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Graph neural network modeling of grain-scale anisotropic
elastic behavior using simulated and measured microscale data
Darren C. Pagan1✉, Calvin R. Pash1, Austin R. Benson2 and Matthew P. Kasemer3

Here we assess the applicability of graph neural networks (GNNs) for predicting the grain-scale elastic response of polycrystalline
metallic alloys. Using GNN surrogate models, grain-averaged stresses during uniaxial elastic tension in low solvus high-refractory
(LSHR) Ni Superalloy and Ti 7 wt%Al (Ti-7Al) are predicted as example face-centered cubic and hexagonal closed packed alloys,
respectively. A transfer learning approach is taken in which GNN surrogate models are trained using crystal elasticity finite element
method (CEFEM) simulations and then the trained surrogate models are used to predict the mechanical response of microstructures
measured using high-energy X-ray diffraction microscopy (HEDM). The performance of using various microstructural and
micromechanical descriptors for input nodal features to the GNNs is explored through comparisons to traditional mean-field theory
predictions, reserved full-field CEFEM data, and measured far-field HEDM data. The effects of elastic anisotropy on GNN model
performance and outlooks for the extension of the framework are discussed.
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INTRODUCTION
The local micromechanical response of grains embedded within a
polycrystal is dictated not only by an isolated grain’s features (e.g.,
defect state or crystallographic lattice orientation), but also by the
features and mechanical response of adjoining grains (i.e., the
local grain “neighborhood”). Various linking hypotheses or
methods in which grains are embedded within homogeneous
matrices—most notably the Eshelby method1—attempt to
capture the average features of grain-scale response, but, by
construction, do not consider the variation of behavior created by
the interactions of specific grains within their local neighbor-
hoods. The relatively recent ability to explicitly model grains and
grain neighborhoods in three-dimensional (3D) polycrystals using
both finite element2 and spectral3 methods has allowed these
neighborhood effects to be more thoroughly explored. However,
the use of these methods comes at a sometimes-significant
computational cost. Increasing computational complexity, parti-
cularly with increases in microstructural fidelity or the inclusion of
various plastic deformation mechanisms in modeling efforts, limits
the number of microstructural configurations that can be tested,
which consequently limits the ability of these models to be
embedded within larger-scale simulations (considering current
computational capabilities). To address these challenges, low-
computational-cost surrogate models which can rapidly evaluate
the micromechanical response and evaluate large regions of
microstructure-parameter space are necessary. In this work, we
propose and demonstrate that the fundamental network (or
graph) structure of polycrystals make them candidates for
surrogate mechanical modeling through graph neural networks
(GNNs)4–6. We demonstrate the utility of this surrogate modeling
with GNNs trained to predict grain-scale elastic response in two
example alloy systems. The GNNs are trained with microscale
crystal elasticity finite element method (CEFEM) simulations, and
then tested against grain-scale elastic response measured using
high-energy X-ray diffraction microscopy (HEDM).

Supervised machine learning has become a primary choice for
generating surrogate models for predicting the mechanical
properties and performance of engineering alloys7. At the
microscale, multiple efforts have utilized convolutional neural
networks (CNNs) to predict deformation fields at sub-grain length
scales in virtual polycrystals8–10. In these efforts, polycrystals are
represented by a grid of voxels containing microstructural
descriptors such as lattice orientation, and the CNN learns spatial
correlations between the voxels to generate full-field predictions.
In particular, CNNs take advantage of the grid structure of the data
to learn filter structures consisting of a series of weights. These
weights group (pool) together neighboring grid values (in this
case microstructural features) to capture and predict the effects of
the neighborhood. The results of this approach are very
promising, but an issue is that (most) materials are not naturally
structured in a grid-like fashion (although due to data collection
strategies, materials are often represented as such). In the cases of
polycrystalline materials at the microscale, the grains themselves
are more naturally represented in an unstructured, connected
format often referred to as a graph.
Broadly, a graph is a structure in which “vertices” or “nodes” are

connected through “edges”. Both nodes and edges can further be
described via associated attributes or features. In the case of a
polycrystal represented via a graph, grains are considered as
nodes, while grain boundaries are considered edges. Features of
nodes (grains) could include local micromechanical properties
such as stiffness or strength, as well as microstructural features
such as lattice orientation or dislocation density. Features of edges
(grain connections or boundaries) may be the distance between
grains or grain boundary characteristics. GNNs, which are the
focus of this work, adapt the data pooling technique of CNNs on
structured data to the pooling of neighboring data on unstruc-
tured graph data. Instead of pooling features from neighboring
grid points, features are pooled from connected nodes11. A recent
study has demonstrated that these GNN models can be developed
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and trained for predicting grain-scale response, particularly
magnetostriction12.
In this study, we apply GNNs to predict the elastic response in

two alloy systems: Low solvus high-refractory (LSHR) Ni superalloy
and Ti 7 wt%Al (Ti-7Al), representing cubic and hexagonal elastic
responses, respectively. Two GNN surrogate models for predicting
LSHR and Ti-7Al grain-averaged elastic response (grain stress
tensor components along the loading direction) that utilize
Gaussian Mixture (GM) convolutions are implemented, trained,
and preliminarily tested using CEFEM deformation simulations
that explicitly consider grain microstructure. During training, the
accuracy of the predictions are compared against predictions from
traditional mean-field theories and reserved CEFEM simulations.
The GNN models trained with CEFEM simulations are then
transferred to a separate data domain to predict the grain-
averaged elastic response in polycrystals with microstructures
measured with near-field HEDM. GNN model predictions are then
compared to stresses measured using far-field HEDM. As part of
the GNN model training effort, learning rates of the models and
the accuracy of using various nodal features for stress predictions
are explored.
In this paper, vectors are generally lower-case bold characters

(a), second-order tensors are upper-case bold characters (A), and
fourth-order tensors are underlined, bold characters (A). Unless
otherwise noted, quantities are expressed in the sample frame.
Prime characters are generally used to indicate quantities in
subsequent layers within GNNs, i.e., a0 for Hidden Layer n+1, while
an overbar a indicates an average.

RESULTS
The results are divided into three subsections. The first subsection
covers the learning behavior of GNN surrogate models using
CEFEM data. The second subsection details how the trained GNN
surrogate models perform predicting micromechanical response
in comparison to reserved CEFEM data. The final subsection
analyzes the performance of the trained surrogate GNN models in
predicting the mechanical response of microstructures character-
ized experimentally.

Model training
After generating the various graph data from both CEFEM
simulations and HEDM results (see: Sections “Polycrystal aniso-
tropic elasticity data” and “High-energy X-ray diffraction micro-
scopy data”) for GNN surrogate model training, a study was
completed to examine the performance of the GNNs predicting
the stress response along the loading direction (σzz) in individual
grains. For GNN model training, graphs generated from various
numbers of CEFEM simulations (1, 5, 10, and 20, corresponding to
1500, 7500, 15,000, and 30,000 grains in total, respectively) were
used to train the LSHR and Ti-7Al GNN surrogates. Respectively for
each training scenario, a total of 1, 2, 3, and 4 CEFEM simulations
(1500, 3000, 4500, and 6000 grains in total) were reserved for
evaluating the accuracy of the surrogate model predictions. The
accuracy of surrogacy models in predicting simulated stresses
were quantified using the mean of a 1-norm error:

eðσzzÞ ¼ 1
NG

X jσSIM
zz;i � σGNN

zz;i j
σSIM
zz;i

: (1)

During training, this error metric provides a direct comparison of
the accuracy of GNN predictions versus the full-field CEFEM
simulations.
Figure 1 shows the learning rates (epoch vs error) for LSHR

elastic response using the various numbers of training data sets
described above. Figure 1a shows the learning rate using the
directional modulus E(r) as a nodal feature, while Fig. 1b shows the
learning rates using components of the Rodrigues vector r

describing a grain’s lattice orientation as nodal features. It is
important to note that while these quantities are related (the
directional modulus is a function of the grain lattice orientation),
the directional modulus is a micromechanical property that should
have a linear relationship to the stress state, while the
components of the lattice orientation are a microstructural feature
that should have a nonlinear relationship to the stress state. Solid
lines show the mean error of grain stress predictions of the
surrogate model on the training data while the dashed lines show
the mean error in comparison to the reserved testing data sets. As
a benchmark, mean errors as predicted by various mean-field
theories (models), isostress (all grains have the same stress state as
the macroscopic stress, σzz ¼ ~σzz) and isostrain (all grains have the
same strain state as macroscopic strain, σzz ¼ EðrÞ~εzz), are
provided. In most cases, there is no evidence of over-fitting which
would be seen as divergence between mean errors on predictions
of training and reserved testing data, except for the case when
only one training data set is used with lattice orientation used as
the nodal feature input. The ‘spikes’ during the learning process
are related to the use of Adam stochastic gradient descent
algorithm for fitting, which will perturb the solution intermittently
to try to ensure that a global minimum is reached.
In Fig. 1, we can see that using the GNN surrogate model with

either the directional modulus or lattice orientation as nodal
features outperforms the predictions of the mean-field theories
(red dashed and dotted lines) reaching average errors of ~0.05
(5%) for LSHR, with the lattice orientation performing slightly
better after 10,000 epochs of training. The fact that surrogate
models using directional modulus and lattice orientation have
approximately the same performance indicate that nominally the
same information is encoded into the two grain descriptors. This
can be rationalized in that the directional modulus is calculated
using the lattice orientation and the single crystal elastic moduli as
previously mentioned. However, this relationship between lattice
orientation and directional stiffness is nonlinear and naturally, the
rate at which the relationship is learned is slower, but the GNN
surrogate model does in fact learn the relationship. We note that
when using only a single hidden layer, the surrogate model is
incapable of learning this relationship (not shown).
Similar to Figs. 1, 2 shows learning rates of the grain-scale elastic

response using different numbers of CEFEM simulations for
training, using directional modulus (Fig. 2a) and lattice orientation
(Fig. 2b) as input nodal features for Ti-7Al. In Fig. 2b, it can be seen
that using 1 and 5 CEFEM simulations for training along with
lattice orientation as nodal features show signs of over-fitting for
Ti-7Al as opposed to only 1 FEM simulation for the LSHR data. Like
the LSHR, using directional modulus or lattice orientation as input
nodal features gives approximately the same performance (0.035
mean error) at large epochs. The magnitude of the final mean
error is lower than that of the LSHR (0.035 for Ti-7Al versus 0.05 for
LSHR) which is discussed further in “Discussion”. In addition, the
GNN surrogate model only performs slightly better than using an
isostress assumption to determine grain average stresses in the Ti-
7Al, which will be discussed.

GNN surrogate model performance: source domain (CEFEM
Data)
Besides directional modulus and lattice orientation, the perfor-
mance of GNN surrogate models in predicting stresses in the
Source Domain (i.e., the domain where the surrogate models are
trained using CEFEM data) using other sets of nodal features
were also tested. These include incorporating transverse contrac-
tion ratios, νx(r) and νy(r), and the volume, V, of grains into the
fitting, for a total of four different nodal feature sets. A summary of
the training results for the different nodal feature sets using 20
CEFEM simulations (30,000 grains) for training and 4 CEFEM
simulations for testing (6000 grains) are shown in Fig. 3. This figure
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compares the results of the GNN-based stress predictions against
those from the full-field CEFEM simulations reserved solely for
testing and not included in the model training, providing a
benchmark against existing modeling capabilities. Beyond what
can be seen in Figs. 1a, 2a, the inclusion of transverse contraction
ratios generally does not improve accuracy. This is consistent with
the observation that the directional modulus and lattice orienta-
tion nominally have nominally the same accuracy: if transverse
contraction ratios improved accuracy, it would be expected that
lattice orientation would also perform better (contraction ratios
are calculated from orientation). Somewhat surprisingly, inclusion
of grain volume V into the nodal features does not improve the
surrogate model prediction accuracy. For this work, however, the
spread of grain size is minimal, and we note that this observation
may not be general. Volume may be a necessary descriptor for
accuracy in other microstructures with larger or bimodal distribu-
tions of grain size.
To examine if there were systematic errors in the GNN surrogate

model predictions, the stress predictions from the surrogate

models using lattice orientation (Rodrigues vectors) as nodal
features were compared to stresses from the CEFEM reserved
testing data sets. Comparison of surrogate model predictions
using 20 CEFEM simulations for training and compared to stresses
from four testing CEFEM simulations are shown in 2D histograms
in Fig. 4a, c for LSHR and Ti-7Al respectively. The solid red diagonal
lines correspond to perfect correspondence (100% accuracy) while
the dashed and dotted lines correspond to 5 and 10% error
bounds respectively. For the LSHR, 64% of the GNN stress
predictions fall within the 5% bound, and 93% of stress
predictions fall within the 10% bound. Similarly, Fig. 4b and d
show the same comparison for both materials in the form of a
scatter plot to better display outlier data points, along with a linear
regression fit to the comparison. We observe here that the spread
of stresses across the LSHR grains is significantly larger than that
seen in the Ti-7Al grains due to the much larger elastic anisotropy.
The LSHR fit shows no evidence of systematic bias and is able to
predict stresses within the full ranges of stresses generated by the
significant elastic anisotropy in LSHR. For the Ti-7Al material, the

Fig. 1 Learning rates of LSHR grain-scale elastic response using various numbers of CEFEM simulations for training and testing. Insets
show a magnified view of the learning rate at larger epochs. a Learning rates using the directional modulus E(r) as a nodal feature. b Learning
rates using the lattice orientation (components of the Rodrigues vector r) as nodal features.
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Fig. 3 Summary of learning rates for various nodal features included in the GNN surrogate models. Comparison of learning rates using
various mechanical and microstructural descriptors for nodal features within the GNN surrogate models for a LSHR and b Ti-7Al.

Fig. 2 Learning rates of Ti-7Al grain-scale elastic response using various numbers of CEFEM simulations for training and testing. Insets
show a magnified view of the learning rate at larger epochs. a Learning rates using the directional modulus E(r) as a nodal feature. b Learning
rates using the lattice orientation (components of the Rodrigues vector r) as nodal features.
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GNN surrogate model captures most of the grain stress spread,
but appears to be truncating the bounds of the most extreme
values of the prediction. In Fig. 4b, 78 and 98% of the GNN stress
predictions fall within the 5% bound and 10% bound respectively.
These observations will be discussed further in “Discussion”.

GNN surrogate model performance: target domain (HEDM
Data)
After evaluating the performance of the surrogate models in the
Source Domain, the surrogate models were then transferred to the
Target Domain where stresses during elastic loading was
predicted from a graph generated from a 3D microstructure
measured using near-field high-energy X-ray diffraction micro-
scopy (nf-HEDM). As the performance of various nodal features
used for prediction were fairly similar (Fig. 3), only GNN surrogate
models using lattice orientation as nodal features were tested as
lattice orientation is directly measured using HEDM. The stresses
predicted by the GNN surrogate models were then compared to
the stresses measured from the same microstructure during
elastic loading using far-field high-energy X-ray diffraction
microscopy (ff-HEDM). Here we note that uncertainty exists in (i)
the application of perfect uniaxial load; (ii) the potential presence
of minor microplasticity and (iii) measurement of applied strain,
grain lattice orientations, grain elastic strain states, and single
crystal moduli used to calculate grain stresses from elastic strains.

This uncertainty clearly influences the accuracy of stresses
measured with ff-HEDM, but also will influence the GNN
predictions of stress (as orientations measured with HEDM are
used for prediction). For these reasons, a decrease in correlation is
expected between GNN predictions and stresses measured with
ff-HEDM, but this does not necessarily indicate a decrease in the
accuracy of the GNN predictive capability. In general, the
increased average error is expected, and is a product of the fact
that these comparisons now include GNN model prediction error
as well as experimental uncertainty. Comparison of the GNN
predicted versus ff-HEDM measured stresses for the LSHR and Ti-
7Al specimens are shown in Figs. 5, 6, respectively. The stresses
measured during two different applied strain states (Load 1 and
Load 2) for 2873 LSHR grains and 559 Ti-7Al grains were used to
explore the contribution of experimental uncertainty when
compared to GNN predictions. For prediction of stresses using
the GNN surrogates, the output stresses are scaled by the ratio of
macroscopic applied strain in the experiments to the macroscopic
applied strain for the CEFEM simulations in the Source Domain
(0.001). The applied experimental strains during the ff-HEDM
measurements were 0.0015 and 0.0033 for the LSHR and 0.0009
and 0.0018 for the Ti-7Al.
Figure 5 a, b show histograms comparing stresses along the

loading direction measured by HEDM for Loads 1 and 2,
respectively, while 5c shows the same comparison on a scatter
plot with both applied strain states combined. For the GNN LSHR

Fig. 4 Comparison of stress predictions along the loading direction (σzz) from GNN surrogate models using lattice orientation as nodal
features with CEFEM simulations. Histogram comparisons for a LSHR and c Ti-7Al. Also shown are scatter plots of the same comparisons for
b LSHR and d Ti-7Al.
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predictions, there does not appear to be any major systematic
error in the prediction of stresses. However as expected, the
mean of the errors are higher (e ¼ 12:1% for Load 1 and e ¼
9:2% for Load 2) than those for the GNN model compared to
CEFEM predictions. The reduction in error between Load 1 and
Load 2 is due to the fact that the relative measurement
uncertainty in the ff-HEDM measurements decreases with

applied load. Figure 6 shows the comparison between GNN
predictions and stress measurements from ff-HEDM for Ti-7Al
across two loading states in the fashion as Fig. 5. We can see the
GNN stress predictions are fairly tightly clustered around the
average stresses in the specimen in the two load steps.
There appears to be a systematic error in which the GNN
predictions for Ti-7Al do not capture the full spread of grain

Fig. 5 Comparisons of stress predictions along the loading direction (σzz) from GNN surrogate models using lattice orientation as nodal
features with those measured using ff-HEDM during in situ elastic loading for LSHR. Histograms of comparisons at a Load 1 (applied strain
of 0.0015) and b Load 2 (applied strain of 0.0033). c Scatter plot comparing GNN predictions and ff-HEDM results from the two load steps
along with regression lines fit the comparisons.

Fig. 6 Comparisons of stress predictions along the loading direction (σzz) from GNN surrogate models using lattice orientation as nodal
features with those measured using ff-HEDM during in situ elastic loading for Ti-7Al. Histograms of comparisons at a Load 1 (applied strain
of 0.0009) and b Load 2 (applied strain of 0.0018). c Scatter plot comparing GNN predictions and ff-HEDM results from the two load steps
along with regression lines fit to the comparisons.
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stresses in the simulation, similar to observations in the Source
Domain, but likely increased due to the various factors
contributing to experimental uncertainty. In addition, the slope
of the regression line fit to the stresses in 6c is particularly flat.
Although the systematic error is present, the Ti-7Al stress
predictions still have a lower mean error (e ¼ 8:7% for Load 1
and e ¼ 5:4% for Load 2) in comparison to the LSHR due to the
lower elastic anisotropy of the Ti-7Al which is discussed further
in “Discussion”.

DISCUSSION
Here the efficacy of using GNN surrogate models to predict grain-
scale elastic response on both simulated and experimentally
measured microstructures (represented as graphs) was explored.
The GNN models use a graph convolution (Gaussian Mixture) to
capture the inherent non-locality in both mechanical equilibrium
and deformation compatibility which govern mechanical response.
Elasticity was chosen as an initial test case for exploring the
prediction of micromechanical response due to our generally
strong theoretical understanding of the constitutive relationship
(Hooke’s Law) and primary material characteristics (the single
crystal elastic moduli and lattice orientation of a grain) governing
elasticity at the grain-scale. It was found that, once trained, the
accuracy of the GNN surrogate models exceeded that of both
isostrain (Taylor) and isostress (Sachs) mean-field theory assump-
tions in both a highly anisotropic FCC alloy (LSHR) and a
moderately isotropic HCP alloy (Ti-7Al). Various sets of micro-
structural and micromechanical descriptors were tested and found
to have generally similar accuracy after full training (Fig. 3),
although it is noted that the choice of descriptors was informed by
our generally strong theoretical understanding of the elastic
response. Importantly though, the two hidden layer architecture
employed was demonstrated to be capable of learning the
complex nonlinear relationship between lattice orientation and
directional stiffness as evidenced by the similar final performances.
In our approach, transfer learning was successful in enabling the

prediction of the mechanical response of microstructures (as
represented by graphs) that were experimentally measured using
HEDM, as opposed to only predicting the response of synthetic
microstructures. The ability to move between various data
domains opens up the possibility of training schemes that could
further improve the accuracy of the model. In particular, using
both simulated and experimental data to train GNN surrogate
models is a promising avenue for future efforts as both data types
have strengths and weaknesses for use in learning material
response. Large amounts of simulated data is generally more
readily acquired than experimental data, however, simulations are
generally not capable of capturing phenomena not explicitly
included into the model. Experimental data will naturally
represent the physics of the phenomenon at hand, but is
susceptible to measurement error and bias. Creating training data
sets in the future containing both simulation and experimental
data can help to further improve the accuracy of GNN surrogate
model predictions.
At this point, it is worth discussing differences between the

elastic responses of LSHR and Ti-7Al and the utility of GNN
surrogate models for predicting elastic responses. While the LSHR
is crystallographically more symmetric, it is actually significantly
more elastically anisotropic. The directional moduli in the LSHR
vary by a factor of approximately 2.5 (ratio of maximum to
minimum), while the directional moduli of the Ti-7Al only vary by
a factor of approximately 1.5. The value of the use of the GNN
surrogate model in comparison to mean-field theory will increase
as material becomes increasingly elastically (or plastically)
anisotropic and the converse. At the extreme, if a material is
nearly elastically isotropic, assuming the macroscopic stress state
is equal to the grain stress state is highly accurate. It was observed

for the Ti-7Al, that there was a systematic error in the GNN
predictions in both the Source and Target domains. The
predictions for the Ti-7Al model are tightly bound around the
average stress indicating the model is only learning minor
adjustments from an isostress mean-field theory, as opposed to
learning full neighborhood effects. However, this is simply a
consequence of the fact that any GNN model will converge to an
isostress prediction as the material approaches isotropy.
It is well established that neighborhood plays a role in the

deformation of polycrystals in both the elastic and plastic
deformation regime13–15 which informed the choice of GNN for
polycrystalline modeling and the GM convolution operator
selected. Following this, questions arise regarding the influence
of these neighborhood effects in the GNN predictions in this work.
As a relatively straightforward means to test the neighborhood
effects of the GNN, explicit edge features were removed from the
LSHR GNN model formulation and the model was then retrained
using the same procedure described above. LSHR was chosen
here for its increased anisotropic elasticity. Removing edge
features can be physically interpreted as the model knowing the
nodal features (orientations) of each neighboring grain, but not
necessarily the explicit position of the neighbors with respect to
loading. This model formulation lies between that which was
shown in the section “Results” and a more standard mean-field
theory which contains no information about the neighborhood in
its prediction. The results from training and testing against
reserved simulations using no edge features and orientation as
nodal features (Rodrigues parameterization) are given in Fig. 7.
Along with isostrain and isostress mean theory predictions
included as before, the final accuracy from the full LSHR GNN
model described in the results are included. As would be expected
from the physical interpretation of this model without edge
features, the accuracy of model prediction lies between that of the
full GNN model considering both nodes and edges described
above and the isostress prediction. Beyond using five CEFEM
simulations for training, the model accuracy stabilizes at ~6% in
comparison to ~4.5% for the full GNN model and ~10% for the
isostress prediction.
Another question is: how important are the exact grain

morphology configurations of a neighborhood for GNN model
training? To explore this effect, a single microstructural instantia-
tion of LSHR was generated and the orientations were then
shuffled through the fixed grain tessellation. This produces 25

Fig. 7 Effects of removal of edge features in GNN model
prediction accuracy. Learning rates of LSHR grain-scale elastic
response using various numbers of CEFEM simulations for training
and testing without the inclusion of edge features and using the
lattice orientation (components of the Rodrigues vector r) as nodal
features.
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unique microstructures, but with a less diverse number of grain
morphologies for training than considered previously. These data
were then used to train and test the same GNN model shown in
the section “Results” with lattice orientation as the nodal features
(model labeled GNN-S). Learning rates from model training and
reserved data testing are given in Fig. 8a. The final accuracies at
10,000 epochs for these training data sets are comparable to the
more diverse learning set described in the results, ~4.5%. These
training and testing results indicate that for the relatively equiaxed
microstructures tested in this work, a less diverse pool of grain-
shape configurations is necessary. However, to fully evaluate this
mode of training with reduced numbers of grain morphology
configurations, the GNN-S model was tested on a new tessellation
that had also been deformed using CEFEM. Figure 8b shows a
histogram and Fig. 8c a scatter plot comparing the two sets of
predictions. The accuracy of the grain-by-grain predictions are
comparable to the GNN model trained using a wider array of grain
morphology instantiations (see Fig. 4a). Considering these
observations, we take care to note that while a limited number
of tessellations are necessary for training for this case, we do not
expect the results here to necessarily be valid when applied to
more complex microstructures (e.g., columnar shaped or bimodal
grain size distributions) or during plasticity.
With the ability of the GNNs to predict elastic response shown

here, the extension of the approach to predicting plasticity
should be considered. In this work, the prediction of the
mechanical response of each node is static and does not evolve
with time or deformation. To address material evolution that
occurs during plastic deformation, recurrent neural networks
(RNNs) can be layered on top of the GNN surrogate. In the RNN
framework, the neural network has a ‘memory’ that transmits
output nodal features through time, enabling dynamic processes
to be modeled. This approach has been successful in time-
evolving graph problems such as traffic forecasting16, but has
mostly been developed for cases where the temporal data is
largely stationary (e.g., regular traffic data) and the nodal features
are static (e.g., location information of roads is static). However,
existing approaches for modeling plasticity present a path
forward as there are significant commonalities between nodal
features in a graph and internal state variables characterizing the
local microstructure of material points17. One can imagine not
being limited to the prediction of the mechanical response at
nodes after a loading increment (i.e., this work), but also to
predict nodal features that are either implicit descriptors of
microstructure (e.g., slip system strengths) or explicit descriptors
(e.g., dislocation density).
Once trained, the GNN surrogate models are highly efficient in

predicting mechanical response as they do not require the
inversion of large systems of equations or any nonlinear

optimization. This provides an opportunity for embedding into
larger-scale models. Efforts to include grain-scale evolution in the
larger-scale deformation or forming operations generally require
homogenization18 or a linking hypothesis19,20, usually a Taylor
assumption, which will remove local neighborhood effects from
consideration, although inclusion of non-explicit neighborhood
effects have been attempted21. While successful for predicting a
bulk property such as anisotropic strength22 or a microstructural
feature such as phase fraction23, this approach will be unable to
predict mechanical responses, such as fracture and fatigue, which
are dictated by rare, extreme events. Embedding GNN surrogate
models, which naturally incorporate neighborhood effects without
a large computational overhead, within a larger-scale simulation is
a possible avenue for predicting extreme events in full-size
components, opening a path for truly microstructurally-sensitive
predictions of material failure in component-scale simulations.
In total, a transfer learning approach was taken for training and

evaluating the performance of GNN surrogate models. These
surrogate models provide an opportunity for implementation in
multiscale mechanical modeling where a micromechanical
response can be rapidly evaluated using a GNN surrogate. Models
were used to predict the elastic response of grains in samples
deformed under uniaxial tension. From this work we find that:

● GNNs can exceed the accuracy of traditional mean-field
theories (models) for predicting anisotropic elastic microme-
chanical response through incorporation of information
regarding the local neighborhood.

● Micromechanical descriptors such as directional modulus and
near equivalent microstructural descriptors such as lattice
orientation provide similar accuracy for GNN surrogate model
predictions of elasticity.

● As mechanical response becomes increasingly isotropic, GNN
surrogate model predictions converge toward traditional
mean-field predictions.

● Using a transfer learning approach, prediction of microme-
chanical response using GNNs is possible even in scenarios
when little training data is available (i.e., experimentally
measured microstructures).

GNN surrogate modeling, beyond predicting grain-scale elastic
response, provides a framework for rapidly predicting more
complex processes such as plasticity which can in turn be
embedded into larger-scale simulation for the prediction of
complex material behaviors such as fracture and fatigue.

METHODS
In this section, we give a broad overview of the various methods
employed in this work for GNN training and accuracy evaluation

Fig. 8 Results of a GNN model for LSHR grain-scale elastic response generated with a single tessellation and “shuffled” orientation sets
using the lattice orientation (components of the Rodrigues vector r) as nodal features. a Learning rates using various numbers of CEFEM
simulations for training and testing. b Histogram and c scatter plot of the grain-scale stress predictions on a new microstructure comparing
those from a GNN trained with data from the shuffled orientation sets in a single tessellation (GNN-S) and full-field CEFEM.
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including virtual sample generation, CEFEM modeling, HEDM,
and GNN surrogate modeling. In addition, details regarding the
various training and testing data used are provided. A schematic
of the various components of the effort, displaying LSHR data,
are given in Fig. 9. Briefly, a transfer learning approach24 is taken
in which the GNN models for LSHR and Ti-7Al are trained using
simulated data from microscale CEFEM modeling (the Source
Domain) and then transferred to predict the mechanical
response in a microstructure measured experimentally via HEDM
(the Target Domain).

Virtual sample generation
Virtual polycrystals upon which mechanical deformations are
imposed and used to create microstructure graphs are generated
using the Neper polycrystal generation and meshing software
(https://neper.info)25,26. Generally, Neper utilizes Laguerre tessella-
tions to generate polycrystalline samples. Laguerre tessellations
produce convex, space-filling grains in a user-specified sample
domain. Specifically, Neper allows for user-specified target
distributions of grain size and grain shape. This affords the ability
to create a wide range of microstructures with various geometric
features. An attendant finite element mesh is then generated via
Neper using Gmsh27, in which the geometric features of the
microstructure (tessellation) are preserved.
Here, Neper is used to generate 50 virtual polycrystals (25 LSHR

and 25 Ti-7Al) for elastic finite element simulations. The simulated
domains are 1 mm× 1mm× 3 mm, each containing 1500 grains.
Each polycrystal had ~16,500 shared grain boundaries which serve
as edges. Grain size and shape distributions are set to create
nominally equiaxed grains with diameters of approximately
150 μm and minimal spread. Each polycrystal is meshed with
ten node tetrahedral elements and ~120,000 elements per
sample. Orientations are assigned randomly to grains from the
cubic and hexagonal fundamental regions for the LSHR and Ti-7Al
virtual specimens, respectively.

Polycrystal anisotropic elasticity data
For generating training data for the GNN surrogate elasticity
model deformation response, we utilize the finite element solver

within FEPX (https://fepx.info)28 which interfaces directly with
tessellations and meshes generated via Neper29. Generally, FEPX
considers the elasto-viscoplastic deformation response of single
crystals (grains) belonging to explicit representations of poly-
crystalline aggregates. However, here, viscoplasticity is inhibited
by ensuring grain level stresses are significantly lower than those
required to cause appreciable slip. In the model, grain-to-grain
interactions are assumed to be rigid (no grain boundary sliding or
separation). As the implementation and use of these models are
well established2,30–32, and as this study considers elastic
deformation, only a truncated description of the model as
implemented in FEPX is included below. Please refer to ref. 28

for a complete description of kinematics, models, and finite
element implementation. For the uniaxial deformation studied in
this work, loading is along the z direction in the sample frame.
At each point in a finite element mesh, FEPX considers the

elastic response to be governed by the anisotropic form of
Hooke’s law:

σ ¼ CðrÞ : ε; (2)

where σ is the stress, C is the lattice-orientation-dependent elastic
stiffness tensor, r is the lattice orientation (a coordinate
transformation from crystal frame to sample frame) of a given
crystal, and ε is the strain, assumed to be fully elastic. Due to
symmetry, crystals with cubic symmetry have three independent
constants (CC

11, C
C
12, and CC

44 in Voigt notation in the crystal frame),
while crystals with hexagonal symmetry have five independent
constants (CC

11, C
C
12, C

C
13, C

C
33, and CC

44 in Voigt notation in the crystal
frame). We note that due to the deformation decomposition
formulation in FEPX, in hexagonal crystals further dependence is
required in the form of CC

33 ¼ CC
11 þ CC

12 � CC
13. The elastic moduli

employed for LSHR33 in this work are: CC
11 ¼ 247, CC

12 ¼ 147, CC
44 ¼

125 GPa, while the Ti-7Al34 moduli are: CC
11 ¼ 162, CC

12 ¼ 92,
CC
13 ¼ 69, CC

33 ¼ 185, and CC
44 ¼ 45 GPa.

In uniaxial deformation, the effective stiffness along the loading
direction can be approximated using a directional modulus E(r).
Generally, in grains embedded in polycrystals, the stress along the
loading direction is correlated to the directional modulus35. Under
uniaxial stress along the z direction in the sample frame, the

Fig. 9 Overview of transfer learning approach for GNN surrogate model evaluation. Connectivity of the various efforts used to evaluate the
accuracy of GNN surrogate models for predicting the stress response in individual grains during elastic loading.
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directional modulus is defined as:

EðrÞ ¼ σzz

εzzðrÞ : (3)

To further describe the anisotropy of the grains embedded within
a polycrystal during uniaxial deformation, we define effective
transverse contraction ratios νx(r) and νy(r):

νxðrÞ ¼ εxxðrÞ
εzzðrÞ ; (4)

and

νyðrÞ ¼ εyyðrÞ
εzzðrÞ : (5)

Each of the 50 virtual polycrystals generated (see: section
“Virtual sample generation”) are deformed elastically in FEPX. As
all uniaxial loading linear elasticity solutions can simply be
scaled to account for increasing or decreasing deformation,
each polycrystal is only deformed with a single deformation
increment to an applied strain of 0.1% (chosen arbitrarily).
Minimal displacement boundary conditions are employed on
the top and bottom surfaces of the specimen to prevent rigid
translation and rotation of the virtual specimens without
impeding the contraction of the specimen perpendicular to
the loading direction.

High-energy X-ray diffraction microscopy data
For the final GNN evaluation, graph data derived from
experimentally measured microstructures and micromechanical
response measured using HEDM are utilized. HEDM is comprised
of two variants, near-field and far-field, capable of non-
destructively characterizing the microstructure and micromecha-
nical response of polycrystalline materials36–38. The commonality
between the two techniques is the utilization of forward
projection simulations of X-ray diffraction peaks of individual
grains to reconstruct information about the local lattice state of
crystalline materials in 3D. LSHR and Ti-7Al samples were probed
using the near-field variant to measure the grain structure,
orientation, and connectivity of the grains, and the far-field
variant was used to determine the stress in the same grains
during elastic loading. Detailed descriptions of the data collection
for the LSHR sample can be found in ref. 39 and for the Ti-7Al
sample in ref. 40, but summaries of the methodology and
specimens are given below.
The nf-HEDM technique is capable of reconstructing a 3D

voxelized distribution of lattice orientation with resolution on the
order of μm from a series of diffraction images collected as a
specimen is rotated. In the near-field variant, the detector is
placed ~5 to 10mm away from the specimen, making the
measurements sensitive to the spatial locations of diffracting
volumes41. For this work, the LSHR and Ti-7Al microstructures
were reconstructed with 5 μm voxel spacing. The reconstructed
volume for the LHSR specimen was 1.0 mm× 1.0 mm× 0.5 mm
with the short dimension aligned with the loading direction.
Similarly, the reconstructed volume for the Ti-7Al specimen was
1.0 mm× 1.0 mm× 0.75mm, again with the short dimension
along the loading direction.
The ff-HEDM technique can reconstruct the average grain

orientation, position, and elastic strain state of grains embedded
in a polycrystal during in situ loading42. In this HEDM variant, a
large area detector is placed approximately 1 m away from the
specimen. This positioning provides more sensitivity to peak shifts
due to changes in orientation and strain state, as opposed to
locations of diffraction events as utilized for nf-HEDM reconstruc-
tions. Here ff-HEDM measurements collected prior to and during
in situ elastic loading at two applied strain levels are used for GNN
prediction evaluation. The full elastic strain tensors from individual

grains are then used to calculate the stresses in each of the grains,
including the component of stress along the loading direction
which is of interest here. The uncertainty per elastic strain
component for HEDM measurements are generally reported to be
1 to 3 × 10−4 43 which corresponds to ~10 to 50MPa per stress
component depending on the material stiffness.

Graph neural network modeling
As previously described, the surrogate models employed in this
work are graph neural networks (GNNs). The GNNs are comprised
of layered graphs in which the features of each node in
subsequent graph layers are weighted combinations (convolu-
tions) of NF nodal features from neighbors in the previous graph
layer. The weights may be independent or functions of nodal or
edge features and are learned throughout the training process.
Similar to other neural network formulations, nonlinear activation
functions (functions which control the flow of information
between layers, i.e., nominally turning on and off) control the
passing of nodal feature information between layered graphs. The
input data is the graph itself—a set of nodes and a set of edges—
along with features associated with the nodes and edges
expected to be useful for predicting stress. Here graphs are
generated from CEFEM or HEDM data using a series of custom
Python scripts.
Nodal features represent different microstructural descriptors or

local mechanical properties. Various nodal features, and combina-
tions of nodal features, were explored, including the directional
modulus (E(r)), contraction ratios (νx(r), νy(r)), volume (V), and
lattice orientation (r, Rodrigues parameterization) of each grain.
We note that no appreciable accuracy difference was observed
utilizing different orientation parameterizations (e.g., Euler angles
or other angle-axis parameterizations). These nodal features alone
could be useful for predicting stress. However, rather than just
treating all nodes independently, the GNN combines these
features with the same features of connected nodes in the graph,
along with additional edge features associated with the connec-
tions. The edge features used here for a connected pair of grains i
and l are the coordinates of the vector between the grain
centroids pi and pl :

eil ¼ pi � pl: (6)

Rather than just looking at immediate connections, the GNN
also works recursively, learning a vector representation of node
features at subsequent layers. For this work, a common GNN
architecture was utilized with two hidden graph layers. A
schematic of the architecture is given in Fig. 10. Each node within
the two hidden graph layers contains 16 features obtained from a
convolution of the previous layer’s features over neighboring
nodes. For the first hidden graph layer, the convolution is over the
input nodal features. Two hidden graph layers provide substantial
flexibility for learning the nonlinear relationship between grain
lattice orientation and elastic response. After the two hidden
graph layers, the second 16-dimensional vector representation of
the nodal features is passed through a final dense layer that maps
to a single nodal feature, which is the predicted stress tensor
component σzz. In total, there are four layers: one input graph
with the input nodal features, two hidden convolutional graphs
with learned features, and the final mapping layer. While the
number of nodal features in the two hidden graph layers could be
slightly oversized for the problem at hand, over-fitting was only
observed when very small amounts of training data were
employed, as will be seen.
The graph convolution operator used in the anisotropic

elasticity surrogate models is a Gaussian Mixture Model44,
implemented in PyTorch Geometric45, with the form (no sum
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over indices i and j):

x0ij ¼
1

jNðiÞj
XNF

k¼1

θjk
X
l2NðiÞ

wkðeilÞxlk ; (7)

where x is a nodal feature (either the initial inputs, or the learned
vector representation in the hidden layers), i indicates node (grain)
number ranging from 1 to NG, k indicates a nodal feature in a
current layer ranging from 1 to NF, j indicates a nodal feature in a
subsequent layer ranging from 1 to N0

F , w is a Gaussian weighting
function, l indexes a neighbor to grain i, N(i) is the set of indices of
nodes connected to i, eil is the vector of edge features between
nodes i and l from Eq. (6), and θ is a (learned) weight for a given
nodal feature in the current layer. The weighting functions are
comprised of NK Gaussian kernels:

wkðeilÞ ¼
XNK

m¼1

exp � 1
2
ðeil � μmÞTΣmðeil � μmÞ

� �
; (8)

with μm and Σm being Gaussian kernel and diagonal covariance
matrices. In total, θ, μ, and Σ are coefficients learned during the
training process. Using the 3D vector between grain centroids as
edge features (Eq. (6)), each layer in the neural network requires
N0
F ´ ðN0

F ´ ð1þ NK ´ ð3þ 3ÞÞÞ coefficients to be learned. The
choice of a Gaussian Mixture convolution was informed by our
physical understanding of deformation compatibility and mechan-
ical equilibrium. In this model, GNN has sufficient degrees of
freedom to weight various positions around a grain differently
(e.g., parallel and transverse to applied uniaxial load). In addition,
during the process of developing the GNNs presented in this work,
several spectral- and spatial-based convolution operators were
initially tested. In general, spatial-based convolutions performed
better than spectral-based, consistent with our understanding of
the spatial nature of stress equilibrium. The GM convolution
operator presented here was the best performing, while many
other common convolutional operators (such as that found here
in ref. 46) did not outperform the accuracy of more traditional
mean-field theories, and as such, are not presented.
For the final fitting, seven Gaussian kernels (NK= 7) were used

for the Gaussian convolution operator in Eq. (8) with the goal of
providing the surrogate model the freedom to weight neighbor-
hood grains arranged in various positions differently (i.e., parallel
and transverse to loading). Leaky ReLU was chosen for the
activation function, with a scaling value of −0.1 for input values
less than 0 as it provided better accuracy than a standard ReLU
activation function. Training of the surrogate models was
performed by minimizing the mean square error between grain
average stress components in the training data and those
predicted by the GNN surrogate model using Adam stochastic
gradient descent with a learning rate parameter of 0.01. Training

of a surrogate model for 10,000 epochs nominally takes 2–15min
depending on the amount of training data (1500 grains to 3000
grains) using an NVIDIA Quaddro GPU with 5 GB of memory.

DATA AVAILABILITY
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CODE AVAILABILITY
The GNN model fitting code will be made available upon request. FEPX is available at
https://fepx.info/. Neper is available at https://neper.info/. HEXRD is available at
https://github.com/hexrd.
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