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Deep learning for exploring ultra-thin ferroelectrics with highly
improved sensitivity of piezoresponse force microscopy
Panithan Sriboriboon 1, Huimin Qiao1,2, Owoong Kwon1,2, Rama K. Vasudevan 3, Stephen Jesse3 and Yunseok Kim 1,2✉

Hafnium oxide-based ferroelectrics have been extensively studied because of their existing ferroelectricity, even in ultra-thin film
form. However, studying the weak response from ultra-thin film requires improved measurement sensitivity. In general, resonance-
enhanced piezoresponse force microscopy (PFM) has been used to characterize ferroelectricity by fitting a simple harmonic
oscillation model with the resonance spectrum. However, an iterative approach, such as traditional least squares (LS) fitting, is
sensitive to noise and can result in the misunderstanding of weak responses. In this study, we developed the deep neural network
(DNN) hybrid with deep denoising autoencoder (DDA) and principal component analysis (PCA) to extract resonance information.
The DDA/PCA-DNN improves the PFM sensitivity down to 0.3 pm, allowing measurement of weak piezoresponse with low
excitation voltage in 10-nm-thick Hf0.5Zr0.5O2 thin films. Our hybrid approaches could provide more chances to explore the low
piezoresponse of the ultra-thin ferroelectrics and could be applied to other microscopic techniques.
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INTRODUCTION
Ferroelectric materials are of great interest because of their
intriguing physical properties, such as their bi-stable polarization
states and fast switching speed. Since reporting fluorite ferro-
electrics in 20111, extensive studies have been performed for
exploring and improving the ferroelectricity of these materials2–5,
for example, HfO2, Hf0.8Zr0.2O2, Al: HfO2, and ZrO2, because of their
existing ferroelectricity, even in less than 10 nm thin films.
While piezoresponse force microscopy (PFM) has been widely

used to evaluate ferroelectricity at the nanoscale6, a conventional
PFM, which is operated at a single off-resonance frequency, can be
of limited use when evaluating ferroelectricity in ultra-thin
ferroelectrics, including fluorite ferroelectrics, because of the
insufficient sensitivity of conventional PFM techniques3. Accord-
ingly, resonance-enhanced PFM techniques, such as band-
excitation (BE) and dual AC resonance tracking, have been utilized
for the evaluation of ultra-thin ferroelectrics7–10 because the
resonance of cantilevers allows one to amplify the sensitivity and
increase the signal-to-noise ratio (SNR) by the quality factor of the
resonance peak. To extract the resonance information of BE-PFM
(such as amplitude, phase, and resonance frequency), the
spectrum obtained around the resonance frequency is analyzed
by fitting the measured data based on a simple harmonic
oscillator (SHO) model11 with a traditional least-squares (LS)
method.
Nevertheless, if the piezoresponse is weak because of the ultra-

thin material, it can be difficult to accurately analyze the
resonance because of a low SNR. Thus, improving PFM sensitivity
for exploring more complex ferroelectric behavior and properly
evaluating the ferroelectricity of ultra-thin ferroelectrics is still
required. In fact, an improvement in PFM sensitivity was reported
based on the application of deep learning algorithms12 by
improving the priors that are then fed into the LS method.
However, this deep learning method still requires the LS method,
which in turn strongly depends on the initial guesses. If the deep
learning algorithms fail to provide a suitable prior for the LS

method, as can be the case in low SNR measurements of weak
piezoresponse materials13,14 or in challenging noisy environ-
ments15,16, the fitting results can still be poor, eventually causing a
misinterpretation12. Furthermore, in cases of working with large
datasets, an iterative approach of the LS method is time-
consuming. Up to now, the rapid fitting method capable of
handling noise has remained challenging for extracting of
resonance information. Therefore, it is important to explore an
accurate and efficient approach to address the functional
fitting issue.
In this study, we demonstrate highly improved PFM sensitivity

based on a deep neural network (DNN) that combines denoising
elements without the need for further optimization by the LS
method. The deep denoising autoencoder (DDA) and principal
component analysis (PCA) were assigned for the noise reduction
task, and then the DNN was applied to the denoised dataset.
These noise-reducing elements directly address noisy outliers to
improve the SNR, resulting in increased PFM sensitivity. These
implemented workflows for BE-PFM were validated using ferro-
electric model samples of periodically poled lithium niobate
(PPLN) and 10 nm-thick Hf0.5Zr0.5O2 (HZO) thin films. Compared to
the traditional LS method and a previously reported DNN-LS
method, the proposed workflows of DDA-DNN and PCA-DNN
remarkably improved the SNR and PFM sensitivity. In particular,
the results for HZO thin films presented the feasibility of exploring
very weak piezoresponse. The PCA-DNN approach successfully
extracts the low piezoresponse, allowing switching events of the
HZO thin films to be observed using a low excitation voltage.
Furthermore, our approach reduces the time necessary for the
evaluation of resonance information because, while the LS
method is time-consuming for working with large amounts of
data, the DNN method is known as a relatively fast one that can be
parallelized across GPUs with outputs given in ms time12. Thus,
the application of fully machine learning algorithms without the
LS method can provide a faster and more accurate resonance
analysis, and especially important when fast feedback is required
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to the instrument to enable automated and autonomous
experiments.

RESULT AND DISCUSSION
Deep learning for PFM signal extraction
One of the well-known resonance-enhanced PFM techniques is
BE-PFM of which spectroscopy is presented in Fig. 1a. The BE
waveform is configured in the time domain and applied to the tip
to excite the tip-sample interaction, which results in the cantilever

deflection captured in the frequency domain through the fast
Fourier transform (FFT) (see Fig. 1b, c). The FFT output gives a
complex value that is generally represented by amplitude and
phase as a function of frequency. The resonance information from
the FFT output can be analyzed by fitting the measured data
based on the SHO model as follows11:

f ωð Þ ¼ Aω2
r e

iφ

ω2 � iωωr
Q � ω2

r

; (1)

Fig. 1 Scheme of the PFM measurements integrated with deep learning. a PFM spectroscopy measurement where the resonance spectrum
records pixel-by-pixel while the probe moves according to the mapping positions. b The waveform for the Vac amplitude sweep consists of
the BE waves with a predefined frequency range across the contact resonance frequency and different Vac amplitudes (Vac steps). During the
measurement, the cantilever oscillation induced by the waveform is acquired at every pixel as the PFM dataset. After the FFT, the
piezoresponse oscillation spectrum of a complex value can be converted into (c) amplitude and phase as a function of frequency, and every
single datum in the dataset can be indexed by the row, column, Vac step, and frequency bin. d Schematic of the DNN workflow with the noise
reduction element. e Schematic of the noise reduction element of the DDA, the component of encoder, encoding, and decoder layers, in
which the type and dimensionality are specified on the top of the layer. The DNN and DDA input data are a stacked 2 × N matrix of the real
and imaginary parts of the piezoresponse signal.
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where amplitude A, phase φ, resonance frequency ωr, and quality
factor Q are the four major SHO parameters11. The obtained
amplitude and phase correspond to the magnitude of piezo-
response and direction of polarization state.
Thus, the SHO functional fitting of the BE-PFM is the key to

extracting the physical properties of the systems being analyzed.
The traditional method for SHO functional fitting is the LS method,
which presents a challenge when determining the initial guess
values (A0, ω0, Q0, and φ0) of the four major SHO parameters (A, ω,
Q, and φ); this is because giving good initial guessing parameters
becomes particularly difficult with a large number of fitting
parameters involved in LS fitting17. Furthermore, the SHO
functional fitting becomes more complicated in cases with
unavoidable noise from the experimental setup. In the present
case, either a low Vac or weak piezoresponse could lead to a low
SNR. A drawback of the traditional LS fitting can be examined by a
Vac amplitude sweep waveform (see Fig. 1b). Ideally, the piezo-
response increases proportionally with Vac amplitude at a rate of
effective piezoelectric coefficient of the sample18–20, while the
noise is independent of Vac. In fact, the LS fitting is sensitive to
outliers, which have a large influence on the fit because squaring
the residuals amplifies the effects of these extreme data points.
Accordingly, the algorithms are likely to become trapped by these
outliers, which is one of many inappropriate local minima instead
of the global minima. We note that, although the use of a high Vac
could be a practical way to obtain a high SNR, the high Vac
amplitude could lead to a nonlinear response or sample
degradation21; thus, it is an undesirable way to address the issue.
Alternatively, deep learning shows great promise in overcoming

the limitations and challenges of the traditional LS fitting
mentioned above. For instance, an approach using a DNN, which
is well-known for feature recognition12,22–24, was proven to be
effective at predicting the SHO parameters at low SNR12. However,
the DNN lacks an optimization process to minimize the error
between the predicted data and noisy raw data. Meanwhile,
another method12 uses a hybrid of DNN and LS approaches
(henceforth referred to as DNN-LS), where the DNN predicts initial
estimate parameters and the LS optimizes SHO function
parameters. Although this approach is interesting, it suffers from
the noisy SHO with data outliers (see Supplementary Fig. 1).
Specifically, the data outliers in the SHO spectrum may produce a
peak-like SHO characteristic, leading to poor fitting or even
misinterpreting DNN-LS results12. In addition, even though the
DNN rapidly predicts the SHO parameters, combining the LS with
the DNN result can be time-consuming. Therefore, it is still
necessary to explore an effective, efficient, and accurate approach
for the extraction of SHO parameters.
Considering the main obstacle of SHO fitting at low SNR is the

misinterpretation because of the noisy outlier, resulting in a poor
PFM sensitivity. Because directly handling the noise could be an
effective solution, we propose a hybrid workflow associated with
DNN for SHO parameter prediction. As shown in Fig. 1d, the idea is
to use machine learning to reduce noise, especially the data
outliers, prior to the DNN prediction. To directly manage the noise,
we train the DDA, which is a well-known and practical machine
learning technique, to map noisy data to low-noise data25,26, as
shown in Fig. 1e. Then, we train the DNN to predict the four major
SHO parameters from the input data vector (see the details in
Supplementary Note 1). We henceforth call this hybrid model as
the DDA-DNN.
To train the DDA-DNN model, we employed the batch

generator method12 to combat overfitting. The batch generator
created a new batch of noisy data with 64,000 SHO spectra of four
random major SHO parameters, which were split into 51,200 for
training and 12,800 for validation, and passed through the
network only once. This procedure was repeated 50 times during
the training. For the trained DNN used in this hybrid workflow, the
validation accuracy was 0.75 with a validation loss of 0.015. For the

training, the DDA model was trained to reconstruct the low-noise
SHO dataset from the noisy SHO dataset using the batch
generator method. The training condition of DDA using the batch
generator method was almost the same as DNN, except that the
DDA was trained to reconstruct the no-noise spectrum from the
noisy spectrum. After training, the average validation loss of the
DDA was 0.0003.

Improved signal extraction by denoising
To illustrate denoising using DDA, we simulated the noisy dataset
by varying the amplitude of the SHO function with a constant
noise level, as shown in Fig. 2a, b. The SNR of the simulated
dataset was defined by the maximum amplitude (Amax) of the
simulated signal divided by the standard deviation of the noise
(σnoise). We applied DDA to the simulated noisy dataset of Fig. 2a,
b, which resulted in the low-noise dataset shown in Fig. 2c, d,
respectively. It is obvious that the quality of the reconstructed
data of DDA was relative to the SNR. Accordingly, we further
evaluated the reconstruction loss of DDA as a function of SNR, as
shown in Supplementary Fig. 3. The DDA works well for denoising
at high SNR, as shown in Fig. 2c, d. Nevertheless, although DDA
denoising was expected to improve the DNN prediction, the DDA
recontructed a defective spectrum at SNR less than 3 (individual
spectrum not shown here). This might be because the DDA was
not trained to recognize the interdependency features of the
input datasets.
To take advantage of the interdependency between the dataset

components for further improvement of noise reduction, we
switched to PCA, which is an alternative denoising method. This
well-known technique is used to simplify and visualize the
complexity of multidimensional data while retaining trends and
patterns27–29. The basis of PCA noise reduction is that a well-
behaved signal should have more variance and therefore belong
to the first few components, as opposed to the more scattered
noise. Thus, the reconstruction with the first few PCA components
will deliver a greatly noise-reduced dataset. Therefore, the
reconstruction of data with only high variance principal compo-
nents (PCs) can exclude the noise-effected PCs, that is, the
redundant dimension of noise. In the actual measurement dataset,
this selected dimension of the sub-dataset generally retains the
SHO features of resonance frequency and quality factor. The input
dataset was projected into 56 PCs by PCA, and the low-noise
dataset (Fig. 2e, f) were constructed using 1 PC. This 1 PC
corresponds to a 25% explained variant of the dataset (see
Supplementary Figs. 2–4 for further discussion). The number of
reconstructed PCs (1–56) can be varied to optimize the
reconstruction loss of the noise reduction, as shown in
Supplementary Fig. 3.
To explore the effect of the denoising process on the SHO

parameter extraction accuracy, we compared the final results of
fitting and prediction using LS, DNN-LS, DDA-DNN, and PCA-DNN
on the simulated dataset. The simulated dataset was generated
based on the SHO function as described earlier in Eq. 1 with
random parameters of quality factor and resonance frequency.
Figure 2g displays dimensional indexing, that is, columns, rows,
and points, of the simulated dataset. One of many planes in the
points-rows plane was extracted from the simulated dataset to
depict the phase contrast corresponding to the rows, as shown in
Fig. 2h. The amplitude parameter increases along the point axis
with a constant noise level, as depicted in Fig. 2i, indicating that
the SNR increases along the point axis. We note that the phase
contrast between the upward and downward domains of this
simulated dataset must be π for the ideal SHO parameter
extraction. The optimization guesses with LS fitting on the
simulated dataset (Fig. 2l) presented a good phase contrast when
the SNR was high. However, when the SNR was lower than 8, the
phase contrast (Fig. 2j) and deviation (Fig. 2k) gradually worsened.
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The DNN-LS approach (Fig. 2m) displayed a better phase contrast
and deviation compared to the optimization guess LS fitting
method when the SNR was higher than 5 (Fig. 2j, k). For the DDA-
DNN method (Fig. 2n), when the SNR was higher than 3, the phase
contrast was closer to the ideal case (black dashed line, (Fig. 2j)).
However, the deviation of DDA-DNN was larger at a low SNR

compared to that of DNN-LS (Fig. 2k). The PCA-DNN (Fig. 2j, k, o)
validates the usefulness of PCA, as shown by the better prediction
of SHO parameters regarding the phase contrast, phase contrast
deviation, and SNR limitation, especially at low SNR. We note that,
when the SNR drops below 1, it is hard to distinguish between the
PFM signal and noise. The details for DDA/PCA-DNN can be found

Fig. 2 Noise reduction and phase contrast evaluation of the simulated piezoelectric domains. a–f Noise reduction of the simulated SHO
dataset using DDA and PCA: (a, c, e) amplitude and (b, d, f) phase as a function of SNR. a, b Simulated SHO data with a constant noise level,
quality factor, phase, and reducing amplitude in the SNR axis, and (c–f) denoised data using DDA and PCA, respectively. g Visualization of the
simulated signal for phase contrast evaluation, in which the phase parameter of the response is specified as two values of –π/2 and π/2,
equivalent to the positive and negative polarization orientation, respectively. h The points-rows plan shows the phase of the simulated signal
extracted from (g) at column number 32. i Amplitude variant with a constant noise level along the point axis. We note that the point and SNR
are equivalent axes. j Phase contrast and (k) corresponding deviation were extracted from the SHO fitting and prediction results of (l) LS with
the optimized initial guess method, (m) DNN-LS, (n) DDA-DNN, and (o) PCA-DNN. The phase contrast is calculated by the difference between
the average values of two phases, that is, the phase represented by blue and green in (h).
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in Supplementary Fig. 8. We also note that, because LS is time-
consuming (see Supplementary Table 1), we could replace it in the
denoising process with DDA or PCA for DNN because the phase
contrast and deviation of DDA-DNN-LS (or PCA-DNN-LS) were
nearly identical to those of DDA-DNN (or PCA-DNN) (see
Supplementary Figs. 5–7). Thus, the application of fully machine
learning algorithms without the LS method can be effective.

Comparison of fitting workflows for PFM images
To compare the SHO fitting and prediction of LS, DNN-LS, DDA-
DNN, and PCA-DNN on the real experimental dataset, we
examined these four methods on the PFM images of the PPLN
dataset at different Vac steps. In such a case, the Vac amplitude
determines the SNR. As shown in Fig. 3ai–di, the fitted PFM phase
images at the high Vac of 1.0 Vac, that is, at high SNR, exhibited a
relatively clear phase contrast for all four fitting methods. As
expected, all four methods gave good fitting and prediction
results, as shown in Fig. 3e, f. When the SNR decreased slightly, as
represented by a step of 0.51 Vac, the “poor-fit” pixel of the phase
image became more noticeable in the LS method compared to
that in the hybrid methods. The poor-fit pixel in Fig. 3aii
corresponds to the substandard guessing parameters of the LS
fitting method, which can easily be improved using DNN-LS, as
shown in Fig. 3bii. Nevertheless, when the SNR drops further, the
DNN-LS method is no longer able to notably improve the fitting
results, as demonstrated in Fig. 3aiii, aiv, biii, biv for LS and DNN-LS
respectively. We considered that the limitation of the DNN-LS
fitting method resides in the noise corresponding to the data
outliers that act like a trap for LS and DNN-LS, as shown in the
fitting spectra in Fig. 3eiii, fiii, respectively. Therefore, after
implementing the DDA and PCA to reduce the data outlier from

the SHO spectrum, the DNN was applied for the SHO parameter
prediction. Consequently, the improved SHO parameter extraction
improves the phase contrast of PFM images, as shown in Fig. 3ciii,
civ for DDA-DNN and Fig. 3diii, div for PCA-DNN, respectively.
Accordingly, the predicted spectra of DDA-DNN and PCA-DNN
were not trapped by the data outliers, as shown in Fig. 3eiii, eiv,
fiii, fiv (see more details in Supplementary Fig. 9). On the other
hand, at 0.25 and 0.13 Vac, the prediction results of the PCA-DNN
gave a better phase contrast relative to the DDA-DNN (see Fig.
3ciii, civ, diii, div). Nevertheless, we believe that the performance
of DDA can be further improved by better architectural design and
development. Despite this, because we focused on the proof-of-
concept using the DDA-DNN workflow for the SHO parameter
extraction, advanced DDN and the DNN architecture will be the
focus of a future study.

Quantification of PFM sensitivity
It is worth quantifying both sensitivity and SNR relative to the
workflow. Prior to the exploration of these values, the noise level
was first explored from the PFM amplitude of the PPLN dataset in
Fig. 4. Figure 4a, b are two-dimensional histogram plots of the as-
acquired spectrum of the PPLN dataset. In Fig. 4a, the area of a
high-density signal with a low amplitude value indicates a
constant signal that does not change relative to the increasing
Vac. In particular, at Vac ≈ 0, where there is ideally no PFM
amplitude, the signal density does not change as well. Therefore,
this area can be regarded as a steady noise, i.e., the instrumental
background noise. By the Gaussian fitting for the amplitude
histogram, an average noise level (µnoise) of 0.18 pm and a noise
deviation (σnoise) of 0.1 pm were obtained as shown in Fig. 4c.
Thus, in the absence of Vac excitation, the steady noise level can

Fig. 3 Comparison of the fitted and predicted SHO phase images for the actual dataset of PPLN. The dataset was acquired using the Vac
amplitude sweep measurement with maximum Vac= 1 V: phase images of (a) optimized LS, (b) DNN-LS, (c) DDA-DNN, and (d) PCA-DNN at
different Vac steps of (i) 1.0 Vac, (ii) 0.51 Vac, (iii) 0.25 Vac, and (iv) 0.13 Vac, respectively. e, f Raw data points and corresponding fitted and
predicted lines of different methods for (e) amplitude and (f) phase. The black and red arrows in (d, e) are the exact pixels of the raw data and
the data outlier that could induce poor fitting of the LS and DNN-LS, respectively. We note that the PCA-DNN was denoised using 1 PC.
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be calculated from the sum of µnoise and σnoise as 0.28 pm. Further,
if the PFM amplitude is higher than σnoise under the Vac excitation,
the PFM amplitude can be distinguished from the noise level,
indicating that the PFM amplitude higher than 0.28 pm is possible
to be extracted depending on the sensitivity of the SHO fitting
and prediction workflow. In this context, we define the SNR as A/
σnoise where A is the PFM amplitude.
Then, we define sensitivity as a minimum detectable displace-

ment, i.e., minimum PFM amplitude (Amin). The fitted and
predicted amplitude values of the PPLN dataset were extracted
from the single-phase area indicated by the red box in Fig. 3d and
plotted in Fig. 4d. When the Vac amplitude is decreased, the fitted
and predicted amplitude values are linearly decreased and then
limited at the baseline30, indicating the Amin values fitted and
predicted by different workflows. Accordingly, each baseline in
Fig. 4d was fitted to extract the Amin of each SHO fitting or
predicting workflow. As a result, we obtained the sensitivity for LS,
DNN-LS, DDA-DNN, and PCA-DNN as 0.48, 0.45, 0.38, and 0.30 pm,
respectively. Furthermore, we calculated the minimum SNR (as
Amin/σnoise) for the different workflows, which are 4.8, 4.5, 3.8, and
3.0 for LS, DNN-LS, DDA-DNN, and PCA-DNN, respectively.

Application of different workflows to the weak piezoresponse
of ultra-thin ferroelectrics
To test hybrid workflows based on the denoising process, we
measured the PFM hysteresis loops on the 10-nm-thick HZO thin
film31, and applied different methods to the results. Because the
SNR of the PFM signal is highly related to the Vac, we compared
SHO fitting and prediction by the LS, DDA-DNN, and PCA-DNN
methods on the PFM hysteresis loops with different Vac, as shown
in Fig. 5. At a low Vac, the prediction of the DDA/PCA-DNN yielded
a clear loop opening when compared to that of the traditional LS
at a low Vac, which gave an unclear hysteresis loop opening. The
loop opening of PCA-DNN was relatively clearer compared to
DDA-DNN at a low Vac, allowing clear observation of the switching
events of the HZO thin films.
The actual measurement using low Vac resulted in a different

SNR in the acquired signal. The unclear hysteresis loop opening of
the LS method (Fig. 5b, c) indicates the poor sensitivity of PFM
hysteresis measurement32, suggesting an inability of the LS
method to extract the piezoresponse buried in the noise for
SHO fitting. We examined the improvement of PFM hysteresis
measurement through the deviation of the PFM hysteresis loop, as
shown in Fig. 5d. The deviation of LS fitting was relatively higher

Fig. 4 As-acquired signal of the PPLN dataset from the Vac amplitude sweep measurement. a Amplitude spectral density as a function of
Vac, (b) amplitude spectral density as a function of a relative frequency, and (c) amplitude histogram with a Gaussian fit to obtain the steady
noise floor. The Gaussian fit was performed on the half lower part, indicated by the red dotted line, to avoid fitting on the PFM signal. d The
averaged fitted amplitude as a function of Vac. The highlighted level is the baseline of which the amplitude value is constant. The minimum
detectable displacement Amin, which is the baseline extracted from (d), is plotted in (e). The shadow highlight in (e) indicates the high noise
density area.
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than those of DDA-DNN and PCA-DNN, in which the DDA/PCA-
DNN were remarkably improved in the sensitivity of the PFM
hysteresis measurement at the low SNR. This improved PFM
sensitivity using the hybrid workflow allowed measurements at a
low Vac to avoid undesired responses caused by high voltage and
facilitated the measurement on materials with weak piezoelec-
tricity. We noted that, although DDA demonstrated a slightly
inferior denoising result than that of PCA, it could be further
improved with a neural architecture. Furthermore, if a noise signal
is one of the primary components, e.g., 60 Hz noise, PCA may not
properly work, and in this case, DDA may be more suitable.
In conclusion, in this study, we developed the hybrid prediction

methods of DDA/PCA-DNN for SHO parameter extraction to
address the poor fitting problem caused by data outliers in both
standard LS and DNN-LS fitting. Furthermore, we obtained a
satisfactory prediction comparison on the actual experimental Vac
amplitude sweep dataset of PPLN, in which the SNR of the SHO
parameter extraction was improved. Specifically, compared to the
LS method with an SNR of 4.8 and sensitivity of 0.48 pm, the SNR
has improved to 3.0 with a sensitivity of 0.30 pm for the PCA-DNN.
We also demonstrated that the hybrid workflow can be applied to
the PFM hysteresis loops in the HZO thin film. The hybrid methods
improved the sensitivity of PFM hysteresis loops compared to the
traditional LS fitting under a low SNR scenario because of the
sample’s weak piezoelectricity. Essentially, we pushed the funda-
mental limits of SNR and improved the sensitivity of the
instruments using machine learning without any hardware
modification for the PFM.
Because of its improved sensitivity, our hybrid approaches

could provide more chances to explore the low piezoresponse of
the ultra-thin ferroelectrics14 and may be useful for measurements
in challenging environments, such as in liquid settings15,16, where
the PFM measurements may result in a low response and a high
noise floor. In addition, we see feasibility in the rapid work of DDA/
PCA-DNN that could be helpful for the real-time analysis of

piezoresponse33. We also anticipate that deep learning-based
functional fitting or prediction will improve the sensitivity of
measurements in other AFM techniques, in which cantilever
resonance is used as an operational mechanism, including non-
contact AFM and BE-based techniques34,35, or even resonance-
based sensors, e.g., acoustic sensors. Furthermore, the idea of a
denoising neuron network hybrid with deep learning can be
helpful for other microscopic techniques, e.g., transition electron
microscopy36, as well.

METHODS
PFM measurements A commercial AFM (NX-10, Park Systems) with
Cr/Pt-coated conductive tips (Multi75E-G, BudgetSensors, nominal
spring constant k ≈ 3 Nm−1) was used for the AFM measurements.
The PFM measurements were performed using the AFM with a
function generator and data acquisition system (NI-PXIe 5122/
5412, National Instruments) with LabVIEW/MATLAB-based BE
measurements. The central frequency, bandwidth, and frequency
bins of the BE waveform were 375 kHz, 80 kHz, and 56,
respectively.
Materials The 10-nm-thick HZO thin film was deposited on

highly doped p-type silicon by atomic layere deposition, and the
PPLN was purchased from Asylum Research.
Neural network implementation Data processing was done

using Python 3.8. The DNN, DDA, and PCA (TensorFlow) were built
and trained using Keras with a TensorFlow backend. For the
computations, an AMD Ryzen 9 5900 × 12-Core processor with a
3.70 GHz CPU and 64 GB of RAM was used along with an NVIDIA
GeForce RTX 3080 Ti GPU with 12 GB of GDDR6 memory.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Fig. 5 PFM hysteresis loops in HZO thin film. The PFM was averaged from 3×3 mapping over an area of 1 × 1 μm2 with SHO fitting and
prediction using (a) 1.0 Vac, (b) 0.5 Vac, and (c) 0.25 Vac, respectively. The PFM hysteresis loops were extracted using the (blue) LS, (red) DDA-
DNN, and (green) PCA-DNN methods, respectively. All measured PFM piezoresponses were normalized by Vac. d Deviation of an averaged PFM
hysteresis loop corresponding to the SHO fitting and prediction methods.
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CODE AVAILABILITY
Python scripts used for the analysis are available from the authors upon request.
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