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A multi-fidelity machine learning approach to high throughput
materials screening
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The ever-increasing capability of computational methods has resulted in their general acceptance as a key part of the materials
design process. Traditionally this has been achieved using a so-called computational funnel, where increasingly accurate - and
expensive – methodologies are used to winnow down a large initial library to a size which can be tackled by experiment. In this
paper we present an alternative approach, using a multi-output Gaussian process to fuse the information gained from both
experimental and computational methods into a single, dynamically evolving design. Common challenges with computational
funnels, such as mis-ordering methods, and the inclusion of non-informative steps are avoided by learning the relationships
between methods on the fly. We show this approach reduces overall optimisation cost on average by around a factor of three
compared to other commonly used approaches, through evaluation on three challenging materials design problems.
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INTRODUCTION
Engineers and material scientists frequently seek to discover new
materials that exhibit specific sets of properties. Most properties of
active interest whether they be opto-electronic, structural,
catalytic or physio-chemical have a complex relationship with
the variables that are under experimental control. This fact, in
combination with the vast number of synthesisable materials and
the relatively high cost of experimental synthesis and character-
isation is the central challenge of materials discovery1–3.
One tool in the material designers toolbox is the use of

simulation as a proxy for experiment4. Due to the reduced cost of
simulation over synthesis and characterisation of a material this
offers the potential for orders of magnitude increases in the
number of materials that can be evaluated during the materials
discovery process. The mitigating factor for most cases of
molecular and materials design is that given practical limits on
computational resources, simulation is not sufficiently accurate to
match experiment5. This means that materials discovery cannot
proceed using simulation alone and consequently some means of
combining simulation and experimental synthesis and character-
isation must be used6. This remains the case despite the
significant improvements in underlying electronic structure
methods and the increases in computational resources that have
occurred over the past decades.
Inspired by drug discovery, the traditional way workflows make

use of cheaper approximate measures is through the use of a
screening approach known as a computational funnel7 –Fig. 1.
Here, starting with cheap less accurate methods (e.g. QSAR
models), increasingly more expensive and accurate methods
including more complex simulation methodologies (e.g. mole-
cular dynamics and/or ab-initio quantum calculations) and readily
accessible experimental measures (e.g. single property measure-
ments or spectroscopic characterisation in the materials discovery
setting or in-vitro experiments in the drug discovery setting) are
applied to screen out a smaller and smaller fraction of a potential
material candidate pool eventually yielding a small set of highly
promising candidates which can be evaluated using the most
accurate experimental measurements (e.g. full experimental

characterisation in the materials discovery setting or animal and
human trials in the drug discovery setting).
Recently, emerging technologies such as machine-learning

have driven ever-more efficient materials screening campaigns8,9.
One particularly impactful approach has been to replace the
expensive to evaluate simulations with data driven models, either
through replacement of the potential energy calls10–12 or through
direct modelling of the property of interest13–15.
Whilst computational funnels have proven successful, several

disadvantages can be identified:

● To construct the hierarchy of methods detailed upfront
knowledge about the relative accuracies of each method
along with its cost is required.

● The total quantity of resources to be used in the entire design
process need to be known and specified a priori.

● The relative spread of resources amongst the different levels
must also be known and specified a priori.

The first of these challenges is particularly relevant when
integrating machine-learning models as layers within the funnel
since it is often impossible to know the true accuracy of a data-driven
model ahead of time, for an arbitrary data-point, since generalised
performance is often intrinsically linked to the data and methods
used to train the model, rather than the model itself.
In this paper, we present an alternative to the computational

funnel for materials discovery which instead relies on an extension
of Bayesian optimization that can make use of cheaper
approximate measurements- Fig. 2. In our approach, a Bayesian
model is constructed which dynamically learns to relate the
different approximate methods and the ground truth experi-
mental value (referred to here as the different methodological
fidelities) to each other. This model is used to dynamically traverse
the full set of candidate materials in a budget aware, accuracy
aware manner. It is progressive rather than hierarchical, allows
termination to be decided by the user rather than fixed ahead of
time, is implicitly dynamic in its allocation of resources to the
different methods and does not require knowledge of the
accuracies of the different fidelities ahead of time.
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RESULTS AND DISCUSSION
We demonstrate the effectiveness of our proposed approach
through application to three hybrid simulation-experiment
discovery challenges, comparing its performance to the com-
monly used computational funnel, and Bayesian optimization –
an emerging approach to sample-efficient experimental design
applied only to the target fidelity. We also investigate how
fidelity cost and cross-correlation influence the behaviour of our
approach relative to these reference methods through the use of
a set of artificial functions where these factors can be directly
controlled.

Multi-Fidelity machine learning
Whilst machine learning has shown strong potential as an
emerging paradigm for rapidly generating predictions of materi-
als’ properties of interest, as a data-driven technology its utility
can be limited by the availability of high-quality data. An
emerging approach to deal with this challenge is to build machine
learning models built from multiple different fidelities of data,
which can then act as predictors for cases where sufficient
amounts of data are not available to build traditional QSAR or
machine-learning models16,17. These approaches typically rely on
building a model which is able to relate the different fidelities of
information to each other, typically by building a single model
with multiple output values – one per fidelity. It should be noted
that this is distinct from the D-machine learning approach18, in
which a single-output model learns a correction to apply to a low
fidelity to better approximate a high-fidelity output. Applying
multi-fidelity machine learning approaches to the materials
domain has seen some notable early successes. For example,
Chen et al. apply a multi-fidelity setting of a graph network to the

prediction of band-gaps19. They found that the inclusion of
information from a lower fidelity calculation, in their case using
the Perdew-Burke-Ernzehof methodology20, led to an improve-
ment in the mean absolute error they were able to achieve of
between 22 and 45%. Similar information fusion approaches have
been used in the polymer space, for example Patra et al. use a co-
kriging scheme to fuse information from a variety of sources to
build a predictive model for polymer bandgaps21. In their study,
they observed both an increased performance over a single-
fidelity Gaussian process approach, but also greater generalisation
for their model.

Bayesian optimization
Bayesian optimisation is a family of sample efficient optimisers
which balance the twin pressures of exploration (knowledge
generation) and exploitation (knowledge utilisation) through the
iterative construction of a scoring function based on Bayesian
machine-learning models22. It has shown promise in diverse fields
from hyper-parameter optimization23 to drug discovery24 to
engineering25 to materials discovery26,27.
This scoring function - sometimes known as the acquisition

function - relates the parameters being optimised to their
expected utility given the current state of the model. Perhaps
the most commonly used acquisition function is Expected
Improvement (EI)28, which balances exploration and exploitation
through considering both the likelihood of an improvement and
its potential magnitude. Iterative training of the model, calculating
posterior predictions followed by maximisation of the acquisition
function then drives the candidate selection within the Bayesian
optimization paradigm. Gaussian processes are the most com-
monly utilised Bayesian machine learning model for this task,
though others such as Bayesian neural networks (BNNs) have also
been effectively deployed29–31. We note that the proliferation of
new Bayesian models such as BNNs which can scale to large data
sizes together with advances that mitigate the cubic scaling32

previously associated with GPs mean that practical limitations that
prevented Bayesian optimisation being applied large scale design
problems are no longer the barrier they once were.

Multi-fidelity bayesian optimization
Inspired by the successes of the inclusion of lower fidelity
information through multi-fidelity model building, and the
emerging area of Bayesian optimization for materials screening,
this paper extends standard approaches to Bayesian optimization
of materials from a sample-efficient method for optimising a
target property, to a multi-fidelity technique, capable of taking
advantage of all available fidelities. Since this approach is agnostic
to the source of the data, this naturally allows for combination of
experimental and theoretical data in a way not achieved by
current machine-learning driven screening approaches. To
achieve this goal, it is necessary to build a model which is able

Fig. 1 Abstract Representation of a funnel based screening
approach to molecular discovery. An entire pool of molecules is
evaluated with the cheapest and assumed least accurate method, a
fixed fraction of the highest performing species are then evaluated
with the next cheapest and assumed second least accurate method
passing on a fixed fraction of the highest performing species to the
next method. In this way the pool of candidate molecules
progressively reduced until a final set of candidates remain.

Fig. 2 Abstract representation of an iteration of multifidelity optimisation. For iteration i, the model is trained on data for all molecules and
measured fidelities, then based on this new model (and a suitable acquisition function) a new target molecule and fidelity is chosen trading
off exploration of new molecular species, exploitation of the areas of molecular space predicted to be good, the relative costs of evaluating
the different fidelities and how informative those evaluations are likely to be.
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to link data from each fidelity and draw inferences from the
composite information. For this purpose, we utilise a multi-output
Gaussian process33.
Multi-fidelity Bayesian optimization makes use of the same

approach of iteratively training a probabilistic model and using it
to rank possible materials for measurement. It extends the search
space from a set of materials or molecules to a combination of
these candidates and a choice of a particular measurement
modality or fidelity. Therefore, given an effective acquisition
function, it is possible to efficiently trade off information collection
at cheap but noisy fidelities with targeted acquisition of data at
the highest fidelity when required. Typically, the reason for
employing such an approach is to reduce the total budget spent
on the optimization, since the highest fidelity may be very
technically or financially challenging to acquire. Throughout this
paper we use the terms low fidelity and high fidelity to mean low
expense and high expense for continuity of language with
previous works in the field. We note, however, that our approach
does not require that the accuracy and the cost of the fidelities be
both monotonic and ranked, rather the only requirement is that a
target fidelity be specified at the start of the optimization.
Different approaches to multi-fidelity optimization can be

decomposed into choices modelling the relationships between
the different fidelities and choices regarding how to construct the
acquisition function. For example, Song et al. utilise a phased
approach, with initial exploration performed using a low fidelity
until some stopping criterion is hit, at which point high-fidelity
data acquisition is considered34. Palizhati et al. consider both
epsilon-greedy and lower-confidence-bound (LCB) settings to
build multi-fidelity screening approaches. They found that the
best results were when the entire low-fidelity data set was given
as a priori knowledge to a multi-fidelity model, which resulted in
acceleration of at least 20% on materials discovery tasks35. Our
approach, which we name Targeted Variance Reduction (TVR),
naturally extends arbitrary single fidelity Bayesian optimization
acquisition functions to a multi-fidelity domain. The TVR algorithm
is described in detail in the Methods section with pseudo-code
presented in the ESI, but is summarised as follows: after
computing a standard acquisition function on the target fidelity
samples, (in this paper, we use the aforementioned EI acquisition
function) the combination of the choice of input sample and
fidelity is made by picking the pair that will minimise the variance
of the model prediction at the point with the greatest acquisition
function score per unit cost. This process is repeated iteratively
until the budget is exhausted.

Synthetic data set
Approaches to screening challenges, such as those encountered in
materials discovery, are affected by two main effects – the relative
cost of making evaluations at the different fidelities, and the
correlation between each of the fidelities. In an ideal system,
cheaper fidelities are highly correlated both to each other, and to
the target fidelity, enabling an efficient winnowing of the
candidate pool without significant computational expense. In a
worst-case scenario, fidelities are completely uncorrelated, essen-
tially reducing each stage of a computational funnel to a lottery.
To demonstrate and systematically probe the effects of cost and

accuracy of the lower fidelity proxies on optimisation based on
computational funnels and the TVR-EI algorithm, we make use of a
synthetic function as the target of our optimisation, and generate
lower fidelity proxies in a manner that allows us to control the
degree to which the lower fidelity is correlated to the ground truth
target. We utilise Liu’s 1D function -Eq. (1) - as our target function,
as it is complex enough to differentiate different optimization
strategies, but not so complex as to obfuscate the effects of

algorithmic component choices.

f xð Þ ¼ 1:5 x þ 2:5ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x � 2ð Þ^2 sinð12x � 4Þ þ 10

� �q
(1)

We generate a set of functions with differing degrees of
correlation to our target function using our previously described
method36 to act as the lower fidelity proxy to (1). Plotted examples
of generated functions can be found in the ESI. To examine the
effect of the relative cost we consider range of discount factors
that express the degree to which the lower fidelity proxy is
cheaper to evaluate than the target function.
The results of the experiments making use of the synthetic

functions are seen in Fig. 3 which shows a heatmap indicating
relative performance of TVR-EI, and a computational funnel.
Performance is scored by the difference between the total
computational cost the optimal computational funnel required
to discover a solution scored at the 99th percentile best values
and the total computational cost required by TVR-EI to discovery a
99th percentile value, averaged over computational replicates
where a unit of cost is defined by the price of a single evaluation
of the ground truth target. The two axes show the effect of the
discount (in cost) of taking measurements using the lower fidelity
proxy relative to the ground truth function and the Pearson
correlation of the lower fidelity proxy to the ground truth function.
The lower left corner of the grid is associated with expensive
accurate proxies whilst the upper right corner is associated with
cheap inaccurate proxies.
The figure shows that for the synthetic case the TVR-EI

algorithm outperforms when either the expense of the proxy is
relatively high, or when the accuracy of the proxy is relatively high,
whilst the computational funnel shows higher performance when
the proxy is both lower cost and lower accuracy. The greater
performance for both the expensive, yet inaccurate proxy
functions and the cheap accurate proxies can be rationalised by

Fig. 3 Effects of cost and correlation on method performance. The
x-axis shows the effect of varying the magnitude of the discount of
the low fidelity measurement relative to a measurement of the
actual target function, while the y-axis shows the effect of varying
the correlation of the lower fidelity to the target function. Each cell
in the heatmap is shaded to reflect the difference between the
number of epochs taken by the computational funnel and TVR-EI.
Positive (blue shading) indicates that the TVR-EI algorithm was more
efficient, whilst negative (red shading) indicates that the computa-
tional funnel was more efficient.
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TVR-EI’s capacity to dynamically adjust how it allocates budget
based upon information gained during the optimization. Unlike a
computational funnel, where budget is fixed and pre-allocated,
TVR-EI can dynamically allocate more budget to proxies if it is
determined that the proxy is informative, or less if the correlation
is deemed to be low. We postulate that the utility of the funnel for
cheaper lower accuracy proxies may be because TVR-EI is more
sensitive to mismatches between the proxy and the target and
thus can exhibit an overly conservative behaviour, avoiding
proxies that can still be somewhat useful.
It can also be observed that the magnitude of the difference

between the two methods is marked, with no score lower than
−20 (i.e. the computational funnel effectively required 20 fewer
target samples), but with the highest score over 100 (i.e. TVR-EI
effectively required 100 fewer target samples).

Materials discovery challenges
Building from our understanding of the algorithm taken from its use
on synthetic functions, we now test our approach on three materials
discovery examples. A detailed description of these data sets can be
found in the Data Sets section, but in summary each contain a
mixture of computationally calculated and experimentally measured
fidelities for impactful materials properties - polarizability (Alexan-
dria), power conversion efficiency (HOPV-15) and band-gap (Chen).
As we have previously stated, computational funnels require the

user to provision the computational budget in advance. It is worth
noting that throughout this study we effectively assume that the
funnel is capable of being provisioned perfectly, which is not a
situation which reflects reality. Our primary point of comparison for
each task is to a composite of funnels, where for each budget we
run separate funnel which are provisioned with the specified budget

and report the final performance of said funnel. This is contrasted
with the other methods which are being run once and their
performance tracked as they expend increasingly greater resources.
We note that this represents an upper limit on the performance of a
computational funnel – perfectly budgeted, ideally provisioned. A
comparison of performance between TVR-EI, single fidelity EI, an
ideally provisioned composite funnel and random (Monte Carlo) are
shown in Fig. 4. In this study, we use ‘regret’ as a measure of
performance, where a score of zero regret indicates that the best
possible solution has been discovered. Here, regret was calculated
with respect to an exhaustive search at the highest fidelity.
We can observe that for each of these challenges, the multi-

fidelity Bayesian optimisation approach using TVR-EI equals or
betters the performance of both the computational funnel and the
single fidelity EI method. However, as we would expect given the
insight given by the varying of correlation and cost with the
synthetic function, the behaviour of the different optimisation
algorithms varies considerably among the different datasets.
Table 1 shows a numerical summary of performance of TVR-EI in

comparison to an ideally provisioned composite funnel and
expected improvement Bayesian optimization run on the target
fidelity. We can measure performance in two ways:

● Relative efficiency of the methodologies compared to TVR-EI
(Expense multiplier in the table): Here a score of 1 means that
the same budget is consumed, and greater than one means
that TVR-EI was more efficient

● Relative regret compared to TVR-EI: here we calculate how
much worse a solution has been discovered by the
comparison methods when TVR-EI has found the optimal
solution. A score of zero means that the method has also
discovered the optimal solution.

a b c

Fig. 4 Comparison of methods for materials science challenges. Normalised Regret vs. cost expenditure for the single fidelity EI, multi-
fidelityTVR-EI, a composite of computational funnels and random search algorithms applied to the materials discovery challenges (a)
Alexandria, b HOPV-15 and (c) Chen. The composite funnel displays results associated with separately provisioned funnels one for each
potential budget value and the associated final regret of these funnels, it thus represents the best case scenario for the method. Median regret
values are plotted from 15 optimisations with different random seeds. Shading shows the interquartile range of the runs.

Table 1. Relative increase in expense needed for the computational funnel to reach median zero regret vs. TVR-EI and median regret at the expense
TVR required to reach median zero regret for composite funnel and Bayesian optimization (EI) methods.

Expense multiplier vs TVR-EI at zero regret Normalised Regret at TVR-EI zero regret

Dataset Composite funnel Bayesian optimization Composite funnel Bayesian optimization

Alexandria 2.5 2.7 0.3 0.3

HOPV 4.4 1.4 0.3 0.04

Chen 1.2 4.8 0.1 0.3

Average 2.7 3.0 0.2 0.2

Values are averaged over 15 repeated optimisations each with different random seeds.
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We observe that on average TVR-EI has an average efficiency
gain of 2.8x compared to competitive methods analysed in this
study, and an average normalised relative regret gain of 20%,
indicating the potential for this approach to deliver significant
improvements in materials screening challenges.
The Chen dataset results highlight the advantages of using well-

correlated lower fidelity proxies with both the computational
funnel and TVR-EI able to reach 99th percentile insulators with an
order of magnitude reduction in cost relative to the random
search baseline and a factor of 5 decrease in cost relative to the
single fidelity EI optimisation. The good performance of the funnel
can be attributed to the large difference in cost between the
experimental target and computational surrogates. The relatively
poor performance of a single fidelity Bayesian optimization
approach suggests that the relationship between the molecular
representations and the bandgap poses challenges to building a
powerful internal model in the low data regime demanded by the
high data acquisition cost. We posit that this could be due to a
rough functional relationship, where small changes in structure
can lead to large differences in bandgap, requiring a greater
volume of data to resolve satisfactorily. Thus, this optimization
challenge is characterised by informative proxies in combination
with a relatively challenging optimisation target function. We see
that TVR-EI offers comparable performance to the funnel. A
breakdown of how the algorithm allocates its budget (Table 2)
indicate that it achieves this by making significant use of the lower
fidelities to focus on sampling only the most valuable of the more
expensive experimental samples.
In contrast to the Chen dataset, for the HOPV dataset both the

single the EI and the TVR algorithms were able to rapidly identify
optimal candidates, significantly outperforming the random
search baseline which itself significantly outperforms the compu-
tational funnel. We note that this problem represents the worst-
case scenario for the computational funnel approach, and is
characterised by reasonably constructed, yet poorly correlated
fidelities, as demonstrated in Fig. 5. We also note that the success
of the single fidelity Bayesian optimisation algorithm (EI) indicates
that the functional relationship between the reduced dimensional
representation and the experimental power conversion efficiency
does not suffer pathologies.
Since this dataset is characterised by relatively expensive, yet

mostly low-quality surrogate fidelities in combination with a
relatively easy optimisation target function, it is easy to perceive
why TVR-EI will outperform a computational funnel approach. This
is born out through inspection of the budget allocation, which can
be seen in Table 3, with a significant number of the samples being
drawn from the target fidelity, despite the large cost of doing so.
This indicates that the method has learned that for this target, the
surrogate fidelities do not carry much information and once this is
determined, allocates almost no budget to these fidelities. Further
inspection of the breakdown of budget allocation can yield
additional insights. For example, in this task, the MO6-2x fidelity is
both relatively expensive and yet also uncorrelated to the target
(see Fig. 5), and indeed TVR-EI consistently allocates almost no

budget to investigating this fidelity. Additionally, Fig. 5 also shows
that the PBE0 and B3LYP fidelities are strongly correlated, leading
to the TVR-EI algorithm to consistently invest more budget into
the cheaper PBE0 fidelity, given that the information content is
similar. Correlation plots of the other two data sets can be found
in the supplementary information.
In contrast to Chen and HOPV-15, which have been chosen to

demonstrate situations that favour either a computational funnel
or Bayesian optimization approach, the Alexandria dataset shows
an intermediate case. Both the computational funnel and the

Table 2. Breakdown of percentage of samples, and corresponding budget allocation, spent on target (highest) fidelity samples for each task, and for
each method.

% High fidelity samples % High fidelity budget

Alexandria HOPV-15 Chen Alexandria HOPV-15 Chen

Computational funnel 10.0 1.3 4.8 33.0 20.0 50.0

Single fidelity BO 100 100 100 100 100 100

TVR-EI 6.6 55.0 26.2 24.9 95.3 87.7

Values are averaged over 15 repeated optimisations each with different random seeds.

Fig. 5 A cross-correlation plot of the five fidelities present in the
HOPV data set. Scatter plots in off-diagonal elements describe the
correlation between the X and Y data sets, whilst the diagonal plots
show the distribution of data within each data set.

Table 3. Breakdown of budget allocation for HOPV task by TVR-EI.

Fidelity Cost Average number
of samples

Average percentage
of budget spent

Experiment 20.0 55.0 95.3

MO6-2X 2.0 1.2 0.2

B3LYP 1.75 7.9 1.2

PBE0 1.5 19.4 2.5

BP86 0.5 16.3 0.7

Averages are calculated over 15 runs.
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single-fidelity EI method have comparable performance - despite
achieving this performance through fundamentally different
mechanisms - with both outperforming random searches. This
indicates that the target function is effectively optimisable and
that the balance of cost vs. correlation for the computational
proxies means they are highly informative. For this challenge, we
observe that our approach significantly outperforms both
computational funnels and single-fidelity Bayesian optimization
approaches, enhancing the signal exploited by the single fidelity
Bayesian optimization approach with additional information taken
from the lower fidelity approaches.
It is also informative to consider the effects of non-ideal

provisioning, which is more akin to a real-world situation. The
results of such a comparison are shown in Fig. 6. When
comparing to a non-ideal (either over, or under, provisioned)
funnel, we observe that the effects we describe throughout are
enhanced. For the purposes of this study, we define an ideally
provisioned funnel as the minimum budget required to reach
zero regret in the median case, an over-provisioned funnel as
having twice this budget, and an under provisioned funnel as
having half this budget. An equivalent to Fig. 4 where the
worst case is tracked in place of the median – thus providing a
lower bound to the composite funnel performance – can be
found in the ESI.
These three challenges span a range of thermochemical and

optoelectronic properties including both experimental and
computational value, and represent a wide spectrum of
characteristics, designed to test our approach against a variety
of situations in which it may reasonably be applied. In the
datasets we have examined, we observe clear benefits can be
seen to application of TVR-EI which matches or betters best
case performance of the commonly used computational funnel
and emerging Bayesian optimization methodology, while not
requiring front loading of resources nor definitive knowledge
of the relative accuracy of possible proxies. Our method is
demonstrated to be robust to uninformative proxies and able
to leverage internal correlations to remove the requirement to
expend budget on proxies which share high correlation to
lower cost alternatives. We believe that this demonstrates
that our TVR-EI algorithm has promise as a tool for molecular
and materials design where cheaper proxy measures are
available as an alternative to the well-established computa-
tional funnel or single-fidelity Bayesian optimization methods,
and establishes its utility for mixed simulation-experiment
experimental designs.

METHODS
Targeted variance reduction
Multi-Fidelity Targeted Variance Reduction (MF-TVR) is a concep-
tually simple algorithm. After computing a standard acquisition
function on the target fidelity, in this case EI, the combination of
the choice of input sample and fidelity is made by picking the pair
that minimise the variance of the model prediction at the point
with the greatest Expected Improvement, scaled by the cost of
making the evaluation. We do not separate out the low fidelity
search, and high fidelity exploit, into distinct stages, but instead
use the lower fidelities to improve the quality of the acquisition
function itself, thus directly impacting the sampling efficiency.
These steps are illustrated graphically in Fig. 7 and pseudo-code
for the TVR-EI algorithm can be found in the ESI.

Multi-output Gaussian process
In the case of a single fidelity GP, training data takes the form of
a matrix of material representations X and corresponding
property values~y, and we have another matrix of representations
X* for which we would like to make predictions. We suppose we
have a kernel function defined by a set of hyperparameters,
which is typically a universal smoothing kernel such as the radial
basis function (RBF) or a Matern kernel. This kernel function can
be used to compute prior covariances between vector repre-
sentations of materials, and by extension can be used to
compute a prior covariance matrix among a set of materials.
The posterior predicted means for the materials to be evaluated
are then given by:

μ�
! ¼ KT

� K
�1~y (2)

where μ�
! is the vector of predicted mean values, K* is the prior

covariance matrix between X and X* as determined by the kernel
function, and K−1 is the inverse prior covariance matrix between
X and X again as determined using the kernel function. Similarly,
the posterior covariances for the materials to be evaluated are
given by:

σ� ¼ K�� � KT
� K

�1K� (3)

where σ* is the posterior covariance matrix between X* and X* and
K** is the equivalent prior covariance matrix between X* and X*.
Hyper parameters of the kernel function can either be

sampled or learned by maximising the log marginal likelihood
of the training data37.
This setup can be extended to the multifidelity case by

creating a representation for the fidelities and concatenating it

a b c

Fig. 6 The effects of provisioning budgets on computational funnels’ performance. Normalised Regret vs. cost expenditure for ideally
provisioned, under provisioned and over provisioned computational funnels alongside TVR-EI applied to the materials discovery challenges
(a) Alexandria, (b) HOPV-15 and (c) Chen. The ideally provisioned funnel is defined as the funnel with the lowest possible budget that is able
to achieve 0 median regret while the under-provisioned funnel is assigned half this budget and the over provisioned funnel is assigned twice
this budget. In contrast to Fig. 4 these funnel results show the change in regret as the funnel uses its budget. Median regret values are plotted
from 15 optimisations with different random seeds. Shading shows the interquartile range of the runs.
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with the representation of the materials. This allows us to make
use of the same kernel functions to generate a prior sample-
fidelity covariance matrix.
We choose to represent the fidelities via a one-hot encoding,

where we drop the ground truth high fidelity dimension – this
results in representing a fidelity by a vector with the number of
dimensions equal to the number of approximate fidelities, with
the high fidelity reference mapping to the zero vector, and the
other fidelities mapping to the unit vectors in each axis. This
choice to drop the dimension that would normally represent the
high fidelity biases the model to care more about the relation-
ship between the various fidelities and the high fidelity than
between the lower fidelities themselves. This is of direct benefit
to our use cases, since here we care explicitly about the former
rather than the latter.
Thus the only addition to the single fidelity case defined above is

that training/evaluation data for materials and property values
have been replaced by training/evaluation data for material/fidelity
combinations and property values. i.e. previously where the ith row
of the matrix of material representations X corresponded simply to
the vector xi

! representing material i, we now have rows defined by

xki
!

¼ xi
!; fk

!h i
(4)

where xki
!

is the representation of the ith material at the kth fidelity,
and fk

!
is the one-hot representation of the kth fidelity.

The prior covariance matrix for multifidelity training data can
be thought of as a block matrix by partitioning it according to the
fidelities. The on-diagonal blocks of this matrix characterise
correlation between materials measured within the same fidelity
(and are therefore equivalent to the covariance matrices for
corresponding single fidelity GPs), while the off-diagonal blocks
characterise correlation between materials measured at different
fidelities. By optimising or sampling kernel hyperparameters the
degree to which lower fidelities are correlated with the ground
truth measurements is learned; if within the training data a given
approximate fidelity is not correlated with the ground truth high
fidelity measurements then the length-scale associated with that
fidelity’s one-hot encoded dimension will shrink and correspond-
ingly the prior covariance between the measurements at that
fidelity and ground truth measurements will tend towards zero,
while the opposite will occur for fidelities that are highly
correlated with the ground truth high fidelity function.
For our model, the full prior covariance matrix is constructed

using a Matern 5/2 kernel in combination with automatic
relevance determination. Hyperparameters are optimised via the
log marginal likelihood.

Data sets
As previously stated, the three datasets used in this study were
chosen to span a range of thermochemical and optoelectronic

Fig. 7 Illustration of the steps within a single iteration of the TVR-EI algorithm applied to a three-fidelity problem. a–f Show the 6 stages
of the algorithm. Within each panel the top (blue) plots refer to the ground truth fidelity whilst the middle (green) and lower (orange) plots
refer to the two approximate fidelities. a, b Show a set of initial data points (a) used to train a Bayesian model and the posterior predictions of
that Bayesian model (b) juxtaposed against the reference fidelity functions (dashed lines). c Shows the Expected Improvement acquisition
function applied to the high fidelity posterior used to discover the optimal high fidelity point which is highlighted with a dashed blue line.
d Shows the posterior squared correlation between the identified optimal high fidelity point (location shown again with the dashed blue line)
and points within the domain for the three different fidelities. e Shows the final scoring function which is a scaled version of d that takes
into account the cost of evaluating the different fidelities and shows the highest scoring point chosen (shown with a dashed green line) which
in this case is within the second fidelity. f Shows the new set of data points after evaluating the highest scoring point (indicated with the
green circle).
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properties including both experimental and computational values.
The three datasets selected were the Harvard organic photovoltaic
dataset (HOPV)38, the Alexandria quantum chemical library
(Alexandria)39 and the Chen Alchemical library40.

Harvard Organic Photovoltaic Dataset (HOPV)
350 molecular structures were extracted alongside their experimental
power conversion efficiencies and computational analogs computed
using the Scharber model41 built from energy levels calculated using
four different density functionals - BP8642,43, PBE020,44, B3LYP42,45 and
M062X46,47 in combination with the double-ζ def2-SVP basis set48.
For this dataset the optimization target was to discover the material
with the highest power conversion efficiency, with the computational
analogs available as lower fidelity proxies. Costs for each fidelity were
assigned as 1.0, 1.25, 1.75, 2.0 and 20.0 to evaluating at the BP86,
PBE0, B3LYP, M062X level of theory and experiment respectively.
Molecular structures were described using the SOAP descriptors49

which were reduced to a 20D representation using principle
component analysis.

Alexandria dataset
946 structures were extracted from the Alexandria dataset,
containing structure which had both experimental polarizabilities
and computational analogs calculated at both the Hartree-Fock
level of theory in combination with the 6-31 G** basis set50–52 and
using the B3LYP functional42,45 in combination with the aug-cc-
pVTZ basis set53,54. For this dataset the optimization target was to
locate the material with the highest experimental polarisability
with the HF and B3LYP calculations available as lower fidelity
proxies for the experimental target. Costs for each fidelity were
assigned at of 1.0, 2.0 and 6.0 to evaluating at the HF and B3LYP
levels of theory and via experiment respectively. Molecular
structures were described using MAACS keys55, which were
reduced to 20D using a principle component analysis.

Chen dataset
1766 structures were extracted containing examples containing
measurements of experimental bandgaps and a computational
analog using the PBE functional using the projector augmented
wave method and a 520 eV cut off. For this dataset the
optimization target was to discover the most insulating i.e.
highest bandgap material as determined by the experimental
measurement with the PBE calculations available as lower fidelity
proxies for the experimental target. Costs were assigned as 0.5 for
evaluating the PBE calculated bandgap and 10 for evaluating the
experimental values. Molecular structures were described using
the SOAP descriptors49 which were reduced to a 20D representa-
tion using principle component analysis.
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