemble DKL prediction of polarization loop area from each channel after experiment. a–l Ensemble DKL predictions of PTO, PZT,
and BFO, respectively. a, e, i DKL prediction from amplitude image; b, f, j DKL prediction of polarization loop area from phase image;
c, g, k DKL prediction of polarization loop area from resonance frequency image; d, h, l DKL prediction of polarization loop area from
topography image.
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steps, epsilon in the epsilon-greedy policy decreased uniformly
from 0.9 to 0.01 is used to sample a single channel at each step.
Compared to previous measurements, here the epsilon is larger at
the beginning of the measurement and smaller at the end of the
measurement, corresponding to larger exploration rate at the
beginning and smaller exploration rate at the end, respectively.
Shown in Fig. 6 are the results, in this measurement, other
channels are used more frequently (Fig. 6f). This is because of the
higher exploration rate at the beginning of the measurement. In
this case, we can observe more details of the evolution of other
channels. We observe an obvious increase of reward to the phase
channel (Fig. 6e) and the fastest decrease of uncertainty from
phase channel prediction (Fig. 6f), probably because of the
electrostatic effect as mentioned before.

DISCUSSION
To summarize, we have implemented an ensemble-DKL driven
automated PFM for the identification of the channel with best
predictive capacity, i.e., the channel for the most accurate
reconstruction of target property encoded in spectroscopic
data. This approach identifies the BEPFM image channel with
the most predictive power for a target property of interest
during measurement, which is also an indication of the
strongest correlation between this BEPFM image channel and
the target property.
Here, we implement this approach in BEPFM and piezo-

response spectroscopy measurement, and illustrate its applica-
tion in exploring the structure-property relationships in three
thin film materials with various ferroelectric and ferroelastic
properties. To accelerate the ensemble-DKL training and predic-
tion, we also develop an approach enabling real-time data
transfer between microscope PC and GPU server, which allows

GPU server to analyze the results from the on-the-fly microscope.
This workflow and approach are universal and can be applied in
other imaging and spectroscopic characterization methods, e.g.,
electron microscope, optical microscope, mass spectrometry
imaging, as well.

METHODS
The band excitation piezoresponse force microscopy measure-
ments were performed on an Oxford Instrument Asylum Research
Cypher AFM system using an ElectriMulti75-G Budget Sensors tip
(Pt/Ir coated) with a band of frequencies near the resonance
frequencies to track the resonance frequency shift.
Machine learning code is available at https://github.com/

yongtaoliu/Ensemble-DKL. Real-time machine learning analysis
during automated experiments was performed on a docker
container residing on 16 Nvidia Tesla V-100 GPUs server,
data were sent directly from the instrument computer to the
GPU server via a combination of port forwarding and socket
programming.

DATA AVAILABILITY
The method that support the findings of this study are available at https://
github.com/yongtaoliu/Ensemble-DKL.

CODE AVAILABILITY
The code related to this study are available at https://github.com/yongtaoliu/
Ensemble-DKL.

Received: 18 October 2022; Accepted: 16 February 2023;

Fig. 6 Experimental process exploring structure-resonance frequency loop area relationship in PZT sample with a different exploration
and exploitation balance. a–d BEPFM amplitude, phase, resonance frequency, and topography images. e Evolution of channel reward as a
function of experiment steps. f The evolution of mean predictive uncertainty as a function of experimental reward. In this measurement, the
ensemble DKL analysis starts with 0.4% of the data and use 20 warm-up states. After warm-up, the channel at each step is sampled with the
epsilon-greedy policy and the epsilon decreased uniformly from 0.9 to 0.01 during the 480 steps. Here, the different epsilon as compared with
previous measurements lead to a higher exploration chance (due to larger epsilon) at the beginning and higher exploitation chance (due to
smaller epsilon) at the end of the measurement. g The measurement locations determined by DKL showing on amplitude map. Note that the
measurement points are concentrated at the a-x domain boundaries, at which the polarization tilting can give rise to enhanced responses.
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