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Machine learning-based discovery of vibrationally stable
materials
Sherif Abdulkader Tawfik 1,2✉, Mahad Rashid3, Sunil Gupta3, Salvy P. Russo 2,4, Tiffany R. Walsh1✉ and Svetha Venkatesh3✉

The identification of the ground state phases of a chemical space in the convex hull analysis is a key determinant of the
synthesizability of materials. Online material databases have been instrumental in exploring one aspect of the synthesizability of
many materials, namely thermodynamic stability. However, the vibrational stability, which is another aspect of synthesizability, of
new materials is not known. Applying first principles approaches to calculate the vibrational spectra of materials in online material
databases is computationally intractable. Here, a dataset of vibrational stability for ~3100 materials is used to train a machine
learning classifier that can accurately distinguish between vibrationally stable and unstable materials. This classifier has the
potential to be further developed as an essential filtering tool for online material databases that can inform the material science
community of the vibrational stability or instability of the materials queried in convex hulls.
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INTRODUCTION
A major challenge in materials science is determining whether a
material can be successfully synthesised. New hypothesised
materials are being continuously added to a growing number of
online material databases such as: MaterialsProject.org1, which
currently hosts more than 140,000 inorganic crystals; the
AFLOW.org2 with over 3.5 million; the Open Quantum Materials
Database (OQMD)3 with over 560,000, and the C2DB4 with over
3000 two-dimensional (2D) materials. The presence of these
hypothesised materials has greatly expanded the applicability of
the material databases; some of these materials have been
predicted to be potential candidates for applications in many
areas such as photonics5, medicine6–8 superconductivity9,
energy10,11 and programmable materials12. However, many of
the hypothesised materials are not synthesizable13 and one
should apply ’synthesizability filters’ before attempting to
synthesise these materials. A key synthesizability filter provided
in these databases for each material is the energy above the
convex hull EH, which indicates how likely a material is to exist in
nature, or to be synthesised. Values for EH lower than 100 meV are
typically perceived as an indication of the thermodynamic stability
of the material14, and this filter has been central to several reports
that outlined material synthesis pathways14–16.
However, to ascertain the possibility of synthesis of a material,

or its possible existence in nature, another criterion must be
fulfilled: the material’s vibrational stability17. Vibrationally unstable
materials are those whose vibrational dispersion possesses
imaginary phonon modes, and therefore does not exist on a
minimum in the system’s potential energy surface. Materials could
possess very low EH values, yet be vibrationally unstable. Examples
of those materials are LiZnPS4 (mp-11175) with EH= 0meV, SiC
(mp-11713) with EH= 3meV and Ca3PN (mp-11824) with
EH= 0meV, where EH values are obtained from the Material-
sProject database for each material labelled by its material ID, and
the vibrational instability is provided by the dataset of ref. 18. Thus,
convex hull information cannot be taken at face value; ideally, a

given materials database should provide a filter that indicates
both vibrational and thermodynamic stability, regardless of a low
EH value. Such a filter would enhance the applicability of, as well as
the confidence in, materials databases, but at present, this filter is
not available.
The realisation of this ideal scenario is, however, practically

challenging because of the enormous computational cost of
calculating the vibrational spectra of materials using density
functional theory (DFT), as the periodic supercell inherent to the
calculation becomes larger18. However, if a sufficiently large
dataset of vibrational stability was available, then a classification
machine learning (ML) model can be trained on the data for the
prediction of the vibrational stability of any material. ML can
provide a massive speed-up in the calculation time, as well as a
large reduction in the computational resources required. Our goal
in this work is to explore the relationships between the structure
of inorganic crystals and their vibrational stability using ML
approaches for the rapid discovery of new classes of stable
inorganic crystals. While there has been only one preprint that has
reported an attempt to address this problem using ML (limited to
2D materials)19, there have been several reports on using ML to
solve a related problem: predicting the vibrational properties, such
as the entropy, using ML. Legrain et al.13,20 and ref. 21 reported on
the successful prediction of the vibrational properties of
vibrationally stable materials by applying ML.
Applying ML requires data, and a number of datasets of

vibrational spectra for materials have been published, but they
represent only a small fraction of materials available in online
databases. Petretto et al.18 published the vibrational dispersion, as
well as quantities that are calculated based on the vibrational
dispersion, for a subset of 1521 semiconductors in MaterialsPro-
ject.org using density functional perturbation theory (DFPT). The
number of materials that are vibrationally unstable in their dataset
is 232 (~15%). Choudhary et al.22 identified 21% of 5015 materials
in the JARVIS-DFT database23 as unstable using DFPT. Using the
finite difference method for the vibrational calculations, a
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database of ~10 K materials is available at the phonopy website
(http://phonondb.mtl.kyoto-u.ac.jp/), but the authors did not make
the output of the phonon calculations text-retrievable. Here, we
generate a dataset of vibrational stability of ~3100 materials from
MaterialsProject using a workflow that involves the application of
the finite difference method, and we have made the results
available in a Github repository https://github.com/
sheriftawfikabbas/crystalfeatures/tree/master/vibrational_stability.
We train ML classification models using this data to accurately
predict which materials are most likely stable/unstable. These ML
models bring the advantage of predicting the vibrational stability
within a few seconds, which is orders of magnitude faster than
performing such calculations from first principles.

RESULTS AND DISCUSSION
Classification model
The results of training our classification model on the pristine
dataset are displayed in Table 1. As the number of data points for
the unstable class was only about half of that of the stable class,
the classification performance for the unstable class is lower, with
f1-score values lower than 0.6. The distribution of the data is,
therefore, insufficient for obtaining accurate classification for both
classes of materials.
As the dataset was divided into train folds, synthetic data was

introduced into train folds using the SMOTE and mixup methods.
The model was trained on the augmented train folds. We note
that no synthetic data were added to the test fold as it is used to
evaluate the trained model. The classification accuracy measures
(precision, recall, and f1-score) were then calculated for the test
fold. Figure 1 provides an outline of the process used to train and
test our ML model.
After training the model on a single training fold, the model was

then evaluated on the test set. Average/maximum scores for
precision, recall, and f1-score are reported for both classes. The
evaluation of all five models on test sets are shown in Table 2.
The synthetic data helped to increase the number of unstable

data points, which led to better performance of the model. The
average recall score for the unstable class increased from 42 to
68%, while the average f1-score increased from 53 to 63%.
Moreover, the mean AUC score across the fivefolds was 0.73 (Fig.
2), which means that the model overall is performing well. The
minority f1-score of 63% that was achieved by the model is
significant, considering the limited information on the minority
class and the challenging nature of the problem.

Model calibration
When using imbalanced training sets, ML models may sometimes
not be well calibrated, i.e. the class distribution of the model
predictions may not match the distribution of ground truth class
labels. We examined the calibration of the model on each of the
test folds by comparing the percentage of ground truth labels for
unstable/stable with the percentage of the predicted label for
unstable/stable and report the average percentages across
fivefolds in Table 3. For the unstable class, the average number

of data points are 32%, while our model predicts 36% of the data
points as unstable on average across fivefolds. Similarly, for stable
materials, the average number of data points are 68%, while our
model predicts 64% of the data points as stable (on average)
across fivefolds. The difference in distribution between the true
labels and predicted labels is less than 5%, and therefore our
model is considered well-calibrated. There are many other

Table 1. The average and maximum classification metrics that were obtained using vanilla RF and GB classifiers across fivefolds.

Model Precision Recall f1- score

Unstable Stable Unstable Stable Unstable Stable

Random forest Average (fivefolds) 0.71 0.78 0.42 0.92 0.53 0.84

Maximum (fivefolds) 0.76 0.79 0.46 0.94 0.57 0.86

Gradient Boosting Average (fivefolds) 0.69 0.77 0.42 0.91 0.53 0.84

Maximum (fivefolds) 0.76 0.79 0.46 0.93 0.56 0.85

Fig. 1 The machine learning workflow. Workflow overview for a
single iteration of the fivefold training of the classifier model.

Table 2. The average and maximum classification metrics that were
obtained using a random forest classifier across fivefolds, with a
dataset that has been augmented using synthetic data.

Precision Recall f1- Score

Unstable Stable Unstable Stable Unstable Stable

Average
(fivefolds)

0.60 0.84 0.68 0.79 0.63 0.81

Maximum
(fivefolds)

0.63 0.86 0.73 0.82 0.67 0.83
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methods to evaluate model calibration during classification tasks,
such as the calibration approach mentioned in ref. 24.
Model calibration ensures that the predicted class distribution is

similar to the actual class distribution in the dataset. For our
problem here, it means that the model prediction rate for stable
materials is similar to what is found in the dataset. As shown in
Table 3, the difference between the model prediction and true
distributions is only around ~4%, which means that our model
predictions closely follow the true class distribution. Model
calibration is especially useful when synthetic samples are added
to the training set during model building and also sometimes
when a model puts different weighting on different classes.

Evaluation of the model at different confidence levels
One of the important features of ML is to understand and quantify
the expected capability and variance in the performance of our
ML models on unseen data. ML models usually achieve this by
computing an uncertainty (confidence) measure in their predic-
tions. Using this confidence measure, we assessed the effective-
ness of our RF model at different confidence levels. We measured
the confidence according to the procedure in the Supplementary
Methods section of the Supplementary Information. We found
that the performance of the model improved as its operation was
restricted to increased confidence levels from 0.50 to 0.65. Using
the model in the regime of 0.65 or higher confidence level, its
average recall increased to 0.71, average precision increased to
0.70 and the average f1-score increased to 0.70 for the unstable
class. Even in this regime, the model covered around 65% of data

points for the model. Supplementary Table 2 summarises the
performance of the model across fivefolds at different threshold
values.

Feature importance
Some of the feature categories were more important than others
for predicting the stability of the material. During each iteration,
the RF model was trained on the training fold and the feature
importance score was calculated. Based on the feature importance
score, the top 30 features were identified. A new RF model (with
the same hyperparameters as the original RF model) was then
fitted using these selected 30 features, and using the same
training data as previously used. As shown in Supplementary
Table 3, the average classification scores for both models (the first
using all 1145 features and the other using only the selected 30
features) were similar, suggested that the top 30 features carry
almost all of the predictive information. Further analysis of the top
30 important features for each fold, shown in Fig. 3, indicates that
the BACD and ROSA features were the most significant features,
followed by the SG features. Some of the features, such as
std_average_anionic_radius and metals_fraction were present in
all the fivefolds and therefore were considered significant in
predicting the stability of the material. The importance of certain
descriptors across the fivefolds can be seen by displaying the top
features based on the number of occurrences across the fivefolds,
and by averaging the feature score of each of the 30 elements
across the fivefolds (Fig. 3).
Thus, the classification model has demonstrated its ability to

detect a fine material property and vibrational stability, with
reasonable accuracy. Apart from being able to detect unstable
materials from within the plethora of hypothetical materials very
efficiently, detecting the onset of imaginary frequencies is of
importance to several other applications in material science. For
example, it can be applied for determining the ideal strength of a
material, which is the amount of strain at which the material
undergoes phase transformation25–28. With a carefully designed
training set of molecular structures, finding molecules with
imaginary frequencies from many possible configurations can
assist in the discovery of transition states of reactions29,30.
Detecting crystal instabilities can also assist in determining polar
materials that are likely to be ferroelectric31.

Model limitations
The present ML training was based on sampling materials based
on the size of the lattice. While our samples spanned a large
diversity of materials, the limitation on lattice size has resulted in
restricting the statistical distribution of our dataset within ranges
that are different from the statistical distributions of the larger set
of materials in MaterialsProject. Given that ML models are derived
from data, their predictive performance is dependent on the
distribution of the data used for training. Therefore, using the
trained ML models to extrapolate the vibrational stability of
arbitrary materials might not yield accurate results. To improve the
accuracy of the model for extrapolation, the training set must be
expanded to include a material with larger numbers of atoms in
their unit cells. The approach described in this work provides a
framework for achieving this goal.
To sum up, we established a machine learning workflow for

building classification models that can predict the vibrational
stability of a material. Given that the proportion of unstable
materials is always much smaller than the number of stable
materials, our workflow involved the application of statistical
methods for balancing the dataset. Using random forest classifiers
that were trained on several material features, including rapid
one-shot ab initio descriptors and basic atom-based and crystal
descriptors, the accuracy of determining whether a material is
stable was demonstrated to be reasonable. The accuracy was

Fig. 2 Classifier performance. The receiver operating characteristic
curve (ROC) of the random forest classifier across fivefolds,
comparing the ROC obtained by fitting the dataset with synthetic
data and without synthetic data. The mean area under curve (AUC)
measure for the model trained on synthetic data is 0.73.

Table 3. Model calibration results: A distribution comparison of the
True label and the Predicted Label across fivefolds.

True label Predicted label

Unstable Stable Unstable Stable

Average
across
fivefolds

196.4 (32%) 426.6 (68%) 222.42 (36%) 399.76 (64%)
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further improved when the model performance was evaluated at
different confidence levels. The models trained in this work are,
therefore, able to discern the fine feature of phonon instability in
crystal systems and can therefore be utilised as a filter in online
material databases to assist in the high-throughput screening of
synthesizable materials.

METHODS
Featurization is the process of transforming data into numerical
values (vectors or tensors) that distinguishes between different
materials. These numerical values can be referred to as features,
descriptors, or fingerprints. The choice of features/descriptors has
a major impact on the model performance and generalisability.
The most challenging aspect of applying ML to inorganic crystal
databases is the development of a descriptor vector that can
uniquely describe each material and can be rapidly calculated. In
this work, we utilise the following features: symmetry functions
(G)32, basic atomic properties descriptors (BACD), and rapid one-
shot ab initio descriptors (ROSA). These features were introduced
in ref. 33 and were demonstrated to accurately predict a range of
material properties. These descriptors are provided in Supple-
mentary Table 1 of the Supplementary Information.
Given that the ML method must be driven by a carefully curated

dataset, and that the present dataset of ref. 18 is restricted to
semiconducting materials in which only 15% are vibrationally
unstable, a key task of the current work is to create a larger set of
materials for training the ML models. Therefore, we constructed a
dataset of all materials in MaterialsProject that have 4 atoms or
less in the unit cell. For the 4-atom unit cells, we restricted our
dataset to materials with a bandgap >0.5 eV. We call this dataset
the MPStability dataset. The MPStability dataset in this work
includes 3112 materials, among which are metals, semiconduc-
tors, and insulators. For all materials with a single atom in the unit
cell, we perform the subsequent vibrational calculations for the
3 × 3 × 3 supercells, and for materials with more than one atom in
the unit cell, we use 2 × 2 × 2 supercells.

We calculated the vibrational stability for these materials by
using the finite difference method. The displacement struc-
tures for each material were generated using the phonopy
code34, and then we calculated the atomic forces for each
displacement structure using DFT, as implemented in the
Vienna Ab initio Simulation Package (VASP)35. The plane wave
pseudopotential approach was adopted with a cut-off energy
of 520 eV. The generalised gradient approximation (GGA) with
the Perdew, Burke, and Ernzerhof (PBE)36 functional was used,
and the PAW pseudopotentials, as supplied by VASP, were
implemented. A 10 × 10 × 10 mesh was used to perform k-
point sampling under the Monkhorst-Pack scheme37. The
electronic self-consistent calculation was performed with an
energy tolerance of 10−5 eV.
The force matrix for each material was then calculated using the

phonopy code, after which the vibrational density of states (VDOS)
was calculated in a q-mesh of size 8 × 8 × 8. The vibrational
instability of a material is determined by the presence of a
significant density of imaginary phonons in the VDOS. The python
implementation of this procedure is provided in the Github link.
The finite difference method compares well with the DFPT

method, as was reported in ref. 22. For our dataset, we confirmed
that this is the case by comparing our calculated VDOS with those
calculated by ref. 18. For the materials that are common in both
datasets (248 materials), there is only a ~4% discrepancy in the
identification of stable/unstable materials. We have provided the
comparative VDOS plots for these materials in the Supplementary
Information (Supplementary Fig. 1).
The materials were classified into stable/unstable classes by

training ML classifier models. The dataset consists of 3112 data
points (982 unstable and 2130 stable) and 1147 features. The
target property (vibrational stability) is labelled by values 1 (stable)
and 0 (unstable). The features of the materials were divided into:

– ROSA features: 218
– Symmetry functions: 600
– SG Features: 230
– Atomic Features: 97

Fig. 3 Feature importance. a Top 30 features based on occurrence and b average feature importance score across fivefolds.
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For each material, the ROSA features are obtained by
performing a single step of the DFT electronic structure
optimisation loop (the self-consistent field iteration) and then
extracting the resulting eigenvalues of the electronic Hamilto-
nian and the total energies. For more details, please refer to
ref. 33. The symmetry functions are translationally-invariant
features based on the structure’s geometry. Symmetry group
(SG) features are generated by hot-coding the symmetry group
of the material into 230 columns. The atomic features are
composed of descriptive statistics of the properties of the
elements within the material.
We used random forest (RF) and gradient boosting (GB)

classifiers for this classification task. The RF model performed
slightly better than the GB model and therefore was used for
further ML tasks. The classification model was trained using
fivefold stratified cross-validation, in which the dataset was
divided into five stratified splits during each iteration and four
splits were used to train the model while the fifth split is used to
test the model. To improve the model performance for the
unstable class, we systematically introduced ’synthetic data’ in the
training set to increase the number of unstable materials, using
the following two approaches:

Synthetic minority oversampling technique (SMOTE)
SMOTE38 is one of the most widely used approaches to balancing
data. It operates by choosing a random example from the minority
class and then finds k (typically k= 5) nearest neighbours (based
on a distance measure e.g. Euclidean distance) for that example
(Fig. 4a). A randomly selected neighbour is chosen from the k
nearest neighbours and a synthetic example is created at a
randomly selected point between the two points in feature space.
This approach is effective because new synthetic examples from
the minority class are created that are plausible, i.e. that are
relatively close in feature space to existing examples from the
minority class.

Mixup technique
The second approach, which is a more recent method and is
becoming more widely used in the ML community, is called the
mixup technique39. In this method, data points from each of the
stable and unstable classes are randomly chosen from a subset of
the generated samples (Fig. 4b). The features of the stable data
point are multiplied by a parameter, λ, while the features of the
unstable data point are multiplied by (1 – λ). Since our goal is to
synthesise additional data for the minority (unstable) class, we
should use a small value of λ. Any value of lambda below 0.5 may
be possible, but to ensure realistic unstable materials, and a
smaller value would be preferred. Hence, we restricted the range

of lambda between 0 and 0.2. Subsequently, both features were
added together. The purpose of this step is that the new hybrid
data point would be closer to the unstable class. Since this new
data point is a hybrid of both classes, it is not hard-labelled as
unstable. To generate the label for this new hybrid data point, the
VDOS data was used. Similarly to feature generation, the energy
values of the randomly selected stable and unstable data points
were linearly combined with λ and (1 – λ) weights. If the combined
energy graph had a negative energy peak, the label for the hybrid
data point was assigned as ’unstable’ otherwise it was set to
’stable’.

DATA AVAILABILITY
The trained random forest model and the calculated vibrational stability of the
materials in the dataset are available in our Github repository: https://github.com/
sheriftawfikabbas/crystalfeatures/tree/master/vibrational_stability.

CODE AVAILABILITY
The python code to generate the descriptors used in this work is available in our
Github repository: https://github.com/sheriftawfikabbas/crystalfeatures.
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