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High-accuracy thermodynamic properties to the melting point
from ab initio calculations aided by machine-learning
potentials
Jong Hyun Jung 1, Prashanth Srinivasan 1, Axel Forslund1 and Blazej Grabowski 1✉

Accurate prediction of thermodynamic properties requires an extremely accurate representation of the free-energy surface.
Requirements are twofold—first, the inclusion of the relevant finite-temperature mechanisms, and second, a dense
volume–temperature grid on which the calculations are performed. A systematic workflow for such calculations requires
computational efficiency and reliability, and has not been available within an ab initio framework so far. Here, we elucidate such a
framework involving direct upsampling, thermodynamic integration and machine-learning potentials, allowing us to incorporate, in
particular, the full effect of anharmonic vibrations. The improved methodology has a five-times speed-up compared to state-of-the-
art methods. We calculate equilibrium thermodynamic properties up to the melting point for bcc Nb, magnetic fcc Ni, fcc Al, and
hcp Mg, and find remarkable agreement with experimental data. A strong impact of anharmonicity is observed specifically for Nb.
The introduced procedure paves the way for the development of ab initio thermodynamic databases.
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INTRODUCTION
Thermodynamic properties such as the heat capacity, the
expansion coefficient, and the bulk modulus are key benchmarks
in materials design. They provide insight into phase stability,
phase transformations, microstructural stability and strength,
thereby giving guidance to synthesis and application. The heat
capacity is linked to thermodynamic potentials such as the Gibbs
energy, and thus facilitates the construction of phase diagrams. By
virtue of being experimentally measurable via calorimetry, the
heat capacity remains—ever since the seminal work of Einstein1—
among the most fundamental properties in basic research and
industrial applications2. Knowledge of the thermal expansion
coefficient is crucial, for example, to optimize the Invar behavior of
alloys used in instrumentation applications3. The bulk modulus is
vital in modeling strength and ductility up to high temperatures4.
Coordinated surveys of experimental data on thermodynamic

properties have been carried out in multiple works, resulting in
well-known series of books, e.g., Touloukian et al.5 and
Landolt-Börnstein6. Although these books have well served as
the basis for materials design, there is an urgent need for an
efficient extension of the databases triggered by the ever-
increasing demand for new and optimized materials. However,
applying experimental techniques alone is time-consuming and
thus inefficient.
To complement experiments and to rapidly obtain material

properties, ab initio databases have been intensively sought after
recently7–11. These databases allow for a quick, online access to a
wide range of material properties. As yet, these databases are to a
large extent based on T= 0 K (− 273.15 °C) data, and low-
temperature approximations to account for the effect of
temperature. For example, in one such database7, from a total
of 12,000,000 entries on material properties, only 1810 thermal
properties are available that are derived from harmonic or
quasiharmonic approximations. Even though these approxima-
tions can provide rapid results (though not for all systems), they

do not consider any explicit finite-temperature vibrations and
coupling effects, rendering them unsuitable at elevated
temperatures12.
To predict reliable high-temperature thermodynamic proper-

ties, an accurate representation of the system’s free energy is
needed, including in particular explicit anharmonicity, i.e.,
phonon–phonon interactions and interactions of phonons with
other excitation mechanisms (electronic, magnetic). Approxima-
tion schemes have been developed to account for
phonon–phonon interactions. One class of approaches utilizes
effective, renormalized harmonic Hamiltonians13–16. Another
approximate route involves the use of a low-temperature
perturbative expansion17. Though often efficient, such approxima-
tions can be inaccurate at high temperatures and for systems with
strong anharmonicity12,18.
Explicit anharmonicity can be included up to all orders using

thermodynamic integration (TI), wherein one computes the free-
energy difference between a reference state and density-
functional-theory (DFT)19. Over the last decade, several improve-
ments have been made to TI-based methods20–22. Notably, the
upsampled thermodynamic integration using Langevin dynamics
(UP-TILD) (TI to low-accuracy DFT followed by “upsampling”)12,23

and the two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) (UP-TILD split into two stages with an
intermediate potential)24 have increased computational perfor-
mance. Recent developments have been directed towards
exploiting advancements from machine learning25–27. The so-
called moment tensor potentials (MTPs)28 have proved to be one
of the most efficient machine-learning potentials29–31. The
application of MTPs within the TU-TILD formalism has further
improved the efficiency of free-energy calculations18,32.
Despite the advancements, free-energy calculations, including

the impact of anharmonicity, have remained challenging until
now, even for supposedly ‘simple’ elementary systems. A critical
aspect is the accurate determination of thermodynamic
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properties, for which numerically converged first and second
derivatives of the free energy are indispensable. The situation is
illustrated in Table 1 for four prototype systems covering the
fundamental crystallographic structures of metals, i.e., bcc Nb, fcc
Ni and Al, and hcp Mg. Although the first thermodynamic
calculations including anharmonicity were done as early as 2002
for fcc Al20, more recent studies have either neglected anharmo-
nicity (empty fields in the table) or have utilized approximate
approaches. Only a few of the studies included explicit
anharmonicity to DFT accuracy (marked in bold). The situation is
worse for the other elements, for which almost no information is
available on thermodynamic properties, including anharmonicity
at the full DFT level. A low-temperature expansion as performed in
ref. 17 is particularly uncertain for high-melting elements with
strong anharmonicity, such as Nb. This explains why the data was
analyzed only below 1000 K17. At higher temperatures, Nb
experiences large anharmonicity which strongly impacts the
thermodynamic properties. To account for such features, explicit
anharmonicity needs to be captured to all orders and the
derivatives of the free-energy surface need to be stabilized by
higher-order parameterizations on dense volume–temperature
(V, T) grids of explicitly computed free energies.
Summarizing the current state-of-the-art in finite-temperature

ab initio simulations, it has to be concluded that a holistic
computational methodology to readily obtain accurate thermo-
dynamic properties is not yet at hand. Consequently, ab initio
thermodynamic properties are only very scarcely and inconsis-
tently available in the literature, even for elementary systems. This

clearly hampers the development of ab initio thermodynamic
databases.
In the current paper, we present such a holistic computational

procedure with which affordable, fully anharmonic free-energy
calculations become possible on a sufficiently large number of
(V, T) points (Table 1). As shown in this work, a dense sampling and
appropriately chosen parametrizations of the free energy are
mandatory and facilitate the computation of thermodynamic
properties to highest DFT accuracy. The proposed procedure
encompasses key insights and techniques distilled from several of
the above-mentioned studies12,18,24,33. We lay down a detailed,
complete, and pedagogical description of all the steps of the
procedure (“Methods” section below and Supplementary Informa-
tion) and discuss all relevant numerical and performance aspects.
An important ingredient is the direct-upsampling technique34—

a modification to TU-TILD—where the upsampling is performed
directly on MTP configurations. The upsampling establishes DFT
level accuracy and accounts for the impact of vibrations on
electronic and magnetic free energies. Direct upsampling was
introduced previously on a preliminary, purely theoretical example
(multi-component alloy)34. However, the convergence, robustness
and optimization of the upsampling was not touched upon and
has remained elusive. In the present work, we therefore perform a
systematic and rigorous application and analysis of direct
upsampling. Importantly, our analysis provides a measure of the
number of configurations needed for convergence of the
upsampled free energy, which is crucial in keeping the number
of highly expensive DFT calculations to a minimum. Another key
ingredient to our procedure is the fitting approach and the

Table 1. Ab initio studies of the isobaric heat capacity (Cp), the thermal expansion coefficient (α), and the bulk modulus (B) for bcc Nb, fcc Ni, fcc Al,
and hcp Mg.

Year Ref. Elements DFT methodology Contributions to F Cah
p αah Bah

XC Potential E0K el qh ah Grid for ah

1988 50 Al, Nb LDA ASW x x

2002 20 Al PW91 USP x x TI 7 V, T points

2006 58 Mg LDA, PW91 PAW x x x

2007 42 Al LDA, PBE PAW, AE x x

2007 59 Mg LDA NC x x x

2009 23 Al LDA, PBE NC x x x UP-TILD ≈ 40 V, T points x x

2010 60 Ni LDA, PBE USP x x

2011 38 Ni PBE PAW x x

2011 61 Al PW91 PAW x x x tight-binding MD 1P × 10T x

2012 62 Mg PBE PAW x x x

2014 63 Ni LDA, PBE PAW x x x

2014 17 Nb, Mg PBE PAW x x x low T expansion analytic, T < 1000 K x x x

2015 12 Al, Ni LDA, PBE PAW x x x UP-TILD 4V × 4T x

2015 64 Al PBE PAW x x

2015 65 Al, Ni LDA, PBE, GW PAW x x x

2016 66 Al LDA, PBE PAW x x x MD→ phonon several V, T points x x x

2017 67 Al LDA, PBE PAW x x x

2021 15 Al PBE USP x x x SCAILD, DAMA 3V × 3T, 1P × 3T x

2021 68 Al, Ni PBE PAW x x x

2021 69 Ni PBE EMTO x x x

2022 this work Nb, Ni, Al, Mg LDA, PBE PAW x x x direct upsampling ≥ 9V × 10T x x x

The corresponding exchange-correlation (XC) functionals and the potentials representing the core electrons are listed. The columns under “Contributions to F”
indicate which terms (0 K static energy “E0K”, electronic “el”, quasiharmonic “qh” and anharmonic “ah”) were included in the total free energy. For works that
included the anharmonic contribution, the number of volume V (or pressure P) and temperature T data points is mentioned. Studies including the explicit
anharmonic contribution up to all orders and to the accuracy of DFT are printed in boldface. All of the used abbreviations are expanded in the Supplementary
Information.

J.H. Jung et al.

2

npj Computational Materials (2023)     3 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



resulting robustness of the MTP interatomic potential. Here, we
propose a novel two-step approach of fitting the MTP to DFT data
with additional stabilization measures (by “harmonic” configura-
tions), which further reduces the number of expensive DFT
calculations and ensures stable simulations.
We apply the procedure to the above-mentioned, experimen-

tally well-assessed four prototypical systems (bcc Nb, magnetic fcc
Ni, fcc Al, hcp Mg) and provide a database-like collection of highly
converged equilibrium thermodynamic properties. Beyond the
main thermodynamic properties of interest (heat capacity,
expansion coefficient, bulk modulus) additional quantities are
tabulated in the Supplementary Information, and all properties are
provided online. Among the investigated systems, Nb offers the
most numerical challenges and insights into the methodology,
owing to its large anharmonicity, large impact of vibrations on
electrons, and long-range interactions14. In fact, the inherent
complexity even challenges the MTPs in reproducing ab initio data
for Nb. Calculations for Ni and Al are performed on much denser
(V, T) grids in comparison to previous results12,23 leading to an
improved and systematically assessed convergence of the
thermodynamic properties. Some of the thermodynamic proper-
ties of Ni (including the impact of magnetism) and Al are reported
here for the first time at the full DFT level of accuracy (bulk
modulus for Al and Ni, expansion coefficient for Ni). For both Nb
and Mg, the current work is the first instance of evaluation of
thermodynamic properties, including explicit anharmonicity up to
the melting point with DFT accuracy.

RESULTS
General overview of the methodology
The most integral part of the procedure is an accurate
representation of the free-energy surface up to the melting point
over the relevant volume range, from which thermodynamic
properties can be derived at various pressures and temperatures.
This calls not only for highly stable absolute free-energy values,
but also for stable first and second derivatives of the free-energy
surface. Essential to achieving this stability is a dense and
optimally distributed set of (V, T) points on which explicit free-
energy calculations are performed, such as to obtain a smooth
and converged parametrization of the surface. This is illustrated in
Fig. 1f, wherein the blue dots depict a representative and
converged (V, T) grid and the arrows the derivatives along
different directions. To this end, a fast and reliable method is
needed to obtain the free energy for every single (V, T) point, and
on that account, we utilize the direct-upsampling method aided by
the outstanding performance of MTPs (Fig. 1a–e).
The relevant excitation mechanisms can be captured by starting

with the adiabatic decomposition of the total free energy F(V, T)
according to the free-energy Born–Oppenheimer approximation35,
as given by

FðV ; TÞ ¼ E0KðVÞ þ FelðV ; TÞ þ FvibðV ; TÞ þ FmagðV ; TÞ: (1)

Here, E0K denotes the 0 K total energy of the static lattice; Fel is the
electronic free energy, including coupling from atomic vibrations;
Fvib is the vibrational free energy which, in our framework, is
further decomposed into an effective quasiharmonic (QH) and an
anharmonic (AH) part Fqh and Fah, respectively; Fmag is the
magnetic free energy including the coupling from electronic and
atomic vibrations. The various free-energy contributions and their
impact on the thermodynamic properties are exemplified for Ni in
Fig. 1g–j.
Contrary to the other excitation mechanisms, there is a lack of

standard DFT methods to self-consistently calculate the magnetic
excitations. The reasons for this are the complex coupled
magnetic degrees of freedom36 and the relevance of longitudinal
spin fluctuations (LSFs)37. So far, one has to resort to effective

Heisenberg models fitted to the experimental Curie tempera-
ture38, DFT-informed semi-empirical heat capacity models, and
more recently, magnetic MTPs to facilitate constrained magnetic
calculations to allow sampling the LSFs with MD39. Here, for Ni, we
use a thoroughly tested DFT-informed semi-empirical model33.
A key element in our methodology is the preparation of a high-

accuracy MTP (high-MTP) in an efficient two-step approach. First, a
lower-quality MTP (low-MTP) is fitted to inexpensive low-
converged DFT data. This low-MTP is used to rapidly generate
MD snapshots at the melting point at various volumes. High-
converged DFT (high-DFT) calculations are then performed for the
snapshots and the data is used to fit the high-MTP. The high-MTP
is stabilized by introducing a “harmonic” configuration containing
small interatomic distances into the fitting procedure. This
harmonic configuration is obtained by sampling the phase space
with an effective QH reference, which is fitted to low-temperature
high-DFT forces. This approach ensures that the magnitude of the
forces remains physical during the following TI, especially when
atoms come close to each other for small λ coupling parameter
values due to the softness of the harmonic reference. The
resulting high-MTP is thus accurate and stable over the relevant
part of the phase space.
To obtain the free energy, we perform a λ-based TI from the

effective QH reference to the high-MTP. The TI is performed on
(V, T) points on a dense grid in large-size supercells and over long
time scales to achieve statistical convergence. To corroborate the
free-energy differences calculated using the TI, we also perform a
temperature integration, which serves both as a cross-check for
the TI and substitutes in cases where the TI becomes unstable
(e.g., when there is diffusion during the TI and a fixed-lattice
reference becomes inadequate). In order to achieve high-accuracy
free energies, we propose a modification, specifically a quantum
correction, to the conventional temperature integration, to yield
the same free-energy differences as the TI. A detailed description
of the quantum-corrected temperature integration is provided in
Supplementary Discussion 1E.
Direct upsampling on high-MTP snapshots is then utilized to

efficiently obtain DFT accuracy, including the electronic and
magnetic contributions. These contributions implicitly include the
coupling effect from thermal vibrations. Once the total free
energies are calculated across all the (V, T) grid points, they are
parametrized to obtain highly converged free-energy surfaces. A
Legendre transformation on the free-energy surface gives the
Gibbs energy G(p, T)= F(V, T)+ pV, from which thermodynamic
properties at a given pressure are obtained. The Methods section
contains further information on the involved steps, and the
Supplementary Information all relevant details.

Accuracy of the MTPs
An accurate MTP that can reproduce ab initio data is crucial for the
efficiency of our proposed methodology. The smaller the RMSE,
the fewer the number of snapshots that are needed for
converging the direct upsampling, as will be discussed below. In
this regard, Fig. 2 shows the root-mean-square error (RMSE) in the
energies and forces of the high-MTP on a high-DFT test set at the
respective melting point for the four systems. Comparatively,
although the MTP for Nb shows a larger RMSE, the values are still
sufficiently small for an efficient evaluation of thermodynamic
properties, given our detailed analysis and understanding of direct
upsampling. The relatively large RMSE of Nb probably arises from
the large anharmonicity and a relatively complex atomic distribu-
tion for Nb, as also observed for other highly anharmonic systems
in prior works18,34,40. In Supplementary Methods 2C3, we assess
the performance of MTPs with increasing levels.
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Fig. 1 Schematic description of the entire workflow using fcc Ni as an example. The upper box illustrates different stages of direct
upsampling: a TILD at different temperatures from effective QH to MTP (whose force RMSEs are shown in (b, c)), and d, e the upsampling to
high-DFT. The center box is the crux of the workflow. f is a representation of the free-energy surface, with the (V, T) mesh on which free-energy
calculations are performed represented by blue dots, volumes at Tmelt chosen for MTP training set represented by green dots, volumes for the
low-temperature effective QH fitting represented by green crosses, the 0 K E–V curve in purple and different derivatives represented by black
arrows. g is the free energy as a function of volume at the melting point calculated while including different excitations. The lower box shows
the numerically computed (h) isobaric heat capacity Cp, i linear thermal expansion coefficient α and j adiabatic bulk modulus BS along with a
comparison to experimentally calculated values41,51,52. (Veq= Veq(T) denotes the equilibrium volume at T and a given pressure, V0K= Veq(0 K)
and Vmelt= Veq(Tmelt), where Tmelt is the experimental melting temperature at ambient pressure; S is the entropy).
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Optimization of direct upsampling
The most expensive stage during the free-energy calculations is by
far the upsampling from high-MTP snapshots to high-DFT (Table 2).
The efficiency of the methodology is thus significantly improved
by minimizing the number of high-DFT calculations during direct
upsampling, while still maintaining highest accuracy in the final
free energies. The number of high-DFT calculations needed to
achieve a certain accuracy is correlated to the RMSE of the high-
MTPs.
Figure 3 shows such a relation for Nb for different convergence

criteria (symbols connected with lines), featuring a decreasing
number of snapshots for a decreasing energy RMSE of the MTPs. A
model MTP is used here as the target system in the upsampling
(further details in Supplementary Discussion 1A). The trend can be
analytically formulated irrespective of the system solely by using
the energy RMSE of the MTP and the target accuracy. By
approximating the standard deviation of the upsampling as the
MTP energy RMSE, assuming a normal distribution, and using the
standard error within a 95% confidence interval, the number of
required snapshots is estimated as

n ¼ 2 RMSE
c

� �2

; (2)

where ± c is the target accuracy. For instance, for Nb with an MTP
RMSE of 2 meV/atom, around 40 snapshots are needed to achieve
a target accuracy of 0.6 meV/atom. This is indicated with the
purple star in the figure. Besides Nb, the other systems in this work
have high-MTPs fitted even to within 0.5 meV/atom and 0.05 eV/Å
accuracy in energies and forces, respectively (Fig. 2), requiring
much fewer snapshots for the convergence of the direct
upsampling. For instance, Mg with an MTP RMSE of 0.16 meV/
atom would require only around 10 snapshots to reach 0.1 meV/
atom accuracy, as indicated by the red star in Fig. 3. The RMSEs
here are evaluated at the melting temperature, and provide the
largest estimates of the standard deviation. At lower tempera-
tures, the standard deviation decreases and fewer snapshots are
needed.

Significance of the (V, T) grid density
The proposed formalism enables affordable full free-energy
calculations on a higher number of (V, T) points as compared to
previous works. The importance of the (V, T) grid density is
illustrated in Fig. 4a, b, which show the anharmonic free energy for
Nb at Tmelt and the resulting bulk modulus calculated using
different grid densities. The anharmonic free energies in Fig. 4a
are given with respect to the anharmonic free energy calculated
using the highest-density grid (11V × 13T). As the grid density
increases, the anharmonic free energy begins to converge as
noticed by the closer proximity of the dashed red curve to the
solid black line, in comparison to the dotted gray curve. It is
observed that even a small difference in the anharmonic free
energy (about 0.5 meV/atom at Tmelt) can lead to a considerable
change in the high-temperature bulk modulus (18% change at
Tmelt in the drop in the bulk modulus from 0 K). Moreover,
calculations on a coarse 4V × 4T grid are also not sufficient to
capture the qualitative (more quadratic) behavior of the bulk
modulus at higher temperature (Fig. 4b). This reveals the
importance of a highly converged free-energy surface with
respect to the grid density, especially at higher temperatures
and higher volumes. For further improvement, we additionally
choose grid points above Tmelt and Vmelt to obtain converged
thermodynamic properties also at the melting point. Such a study
is made feasible owing to the rapidness of our methodology.

Fig. 2 Performance of the MTPs. The test set root-mean-square
errors (RMSEs) of the high-MTPs (level 20) in (a) energy (per atom)
and (b) forces in medium-size supercells.

Table 2. CPU-time estimate (in core hours) for different stages of the
free-energy calculation for Nb (PBE, 11 valence electrons) using the
current framework and using the previous TU-TILD methodology.

Stage Current
framework

TU-TILD

MTP fitting Low-MTP fitting 340 –

High-MTP fitting 8500 40,000

Total fitting time 8800 40,000

Speed-up (fitting) ×4.5 ×1

Free-energy calc. Effective QH fitting 11,000 13,000

ΔFqh→MTP 7700 7700

ΔFMTP→DFT,low – 1,630,000

(Direct) upsampling 410,000 410,000

Total free-energy
calc. time

430,000 2,100,000

Speed-up (free-
energy calc.)

×4.8 ×1

Total calculation
time for Nb

440,000 2,140,000

The ΔF and upsampling values are for a 11 × 13 (V, T) grid. The speed-up is
with respect to TU-TILD.

Fig. 3 Number of snapshots required for convergence of the
direct upsampling as a function of the energy RMSE of the MTP.
The colors represent different target accuracy as indicated in the
legend. The symbols connected by lines denote upsampling to an
Nb MTP model system. The purple and the red star show
upsampling from MTP to DFT at Tmelt for Nb within ±0.6 meV/atom
and for Mg within ±0.1 meV/atom, respectively. The error bars
denote a 95% confidence interval derived from independent sets of
calculations.
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Once free-energy calculations are performed on a sufficiently
dense (V, T) grid, it is crucial to parametrize the surface, in
particular the anharmonic free energy, with a sufficiently high-
order polynomial basis. This is illustrated in Fig. 4c, d which show
the anharmonic free energy (with respect to the 4th-order
parametrization) calculated using different orders and the
resulting thermal expansion coefficient. Although a second-order
polynomial fit (gray curve) of Fah(V, T) differs from the fourth order
by less than 1meV/atom, it amounts to a 20% difference in the
expansion coefficient at the melting point. As the order of the
polynomial increases further to three and four, the free energy
differs by less than 0.2 meV/atom, leading to converged thermo-
dynamic properties (red dashed and black solid curves fall on each
other).

Benchmarks of the methodology
Taking both an optimized direct upsampling and a converged (V, T)
grid into account, Table 2 shows the total computational cost of
obtaining thermodynamic properties to the desired accuracy using
the current framework for Nb. The values are compared to the state-
of-the-art TU-TILD+MTP scheme, in which MTPs were fitted directly
to AIMD energies and forces, and a second TI was performed from
the MTP to DFT, prior to upsampling. A 4.5-times speed-up is
achieved during high-MTP fitting by using the two-stage training
procedure (see the top half of Table 2). Through direct upsampling
from precise high-MTPs and an optimized number of snapshots, we
completely do away with the second stage of TU-TILD (TI from MTP
to DFT), thereby achieving a 4.8-times gain in speed during free-
energy calculations using a 11 × 13 (V, T) grid, shown in the bottom
half of the table. Although the speed-up coming from direct
upsampling in comparison to TU-TILD was mentioned in the work of
Zhou et al.34, here we optimize both the number of snapshots for a
single (V, T) point and the total number of grid points needed for the
evaluation of thermodynamic properties.

Free energies for the prototype systems
In Fig. 5, we highlight key insights from the calculated free-energy
surfaces, from which the target thermodynamic properties are
derived. The first column provides the Gibbs energy G(T) at
ambient pressure for the four elements using the GGA-PBE
approximation to the exchange-correlation (XC) functional. Gibbs
energies are the fundamental input to the calculation of phase
diagrams (CALPHAD41). On the total scale, the full DFT Gibbs
energy curves (solid lines) are closely tracing the CALPHAD values.
Differences can be noticed at high temperatures when the DFT
curves are referenced with respect to the CALPHAD data as shown
in the insets. The discrepancy is not a shortcoming of the present
methodology, but instead due to the inherent limitation of the
local nature of the standard XC functionals. For Al and Mg, we also
demonstrate the results using the LDA XC functional. Results from
both functionals can act as an “ab initio confidence interval”, as
was shown previously42.
In the second column in Fig. 5, the free energy at the melting

point is plotted as a function of volume. The F–V curves, including
all excitation mechanisms (solid lines), are analogous to the
conventional E–V curves at 0 K, but corresponding to Tmelt. They
contain, for example, information on the equilibrium volume and
the (isothermal) bulk modulus at the melting point. In contrast to
the E–V curves at 0 K, the F–V curves are dominated by thermal
excitations. The anharmonic contribution (calculated with the
effective QH as reference) is large for Nb (≈+50meV/atom, see
also the third column). This strong anharmonic behavior can be
intuited by the open bcc structure of Nb that favors vibrational
entropy, as compared to the close-packed fcc and hcp structures
for the other elements. The electronic free energies are large for
Nb and Ni (≈−100 and −50meV/atom), which can be corrobo-
rated with the Fermi-level contribution of a smeared-out
electronic density of states43. For Ni, the magnetic contribution
is as large as the electronic contribution, with its strength
determined by the local magnetic moments on the Ni atoms. It

Fig. 4 Convergence of thermodynamic properties. a Anharmonic free energy as a function of volume for Nb at Tmelt calculated by using
different grid densities. The free energy is plotted with respect to the values calculated using the largest grid (11V × 13T). b The corresponding
adiabatic bulk modulus for the three grids. c Anharmonic free energy for Nb at Tmelt calculated using a 11V × 13T grid but parametrized with
polynomials of a different order. The free energy is plotted with respect to the values calculated using the 4th-order parametrization.
d Corresponding thermal expansion coefficient for the three parametrizations.
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needs to be stressed that the impact of thermal vibrations on the
electronic and magnetic free energy is important, as the vibrations
break the symmetric arrangement of the atoms and thereby
significantly smoothen the electronic density of states.
As noted above, reaching the desired accuracy in the

thermodynamic properties that require the first and second
derivatives of the free energy requires control over sub-meV
differences in the free energies. In particular, it is of crucial
importance to faithfully describe the physically relevant variations
of the free energy with volume and temperature (cf. the wavy
dependence for Ni’s Fah(V) in Fig. 5), while at the same time
avoiding any overfitting. The sufficiently dense sets of explicitly
computed F(V, T) points are seen in the right column in Fig. 5,
guaranteeing convergence with respect to the number of basic
elements in the expansion of the free-energy surface.

Thermodynamic properties for the prototype systems
Figure 6 shows the target thermodynamic properties—the
isobaric heat capacity Cp(T), the linear thermal expansion
coefficient α(T) and the adiabatic bulk modulus BS(T)—calculated
up to the melting point using the current ab initio framework, for
Nb, Ni, Al, and Mg, including the different excitation mechanisms

(provided in the legend). Experimental values are shown as blue
circles for comparison, and our calculations, including all
excitation mechanisms (solid lines), show excellent agreement.
The unprecedented accuracy achievable with the current

framework is apparent in the results for Nb (first row in Fig. 6).
We have shown in the previous section that Nb has the largest
electronic and anharmonic contribution of the four systems
studied. Nb also possesses long-range interactions at 0 K that
gradually disappear as temperature increases14. The disappear-
ance is validated by explicit TI calculations on large-size cells from
high-MTP to DFT (see Supplementary Discussion 1D). In addition
for Nb, the energies predicted by the high-MTP (fitted at Tmelt) on
low-temperature configurations with de-coupled phonons
become less accurate (see Supplementary Discussion 1D3).
However, the loss in accuracy gets fully compensated for in the
directly upsampled free energy. Considering all such challenges
offered by Nb, we still achieve remarkable accuracy with
experiments. In particular, the calculations are able to reproduce
the strong temperature dependence and the curvature of the
expansion coefficient all the way to the melting point. This is
made possible by virtue of a dense (V, T) grid on which the free-
energy calculations are performed, leading to highly converged
numerical first and second derivatives.

Fig. 5 Ab initio calculated thermodynamic potentials for Nb, Ni, Al, and Mg. Gibbs energy G(T) at 100 kPa (first column), free energy F(V) at
Tmelt (second column), and anharmonic free energy Fah(V, T) (third column), using the PBE XC functional. The G(T) values are referenced to the
minimum energy of the static lattice at 0 K. Calculations using the CALPHAD method41 (aligned to the ab initio values at room temperature)
are shown in blue dots for comparison. The insets contain the full ab initio Gibbs energy at high temperatures with respect to the CALPHAD
values, with the results for LDA added for Al and Mg. For G(T) and F(V, Tmelt), curves including different excitation mechanisms are shown. The
melting temperatures Tmelt correspond to experimental values. The error bars denote a 95% confidence interval.
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The results for Nb also showcase how the different thermo-
dynamic properties probe distinct features of the free-energy
surface. The strong anharmonic free energy discussed above
affects significantly the expansion coefficient (yellow dotted vs red
dashed line) and contributes to its curvature. In contrast, the heat
capacity is much less affected by the anharmonic free energy. The
situation is opposite for the electronic thermal excitations which
strongly increase the computed heat capacity of Nb bringing it
close to the experiment, while the expansion coefficient is less
affected. It is the dependence on derivatives along distinct
directions on the free-energy surface that brings about the
different behavior of the thermodynamic properties.
In the second row in Fig. 6, we present the results for Ni. By

virtue of its construction, the model can well predict the peak in
the heat capacity at the Curie temperature arising from the
second-order magnetic phase transition. The validity of the
current approach for calculating magnetic free energies and the
negligibility of contributions beyond (e.g., LSFs) have been
thoroughly proven in earlier works33,44. However, the magnetic
model utilized for Ni cannot capture the small peak in the
experimental expansion coefficient originating from the magnetic
phase transition. Other, more elaborate magnetic models could be
incorporated into the present framework to further improve the
magnetic description.

The results for Al and Mg (last two rows in Fig. 6) are provided
for both the LDA and PBE XC functionals. The difference coming
from the XC functionals is evident in the calculated bulk modulus,
where PBE and LDA results are identified as a lower and upper
bound to the experimental bulk modulus, providing an ‘ab initio
confidence interval’42 similarly as for the Gibbs energies men-
tioned above. Although this has been documented for some
systems and properties in literature23,42, we report it for the first
time for the bulk moduli at full DFT accuracy.

DISCUSSION
The procedure described in this work presents a complete and
very efficient methodology to predict highly accurate ab initio
free-energy surfaces and thermodynamic properties up to the
melting point. The procedure has been developed and stream-
lined by considering key insights and findings from ab initio
studies over the past decade, and by utilizing direct upsampling
and advanced machine-learning potentials (i.e., MTPs). The current
proposition makes calculations on a very dense (V, T) grid
affordable. It also takes the relevant finite-temperature excitations
into account—the electronic free energy, the magnetic contribu-
tion, anharmonicity, and coupling effects. Consequently, even sub-
meV differences that affect high-temperature thermodynamics are
factored in.

Fig. 6 Ab initio calculated Cp(T), α(T), and BS(T) up to the melting point for Nb, Ni, Al, and Mg. Calculations are compared to experimental
results shown in blue circles. Results considering different excitation mechanisms (effective QH (qh), anharmonic (ah), electronic (el), and
magnetic (mag)) are shown. Nb and Ni results are for PBE, while for Al and Mg LDA results are additionally shown. The following experimental
values are used for comparison: Nb41,53–55, Ni41,51,52, Al5,41,56, and Mg5,41,57.
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The proposed procedure can be combined with any ab initio
electronic structure approach, and with advanced exchange-
correlation functionals, e.g., hybrid functionals45, meta-generalized
gradient approximations46, or even with the random-phase-
approximation and the adiabatic connection fluctuation–dissipation
theorem47. The more computationally expensive functionals can be
employed either for the E–V curve or during upsampling in order to
reach higher ab initio accuracy. The application and efficiency of the
procedure relies primarily on accurately fitted MTPs. Hence, the
technique can also be employed to more complex and possibly
disordered systems such as multi-component alloys, for some of
which MTPs within 3meV/atom energy RMSE (similar to that for Nb)
exist in literature40. The here-derived optimization and analysis (in
particular for the direct upsampling, where the RMSE of the MTP
determines the efficiency) can be applied to efficiently obtain well-
converged free energies. Free energies of arbitrary phases can be
computed, as long as it is possible to perform sufficient dynamics
within the considered phase, such as to obtain statistically converged
quantities. In addition to equilibrium phases, properties of meta-
stable and dynamically stabilized phases are accessible. Once bulk-
free energies are available, the procedure can be extended to
systems with various kinds of defects (e.g., vacancies, surfaces,
interfaces, grain boundaries). With the calculated free energies of the
ideal bulk and the defective structure, one can evaluate the
formation Gibbs energy of the respective defect. In the case of
thermal vacancies, their presence at elevated temperatures will
mildly contribute to the thermodynamic properties of the system,
providing an even more realistic comparison to experimental data.
For example, in Al, thermal vacancies are known to add 0.07 kB to the
heat capacity at the melting point23. Predictions of highly accurate
solid free-energy surfaces are also required as a reference for liquid
phase calculations, e.g., in the TOR-TILD methodology48. From the
free-energy surface, other thermodynamic properties such as the
enthalpy, entropy, and Grüneisen parameter can be likewise derived.
Data sets for the studied properties—Gibbs energy, enthalpy,

entropy, isobaric, and isochoric heat capacity, thermal expansion
coefficient, isothermal, and adiabatic bulk moduli—of the here
investigated prototype systems are tabulated in Supplementary
Discussion 4 and provided online (see “Data availability” and
“Code availability”). With the introduced, robust and efficient
methodology, we are well-positioned to extend this work to other
systems and develop an entirely ab initio thermodynamic
database.

METHODS
An overview of the steps involved in our framework to calculate
the relevant free-energy contributions and eventually thermo-
dynamic properties is provided here, with more details in the
Supplementary Information.

Energy–volume curve and Debye–Grüneisen model
(Supplementary Methods 2A)
We start with a conventional 0 K energy–volume (E–V) curve
calculation with very well-converged DFT parameters (2 × ENMAX,
i.e., twice the maximum recommended energy cut-off, and more
than 60,000 k-points (kp) × atoms) in a reasonable volume range
(typically −8% to + 12%) around the 0 K equilibrium volume on a
mesh of at least 11 volumes. The DFT computed values are used to
fit the Vinet equation of state49 to obtain E0K(V) for Eq. (1). The E–V
curve is also used to obtain the free energy within the
Debye–Grüneisen model50, from which we estimate the relevant
volume range for the free energy calculations. For the melting
temperature, we use experimental values.

Low-quality MTP (Supplementary Methods 2B)
In order to efficiently generate a highly accurate MTP (next point),
first, a lower-quality MTP is obtained to rapidly sample the
vibrational phase space. For that purpose, AIMD is performed
using low-accuracy DFT (low-DFT) parameters (1 × ENMAX energy
cut-off, 288–432 kp × atoms and without electronic temperature)
on a coarse set of four volumes from the relevant volume range, at
the melting point, on small-size supercells of 32–54 atoms and a
timestep of 5 fs for 1000 steps. Uncorrelated snapshots are chosen
to train a lower-quality MTP (low-MTP) with few basis functions.
Specifically, levels of levmax ¼ 6-14 and radial basis sizes of NQ= 8
are used, resulting in 25–88 fitting parameters. The minimum
distances (Rmin) are 1.33–2.00Å and the cutoff radii (Rcut) are
4.96–6.24 Å.

High-quality MTP (Supplementary Methods 2C)
The low-MTP is used to perform NVT MD simulations in a medium-
size supercell (96–128 atoms) for 8–10 volumes in the relevant
volume range, at the melting point, using a timestep of 1 fs for
9000 steps. From the trajectories, 30 snapshots are chosen from
each volume, and DFT calculations with high-converged (high-
DFT) parameters (1.5 × ENMAX and 6100–8200 kp × atoms) are
performed to serve as the training set for a higher accuracy MTP
(high-MTP). The high-MTP has significantly more basis functions
than the low-MTP, i.e., a level lev max ¼ 20 and NQ= 8 radial basis
functions, resulting in 332 fitting parameters. A ‘harmonic’
snapshot generated with the effective QH reference (next point)
is included into the fitting database to stabilize the high-MTP for
small interatomic distances. The resulting Rmin are 1.36–2.00 Å and
the Rcut are 4.97–6.10 Å. The electronic contribution is not
included in the DFT database for the high-MTP, because the
current MTPs do not entail electronic degrees-of-freedom. Note
that within our approach, no expensive high-DFT AIMD is
required.

Effective QH reference (Supplementary Methods 2D)
We use an effective QH model as a reference for the TI to high-
MTP. To obtain it, low-temperature MD (e.g., at 20 K) is run using
the high-MTP on medium-size supercells at several volumes in the
relevant range for 10,000 steps of 1 fs each. From this, we choose
30 snapshots for each volume and calculate high-DFT forces. An
effective dynamical matrix is then fitted to these forces and
extended to larger system sizes. Each of the force constants is
parametrized using a second-order polynomial in V. For each V,
Fqh(T) is calculated on a 30 × 30 × 30 q-point mesh in
reciprocal space.
An effective QH reference is preferred to a 0 K QH due to its

wider applicability and stability (even for 0 K unstable systems that
become stable at elevated temperatures), efficiency for low-
symmetry systems, and a fitting dataset where errors in atomic
forces are averaged out.

TI from effective QH to high-MTP (Supplementary Methods
2E)
Next, we perform TI using Langevin dynamics (TILD) to obtain the
free-energy difference between the effective QH reference and
the high-MTP. The high-MTP is used as an intermediate potential
to minimize high-DFT calculations for the final free energy. During
TILD, the free-energy difference is given by

ΔFqh!MTP ¼
Z 1

0
dλ EMTP � Eqh
� �

λ
; (3)

where λ(= 0 . . . 1) dictates the coupled system with energy
Eλ= (1− λ)Eqh+ λEMTP. TILD is performed on large-size supercells
(432–500 atoms) with a timestep of 1 fs for 50,000 steps. For each
(V, T), a very dense set of around 20 λ values is used. We then
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integrate over λ with an analytical fit based on a tangential
function to obtain ΔFqh!MTP.
In certain situations, the λ-based TILD calculations cannot be

straightforwardly performed. For example, in systems that feature
diffusion of atoms and exchange of sites during the TI, a fixed-
lattice reference such as the effective QH becomes inadequate.
Then, it is possible to utilize an alternative method to calculate
free-energy differences, i.e., temperature integration. In the
present study, temperature integration has been used to
corroborate the TILD calculations. Details and special considera-
tions about this method can be found in Supplementary
Discussion 1E.
One should keep in mind that the present step of the procedure

involves no DFT calculations. Hence, we can afford to perform
highly converged free-energy calculations on large-size supercells
which also include contributions from vibrations with long
wavelengths. Moreover, finite-size effects (e.g., stacking fault
formation in small-size Mg hcp cells, see Supplementary Discus-
sion 1F) are avoided by utilizing large-size supercells.
Figure 1a–c encapsulates the just discussed three stages. Here,

EMTP � Eqh
� �

is plotted against λ for a single volume and a set of
temperatures for a 500-atom Ni supercell, where λ= 0 corre-
sponds to the effective QH reference and λ= 1 corresponds to a
high-MTP. The high density of λs as seen in the figure, achieves
good convergence and is affordable due to the inexpensive
nature of this step.

Direct upsampling from high-MTP to high-DFT
(Supplementary Methods 2F)
In the spirit of the direct-upsampling approach, we perform
high-DFT runs on high-MTP-generated snapshots (illustrated by
red dots in Fig. 1d). In addition to reaching DFT accuracy for the
vibrational free energy, we also include the electronic
contribution. The notion behind upsampling from MTP relies
on its superior accuracy, due to which highly converged
upsampled energies can be achieved within a few tens of
snapshots (as discussed, the speed of convergence depends on
the accuracy of the MTP. For the full analysis, see Supplemen-
tary Discussion 1A).
Since this step involves computationally demanding calcula-

tions (Table 2), they are restricted to medium-size supercells. The
upsampling is performed in two parts. First, the free-energy
difference between high-MTP and high-DFT is calculated using the
free-energy perturbation expression, as given by

ΔFup ¼ �kBT ln exp � EDFT � EMTP

kBT

� �� �
MTP

; (4)

where EDFT and EMTP are high-DFT (without electronic tempera-
ture) and high-MTP energies. The averaging is performed on
uncorrelated high-MTP snapshots. Equation (4) corresponds to the
full free-energy perturbation formula. We note that at least the
second-order approximation of the perturbation equation is vital
to capture the full upsampled free-energy difference, (see
Supplementary Discussion 1A1) Adding the upsampled free
energy to ΔFqh!MTP from the previous stage gives the anharmonic
vibrational contribution:

Fah ¼ ΔFqh!MTP þ ΔFup: (5)

In the second part, we calculate the electronic free energy Fel

using the same snapshots, as given by

Fel ¼ �kBT ln exp � EDFTel � EDFT

kBT

� �� �
MTP

; (6)

where EDFTel is the high-DFT energy, including electronic tempera-
ture. Since it is performed on MD snapshots, the upsampling also
accounts for the effect of atomic vibrations on the electronic free
energy.

For magnetic systems (Ni, in this case), we extract average
magnetic moments from the high-DFT runs (including electronic
temperature). Along with the experimental Curie temperature,
they are used as model parameters for an empirical heat capacity
formula as a function of temperature, and for the corresponding
numerically integrated magnetic free energy Fmag(V, T).

Parametrization and thermodynamic properties
(Supplementary Methods 2G)
A sufficiently dense (V, T) grid is necessary to fit a smooth free-
energy surface and numerically calculate converged second
derivatives in the evaluation of Cp(T) and BS(T) all the way to Tmelt.
For this purpose, it is also recommended to extend the grid further
(by one or two points in V and T) beyond the corresponding
melting temperature and volume, i.e., to T > Tmelt and V > Vmelt.
Smooth surfaces in (V, T) are fit to each of the free-energy

contributions. For a dense temperature mesh (steps of 1 kelvin),
Fqh(T) is parametrized with a third-order polynomial in V to obtain
the effective QH free-energy surface Fqh(V, T). The anharmonic free
energies Fah at every (V, T) grid point are used to fit a continuous
anharmonic free-energy surface using renormalized effective
anharmonic frequencies23,33. Here, an adequate polynomial basis
is a requisite for the frequencies since the derived thermodynamic
quantities are particularly sensitive to them. A fourth-order
polynomial in V and T is found to be a conservative and well-
converged basis set. The total vibrational free energy can be
obtained by summing up the effective QH and anharmonic
surfaces: Fvib(V, T)= Fqh(V, T)+ Fah(V, T). The electronic free ener-
gies Fel at every (V, T) grid point are used to fit a polynomial in
(V, T)43 to obtain a continuous electronic free-energy surface
Fel(V, T). The average magnetic moments m at every (V, T) grid
point are first parametrized with a polynomial in T, and later with a
polynomial in V for every 1-kelvin step, to obtain a continuous
Fmag(V, T) surface.
All contributions are discretized in 1-kelvin steps, and the total

free energy is obtained by summing the contributions to the E–V
curve (Eq. (1)). Numerical first and second derivatives along
different directions are performed to obtain Cp(T), α(T), and BS(T).

DATA AVAILABILITY
The necessary data are available in the DaRUS Repository and can be accessed via
https://doi.org/10.18419/darus-3239. The repository contains the training sets (VASP
OUTCAR files), the low-MTPs and high-MTPs, the effective QH potentials, and the final
thermodynamic database (properties) for the four unaries.

CODE AVAILABILITY
The scripts for performing thermodynamic integration, direct upsampling, free-
energy parametrizations, and thermodynamic database calculations are available on
request from the authors.
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