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Machine-learning-based intelligent framework for discovering
refractory high-entropy alloys with improved high-temperature
yield strength
Stephen A. Giles1✉, Debasis Sengupta 1✉, Scott R. Broderick2 and Krishna Rajan 2

Refractory high-entropy alloys (RHEAs) show significant elevated-temperature yield strengths and have potential to use as high-
performance materials in gas turbine engines. Exploring the vast RHEA compositional space experimentally is challenging, and a
small fraction of this space has been explored to date. This work demonstrates the development of a state-of-the-art machine
learning framework coupled with optimization methods to intelligently explore the vast compositional space and drive the search
in a direction that improves high-temperature yield strengths. Our yield strength model is shown to have a significantly improved
predictive accuracy relative to the state-of-the-art approach, and also provides inherent uncertainty quantification through the use
of repeated k-fold cross-validation. Upon developing and validating a robust yield strength prediction model, the coupled
framework is used to discover RHEAs with superior high temperature yield strength. We have shown that RHEA compositions can
be customized to have maximum yield strength at a specific temperature.
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INTRODUCTION
High-entropy alloys (HEAs) are promising materials, which have
garnered a tremendous amount of attention since their discovery
in 20041–7. Unlike traditional alloys, HEAs contain at least four
elements in near-equal proportions, and the stability of the alloys
are postulated to arise from higher configurational entropy8.
Experimental studies have shown that refractory HEAs (RHEAs)
possess superior high-temperature strength compared to super-
alloys, making them an attractive class of alloys for further
exploration9–15 for potential use in high efficiency gas turbine
engines. While HEAs provide tremendous opportunity due to the
flexibility of the compositional space, they also pose stiff
challenges to the material scientists tasked with exploring a
design space with a huge number of possible compositions.
Recently, Miracle et al. analyzed that using 75 elements that are
not toxic, radioactive or noble gas, one can form 219 million 3–6
component base alloys16. If elemental composition is varied for
each base alloy, the number of HEAs becomes more than 592
billion16. To date, only a tiny fraction of this composition space has
been processed and characterized. One of the primary obstacles
that impedes the accelerated development of HEA is the lack of
generalized understanding of parameters that are responsible for
dictating the mechanical and chemical behavior of these complex
alloy systems. Although atomic and microstructural information
can be obtained with modern high-resolution imaging techniques,
these techniques are time-intensive and costly, thereby limiting
the extent to which the vast composition space can be explored
and characterized.
As a consequence, HEA research has mainly revolved around

identifying rules for phase formation and atomic and micro-
structural parameters potentially affecting mechanical properties
and to develop criteria for classification of phases. Extensive work
has been reported in the literature17–19 to classify phases using
parameters, such as the atomic size mismatch (δ), the enthalpy of

mixing (ΔHmix), the entropy of mixing, ΔSmix, and dimensionless
quantities Ω, Φ, and φ. Ranges of these parameters have been
proposed that can lead to different phases. However, developing
guidelines for the improvement of mechanical properties is a
relatively less studied area. Earlier reports in this area are primarily
concentrated on experimental efforts concerning the modification
of a base alloy and finding correlations between mechanical
properties with parameters, such as lattice distortion20–23, grain
size10,24,25, and phases26–28. While this approach can be beneficial
when narrowly focused on a particular base alloy system, it has
limited transferability to other systems. Recently, Maresca et al.
have used an edge dislocation-based analytical model and
generated ~10 million compositions with increasing theoretical
yield strengths29. Using their analytical model, a large number of
HEAs were discovered that would potentially result in yield
strength improvement over the existing HEAs. Likewise, Rao et al.
have used the Maresca et al. model recently as a guide for
designing HEA compositions30. However, the use of ML models
may offer superior accuracy for the prediction of mechanical,
phase, and other physicochemical properties. In fact, a number of
articles have recently appeared that have applied various ML
methods to predict HEA phases31–33. In regards to other proper-
ties, Wen et al. developed an ML-based model to predict hardness
in the AlxCoyCrzCuuFevNiw system, which was coupled with an
experimental synthesis and optimization approach34. ML-based
studies on the catalytic and thermal expansion properties of HEAs
have also performed33,35,36. An ML-based framework informed by
extant literature data is still a mostly untapped route for the
development of HEAs with superior mechanical properties,
particularly for RHEAs which possess the potential for high
strength in high-temperature applications.
Currently, HEA development starts with processing a base alloy

followed by generating a few HEAs with varying compositions. If
the properties of the alloy compositions did not improve, the
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search for alloy compositions with improved properties continues
(Fig. 1a). The work presented in this paper aims at substituting this
“experiment-only” loop with intelligent ML-based models to
screen HEAs and narrow down the search space providing
material scientists only a few alloys potentially showing improved
properties to process and characterize (Fig. 1b). This paper, as an
example, focuses on yield strengths of refractory high-entropy
alloys (RHEAs) and begins with developing a comprehensive
forward ML model via identifying critical descriptors selected from
a set of a large number of descriptors. The forward model was
then coupled with a stochastic genetic algorithm37 to discover
RHEAs compositions with improved yield strengths. Valuable
insights were gained with respect to identifying elements
contributing to improving yield strength at room and high
temperatures. The physical and thermodynamic descriptors were
also analyzed to understand their roles in improved yield strength.
Using the ML-based model, we discovered RHEA compositions
with yield strengths customized for specific temperatures.
Beginning with known experimental compositions of RHEAs, we
have discovered several compositions with significant improve-
ment in yield strength over the starting compositions. Although
this work primarily focuses on the prediction of RHEA yield
strength, the scope of future work based on this framework is
much broader. Model development for other properties, such as
ductility, creep behavior, and high-temperature oxidation resis-
tance, will be undertaken to enable discovery of alloys satisfying
multiple property requirements.

RESULTS AND DISCUSSION
Data collection and descriptor generation
The RHEA yield strength data were obtained from the publication
by Couzinie et al.38. The data in the publication contained both
compression and tension data. For the present work, only
compression data was used as the tension data were insignificant
in number. Since the article did not contain detailed processing
conditions (e.g., annealing temperature, annealing time, etc.), we
extracted the specific processing conditions from the original
articles referenced by Couzinie et al.38. The revised dataset
contained 280 temperature-dependent yield strength values for
alloys. Of these 280 reported values, there were three measure-
ments that underwent premature fracture, and thus, their yield
strength measurements were more similar to a fracture strength.
These measurements were kept in the dataset used for training
and validation to account for the possibility of some alloys
undergoing premature fracture. Also, as stated in the Methods

section, the Maresca et al. model39 was used to interpolate
between experimental data to improve predictions at 200 °C and
400 °C. Following the inclusion of these data, the final dataset
used for model training and validation had a total of 314
temperature-dependent yield strength values. Once the data were
collected, a large number of composition-based descriptors were
generated using the matminer library40. Calculation for several
additional composition-based descriptors, such as lattice and
modulus of distortion, were implemented in matminer. These
descriptors are based on the nominal composition. It has been
noted previously that interstitial elements (e.g., nitrogen and
oxygen) can increase the yield strength by as much as 500 MPa at
small concentrations41, however, these variations in the interstitial
content are expected to be at least partially absorbed within the
dataset and the proclivity of nominal compositions to atomically
bind with interstitial elements. Prior to training and validation of
the ML models, the descriptor set was reduced by removing
descriptors which had either undefined, low-variance, or linearly
dependent values. Specific details of our approach are provided in
the Methods section. A comprehensive list of the descriptors that
were made available for the feature selection and ML training
process is provided in the Supplementary Information (SI).

Machine learning model development
Figure 2a shows the parity plot comparing the measured yield
strength values to the predicted values following training and
validation using the random forest model42. The six descriptors
chosen by the sequential feature selection (SFS) method43,44 are
the test temperature, Ω (a dimensionless ratio of entropic and
enthalpic contributions), atomic size mismatch (δ), tantalum
modulus distortion (δGTa), fractional composition of molybdenum
(xMo), and a base strength, σ0, min0.5, determined from the yield
strength of the individual elements in the alloy. As stated in the
Methods section, the dimensionless quantity Ω is defined as
Ω= TmΔSmix/|ΔHmix| . The model was found to have a cross-
validation regression coefficient, R2 (CV), of 89.5%. All data in the
parity plot are colored by the temperature at which the yield
strength measurements were made. As expected, the measure-
ments performed above room temperature generally have lower
yield strengths than measurements performed at or below room
temperature. Our model is shown to provide very good
quantitative agreement over the entire temperature range.
Particularly noteworthy is that this model can predict the yield
strength of both single phase and multi-phase alloys without
explicit inclusion of phase information in the data. However, Yang
and Zhang have described the ability of Ω and δ to be predictive

Fig. 1 Alloy development strategies. a Traditional HEA processing requires exploring the composition space experimentally to achieve a
target property. This makes exploring a large HEA composition space and discovering HEAs difficult, time-consuming, and expensive; b the
flowchart of the procedures which explore the composition space intelligently, using optimization coupled with a model to achieve a target
requirement. The approach narrows down the search space for material scientists, potentially accelerating HEA discovery.
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of the favorability of solid solution formation19. Therefore, the
ability of our model to predict yield strength for both single and
multi-phase RHEAs well is indicative of the importance of these
descriptors. Models were also developed using LASSO regres-
sion45, ridge regression46, and gradient boosting regression47.
These models are summarized in Supplementary Figs. 1–3 of the
Supplementary Information. LASSO and ridge regression resulted
in significantly lower accuracy due to their linear nature, whereas
gradient boosting resulted in a R2 (CV)comparable to that of
random forest model shown in Fig. 2. The random forest and
gradient boosting models are similar in that they are both
ensemble models based on decision trees, and are capable of
capturing complex, nonlinear relationships. Thus, it is not
surprising that they give similar accuracies. The LASSO and ridge
regressions are linear models with L1 and L2 regularization
applied, respectively, and had lower accuracies due to missing
inherent nonlinearity in the yield strength and descriptor
relationships. Our present discussion is based on the results
obtained with the random forest model.
To understand the effect and importance of each of the six

selected descriptors on the predicted yield strength, we have
applied the Shapley Additive Explanations (SHAP) technique48,49

to physically interpret the forward model that was validated in Fig.
2a. SHAP analysis is a game-theoretic, local explanation method
which computes the quantitative influence of model descriptors
on the model output. Although never applied in materials science,
SHAP analysis can provide some insights into the model over the
entire data space which is otherwise difficult to obtain. As
expected, the test temperature is shown via SHAP analysis to be
the most important feature, with high temperature corresponding

to a lower predicted yield strength and vice versa (Fig. 2b). As an
additional study, we have examined the effect of replacing T with
the homologous temperature, T/Tm (where Tm is the melting point
of the alloy using rule-of-mixture, see Method section for details),
as Senkov et al. have suggested that this is the key variable
dictating temperature-dependent yield strength17. We observe
insignificant change in the model error and R2 (CV), and the SHAP
analysis showed virtually identical behavior of T and T/Tm. The
detailed results are included in SI (Figs. S4–S5). The other
important conclusion of the SHAP analysis is that higher values
of δ, δGTa, and xMo tend to positively contribute to the yield
strength. The outlier red points for Ω result from smaller values
of | ΔHmix | , thereby causing Ω to become very large (see Eq. (4)).
The trend of Ω versus the SHAP impact on the model by Ω is
shown in Supplementary Fig. 6. The trend reveals that the impact
of Ω undergoes a such that for Ω < ~15, Ω clearly has a positive
impact on the yield strength, whereas for Ω > ~15, Ω clearly has a
negative impact on the yield strength. Therefore, this model
implies the connection between the mechanical property and the
parameters derived from atomic structure, and also provides a
manner through which to directly link the two.
For the predicted values in Fig. 2a that were determined from

performing 1000 repetitions of k-fold cross-validation (see the
Method section for details), the standard deviation of the
predicted value of each alloy was determined. The distribution
of the standard deviations is shown in Fig. 2c. The distribution is
log-normal due to all values being positive, by definition, and the
average standard deviation was found to be 48 MPa. It should be
pointed out that k-fold cross-validation is a well-established and
effective validation method when the dataset size is small.

Fig. 2 Model performance, explainability, and error analysis. a Predicted vs. experimental yield strength for compression data using the
model developed according to the procedures described in the Methods section. Note that we used a repeated k-fold method where 5-fold
cross validation was performed 1000 times to compute the mean and standard deviation of each data point; b SHAP analysis is performed to
identify descriptor importance. Features on the left are ordered according to their importance, with the most important feature (temperature)
shown on top. The data points correspond to the individual alloy data points, where each have been colored according to the magnitude
(high or low) of the feature in question. Positive SHAP values indicate that the yield strength is increased as a result of the feature value,
whereas negative SHAP values indicate the yield strength is decreased due to the feature value. c Distribution of prediction standard
deviations for each data point when 5-fold cross-validation is performed 1000 times. d Distribution of prediction errors relative to the
measured values.
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Although it is a common practice to validate model with one or
two experimental measurements, this practice is inadequate for a
statistically meaningful assessment of model accuracy. We
additionally calculated the error in the predictions relative to the
known experimental values. This error distribution is shown in Fig.
2d. In this case, the distribution is normal with a mean value near
zero, and a characteristic mean absolute error (MAE) of 118 MPa.
The corresponding percentage error distribution is shown in
Supplementary Fig. 7. By contrast, the theoretical edge dislocation
model proposed by Maresca and Curtin39 was determined to have
an MAE of 683 MPa for the same dataset, and consistently
underpredicted the experimental yield strength. The correspond-
ing parity plot and error distribution are provided in Fig. S8. The
consistent underprediction of the yield strength by the edge
dislocation model could be a result of many of the HEAs being
screw-controlled. We note that Maresca et al. have also developed
a complementary screw dislocation model50. However, the screw
dislocation model involves a number of unknown material
parameters that render it difficult to apply to HEA systems.
Through repeated k-fold cross-validation, the ML model presented
here is demonstrated to provide acceptable predictions for the
whole range of RHEAs studied. Therefore, our model represents a
significant step forward in the state-of-the-art as it not only has a
better accuracy, but also concurs with some of the well-
established physics.

Experimental validation of machine learning model
We have also validated the developed machine learning model of
yield strength with previously unseen experimental data. The
validation of our model is shown in Fig. 3. The experimental data
presented for CrMoNbV and NbTaTiV were taken from a recently
published paper by Maresca et al.41, who also presented yield
strength predictions of an analytical model based on edge

dislocations. Our model has a mean absolute error of 224MPa
for CrMoNbV and 147 MPa for NbTaTiV with respect to the
experimental data. However, for NbTaTiV, other literature data has
reported lower yield strength values at 25 °C which closely match
our model’s predictions. One potential explanation for the
observed deviation from the experimental values is the presence
of interstitials (e.g., nitrogen or oxygen) in the alloy. Relatively small
concentrations of interstitials (e.g., ~2 at.%) have been shown to
lead to changes in the yield strength as large as 500 MPa51. While
our model has the advantage of being driven by experimental
data, and thus is implicitly trained on data for alloys which likely
contain interstitials and less susceptible to large errors from this
source, there can still be significant deviation if the concentration
of interstitials is relatively large in comparison to the data that has
been used for model training. Overall, however, validation of our
model demonstrates good quantitative accuracy and close
agreement in the temperature dependence of yield strength.

Alloy discovery: known base alloys as a starting point
Once the ML model is developed, various approaches can be
followed in order to discover alloys with improved yield strength. The
first approach, which experimentalists frequently follow, is to select a
known alloy and improve its properties by varying the atomic
fractions and/or adding elements. Our RHEA discovery approach
mimics this procedure computationally and is schematically shown in
Fig. 4a. The procedure varies the atomic composition as dictated by
the genetic algorithm, and computes the yield strength using the
forward model via computing the descriptors used in the model.
Finally, convergence is achieved when the yield strength is
maximized with respect to the elemental composition through the
intelligent search of the compositional space towards the direction of
improving yield strength. The details of the optimization process can
be found in the Methods section.
As a demonstration case, we first selected AlMo0.5NbTa0.5TiZr

which already shows high yield strength at high-temperature.
Therefore, it is logical to use this alloy as a starting point for the
genetic algorithm optimization to examine whether it is possible
to improve its yield strength further by manipulating the
composition. To begin the optimization, we chose a temperature
at which to maximize the yield strength. As an example, we are
primarily concerned with discovering RHEA compositions with
maximized yield strength at room temperature (25 °C) and at
elevated temperature (1000 °C). The optimization progress was
visualized by performing principal component analysis (Supple-
mentary Figs. 10–11). Figure 4b compares the yield strength vs.
temperature profiles of the base composition, the compositions
that maximizes yield strength at 25 °C and 1000 °C. The base alloy
and the 25 °C optimal alloy behave very similarly with respect to
temperature. At 25 °C the optimized alloy improves upon the base
alloy by 90 MPa, or 4%. The minor improvement in the yield
strength indicates that the base alloy was already near optimal for
yield strength at 25 °C. Furthermore, the base alloy and the 25 °C
optimal alloy have a nearly identical temperature dependence.
The 1000 °C optimal alloy exhibits a notably different temperature
dependence, with the yield strength being approximately
constant between 25–800 °C. The 1000 °C optimal alloy has a
significantly reduced yield strength at 25 °C (1398MPa), yet
improves upon the base alloy yield strength by 13% at 1000 °C
(848MPa). The remarkable temperature insensitivity of the 1000 °C
optimal alloy, which shows a statistically insignificant change in
the yield strength between room temperature and 800 °C, is
particularly worth noting. Experimentalists have frequently con-
cerned themselves with searching for alloys that maintain high
yield strength as they are exposed to increasingly high
temperatures. The relative temperature insensitivity predicted
here is similar to that observed by Senkov et al. for the
AlMo0.5NbTa0.5TiZr0.5 alloy52. In the case of the 1000 °C optimal

Fig. 3 Validation of machine learning model with unseen
experimental data, and comparison of the ML model to the edge
dislocation model of Maresca et al. a CrMoNbV, and b NbTaTiV.
“Experimental” and “Maresca Model” data taken from Maresca
et al29. For NbTaTiV, the black squares indicate the yield strength for
the alloy reported by two other references9,66. A 95% confidence
level error (±94 MPa) is shown for Our Model.
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alloy, given that the value of δ is the prevailing difference between
the 1000 °C optimal alloy and the base alloy, our model suggests that
lower values of δ could be correlated to a lessened temperature
dependence of the yield strength. However, because there were
three alloys in the dataset whose yield strength measurement was
more similar to a fracture strength, we believe it is appropriate to
caution readers that the temperature insensitivity observed here
could be indicative of the 1000 °C optimal alloy being likely to
prematurely fracture. In Fig. 4c the element fractions of the base alloy
(AlMo0.5NbTa0.5TiZr) is compared to the final composition of the
alloys optimized for 25 °C and 1000 °C yield strength. In the 25 °C
alloy, the Mo fraction is shown to increase significantly relative to the
base alloy. For the 1000 °C optimized alloy, on the other hand, the
Mo fraction remains approximately unchanged while the Zr fraction
decreases significantly. Simulation results thus indicate composition
that improves room temperature strength does not necessarily
improves high-temperature yield strength. The approach developed
here therefore particularly useful for predicting RHEA compositions
customized to have superior yield strength at a specific temperature
of interest. Figure 4d shows the changes for each of the descriptors
serving as direct inputs to the ML model at two different
temperatures. Evident from observing the changes in the descriptor
values relative to the base alloy is that the xMo constitutes by far the
largest change for the 25 °C optimal alloy. On the other hand, δ, the
atomic size mismatch, undergoes the largest change for the 1000 °C
optimal alloy. That the optimal atomic size mismatch is significantly
smaller for the 1000 °C optimal alloy indicates that increasing lattice
distortion could have a deleterious impact on the yield strength,
particularly at high temperature. Our results suggest that the impact
of model descriptors on the yield strength is complex and
temperature-dependent, thereby pointing towards a different
physics which should be considered when designing alloys for a
particular temperature range.
The aforementioned inverse optimization for both 25 °C and

1000 °C starting from AlMo0.5NbTa0.5TiZr constitutes just one
example of workflow that has been developed to improve upon a
base alloy. The choice of the AlMo0.5NbTa0.5TiZr RHEA to serve as
the base alloy was informed by its already having an exceptional
high-temperature yield strength. Other rationales could be used
that could lead one to choose a different known alloy as a starting

point for the optimization. For example, in addition to yield
strength, ductility is a mechanical property of frequent concern.
Yet, yield strength and ductility have a well-known tradeoff, where
increasing ductility tends to lead to lower yield strength
(Supplementary Fig. 12). Thus, it is logical to start with
compositions that already possess a good room temperature
ductility and manipulate them to maximize yield strength through
optimization. While there is no certainty that the discovered
compositions with improved yield strengths will retain their
ductility, ML models can be developed to maximize both yield
strength and ductility simultaneously. Such models are currently
under development by us where one can find compositions that
simultaneously improve multiple properties. In this paper, we have
chosen two additional base alloys, Mo0.3NbTiV0.3Zr and HfNbTa-
TiZr, which show high room temperature ductility. Mo0.3NbTiV0.3Zr
has a moderate yield strength at 25 °C (1312MPa) and a ductility
of 49.3%53. HfNbTaTiZr also has a high ductility (33.3%) but a very
poor yield strength at 25 °C (929 MPa)54.
The optimizations were performed on these two base

compositions at 25 °C and 1000 °C, and the results of their
temperature dependent yield strengths are shown in Fig. 5.
Immediately apparent in Fig. 5 is that greater improvements in the
yield strength are seen for these two cases relative to what was
AlMo0.5NbTa0.5TiZr case in Fig. 4d. This is a consequence of both of
these base alloys being particularly sub-optimal with respect to
yield strength as they were selected for their good ductility
instead. It can be seen that significant improvements were
achieved at both 25 °C and 1000 °C over the base alloy
compositions; in particular for HfNbTaTiZr, 80% improvement
(increase from 962MPa to 1731 MPa) was achieved at 25 °C, and
36% improvement (252 MPa to 344 MPa) was obtained at 1000 °C
by optimization of the elemental composition.
Inspecting the elemental compositions provided in Fig. 5

reveals some important trends with respect to which elements
are modified to render an improved alloy. For the 25 °C optimal
alloy in Fig. 5a, the concentrations of Nb, Ti, and Zr were
decreased by approximately equivalent amounts relative to the
base alloy, whereas the concentration of Mo and V were both
increased significantly. By contrast, for the 1000 °C optimal alloy,
the Ti fraction was increased and the V fraction was nearly

Fig. 4 Optimization of AlMoNbTaTiZr for yield strength improvement. a The flowchart outlines the steps for optimizing the HEA
composition from a base HEA. The only input required for the model is a base HEA composition; b yield strength vs. temperature profile for
the original base alloy and the two optimized alloys. c comparison of the element fractions for the original base alloy and the alloys optimized
for 25 °C and for 1000 °C. Elements that were increased are shown in green text, while elements that were decreased are shown in red text;
d percent change, relative to the base alloy, of each feature which serves as a direct input to the yield strength model. The numbers in bold
black font are the values of each feature in the base alloy. A 95% confidence level error (±94MPa) is shown for prediction.
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unchanged. Similar to the alloy optimized for yield strength at
25 °C, however, the Mo concentration was also increased. That Mo
generally tends to improved yield strength is consistent with the
SHAP analysis discussed in Fig. 2b. Likewise, considering the
HfNbTaTiZr base alloy case in Fig. 5b, Ti is also shown to be
present in a high concentration for the 1000 °C optimal alloy and
in low concentration for the 25 °C optimal alloy. Meanwhile, Ta
and Zr in the HfNbTaTiZr base alloy exhibit a similar relationship
with the yield strength that Mo and V exhibited in the
Mo0.3NbTiV0.3Zr base alloy. That increasing the Ta element fraction
often corresponds to improved yield strength was also evident
from the earlier SHAP analysis where the δGTa was shown to have
a positive impact on the yield strength.

Virtual 10 element alloy discovery
So far, we have restricted the compositional variation within the
elements of a base alloy without adding or exchanging any
elements. A total of 10 elements (i.e., Al, Cr, Hf, Mo, Nb, Ta, Ti, V, W,
and Zr) are present in the training dataset. Inclusion of additional
elements was first performed via using the equimolar 10-element
alloy as a starting point. Comparison of the temperature-
dependent yield strength for the 10-element base alloy, the
25 °C optimal, and 1000 °C optimal is provided in Fig. 6a. The
comparison reveals that both optimized alloys result in a
significant improvement at 25 °C, and in fact, the two optimized
alloys have very similar yield strengths at 25 °C. However, at
1000 °C, the 25 °C optimal alloy has a lower yield strength than the
base alloy. The 1000 °C optimal alloy, however, maintains a high
yield strength resulting in a 48% improvement upon the base
alloy. The elemental compositions are provided in Fig. 6b.
Common refractory elements (Hf, Nb, and Mo) are shown to be
particularly beneficial when optimizing at 1000 °C, whereas lighter
elements (Al and Ti) are more beneficial at 25 °C.

Virtual base alloy search
To mimic typical HEA compositions, which often include only 4–6
principal elements, we also extended our approach to system-
atically predict the yield strength for every unique five-element
RHEA from the set of 10 elements. Choosing 5 elements from this
set of 10 elements yields 252 equiatomic alloy combinations,
some of which have been reported in the literature. The forward

ML model was used to predict the yield strength of all 252
equiatomic alloys, at both 25 °C and 1000 °C. The distribution of
predicted yield strengths for 25 °C and 1000 °C are shown in Fig.
7a, b, respectively. At 25 °C the yield strengths are approximately
normally distributed with a mean of 1457 MPa and a standard
deviation of 175 MPa. The yield strength distribution at 1000 °C,
however, is clearly bimodal. One mode is located at ~200 MPa,
while the other mode is located at ~550 MPa. The bimodal
behavior at 1000 °C is correlated with the presence of Mo. If Mo is
present in the alloy, the alloy belongs to the class of materials with
an average predicted yield strength of ~550 MPa at 1000 °C. In the
absence of Mo, the alloy has a notably reduced high-temperature
yield strength property. Existing theories of screw and edge
dislocation mechanisms in HEAs by Maresca et al.39,50 indicate that
HEAs which predominantly follow the screw deformation
mechanism typically do not retain their strength at high
temperature, whereas edge-controlled deformation can retain
mechanical strength at temperatures as high as 1900 K39,41,50.
Furthermore, screw dislocations have been shown to increase in
mobility relative to edge dislocations when the alloy transitions
into ductile behavior (e.g., above a certain temperature)55. The
ductile-to-brittle transition itself has been characterized by various
criteria, including Pugh’s criterion, which is the ratio of the shear
modulus to the bulk modulus56. To this end, we have computed
the mean value of Pugh’s criterion for the Mo-containing RHEAs to
be 0.368, whereas non-Mo-containing alloys had a mean Pugh’s
criterion of 0.295. Therefore, these two pieces of information,
while not conclusive, do suggest Mo-containing RHEAs may have
a greater likelihood of being edge-controlled, thus offering a
theoretical justification for why a bimodal distribution is seen at
high temperature but not at low temperature.
The equiatomic alloys, AlMoTaTiZr and AlHfMoTaTi, with the

highest yield strengths at 25 °C and at 1000 °C, respectively, were
identified and selected for further optimization. The two alloys are
notably similar, with the only difference being the replacement of
Zr with Hf. Both of these equiatomic alloys were not present in the
compiled Couzinie et al. RHEA dataset38 used for training and
validation, nor, to the best of our knowledge, have they been
reported in any of the RHEA literature. In Fig. 7c, d, the yield
strengths of these two equiatomic alloys were further improved
through optimization of their element fractions. Since both
equiatomic base alloys had high yield strength, optimizing the

Fig. 5 Composition optimization of known alloys to improve yield strength at 25 °C and 1000 °C. a Mo0.3NbTiV0.3Zr base alloy case, and
the (b) HfNbTaTiZr base alloy case. The original base alloy is shown together with the optimized alloy for 25 °C and the optimized alloy for
1000 °C. The element compositions corresponding to each case are shown in panels (c) and (d). Element fractions that were increased during
the optimization are shown in green text, while element fractions that were decreased are shown in red text. A 95% confidence level error (±
94MPa) is shown for prediction.
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element fractions resulted in only slight improvements to the yield
strength, with the Al0.239Mo0.123Ta0.095Ti0.342Zr0.201 alloy resulting
in an improvement of 7% at 25 °C, and the Al0.151Hf0.236Mo0.137-
Ta0.131Ti0.345 alloy resulting in an improvement of 2% at 1000 °C.
Also, worth noting is that, assuming a rule-of-mixtures, the
Al0.239Mo0.123Ta0.095Ti0.342Zr0.201 alloy had a density of only
6.3 g cm−3. According to the Couzinie et al. dataset38, there is
no HEA which is both stronger at 25 °C and less dense than the
Al0.239Mo0.123Ta0.095Ti0.342Zr0.201 RHEA. Furthermore, in Supple-
mentary Fig. 13 we have compared the yield strengths of the
AlMoTaTiZr and AlMoTaTiHf to the yield strength of all the
reported equiatomic quinary HEAs in the literature. The 25 °C
optimal equiatomic 5-element alloy, AlMoTaTiZr, is predicted to
have the highest room-temperature yield strength (1992 MPa),
while the 1000 °C optimal alloy has a yield strength nearly as high
(805 MPa) as the highest reported alloy, HfMoTaTiZr, which had a
yield strength of 855 MPa.

Summary and future prospects
In this paper, we have demonstrated the concept of an intelligent
computational framework based on machine learning and
optimization to predict RHEA yield strength and discover RHEA
compositions with theoretical improvement over the starting
RHEA. The protocol developed here can be used by material
scientists for quick screening of compositional space and
identifying potential candidates with improved yield strength
that merit processing and characterization. First, we have shown
that repeated k-fold cross-validation coupled with feature
selection is an effective approach to obtain a more statistically
meaningful prediction of all data points in contrast to traditional
used ML validation techniques. Using the robust ML-based yield
strength prediction model with a clear understanding of the
statistical errors, we have coupled this with a genetic algorithm to
discover RHEA compositions with improved yield strengths. Given
a baseline starting RHEA, the algorithm intelligently searches
through the complex composition space to maximize yield
strength. The concept was demonstrated for three different base
alloys discussed in the RHEA literature, and optimal alloy
compositions with improved yield strengths, as high as 80%
were predicted for both 25 °C and 1000 °C. The alloys optimized
for yield strength at 25 °C and at 1000 °C exhibited notable
differences in composition and descriptors, underscoring that the
mechanisms and criteria for maximizing strength at low
temperature and high temperature can be quite different, and
compositions maximizing yield strength at room temperature

may not improve that for high temperatures. Finally, in a
generalized approach, we predicted the low-temperature and
high-temperature yield strength of 252 equiatomic RHEA
chemistries. The top candidate for each temperature was further
improved by tailoring the elemental composition using our
generalized framework. Our ongoing work is extending this
technique to predict other mechanical properties, such as
hardness, ductility/plasticity, creep strength, and fatigue. The
simultaneous optimization of multiple properties can also be
incorporated into the framework. The ability to perform multi-
property optimization will enable discovering HEAs with, for
example, high ductility at room temperature and high strength at
higher temperatures. Identifying HEAs which meet requirements
for multiple properties experimentally is a grand challenge, and
the work presented here creates a foundation for addressing this
challenge.

METHODS
Descriptor calculations
Some noteworthy descriptors that bear discussion are ones that
have been traditionally used for interpreting phases, such as the
atomic size mismatch (δ), the enthalpy of mixing (ΔHmix), the
entropy of mixing (ΔSmix), Ω, and Φ. The equations defining these
five descriptors are given as17,18,

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

xi 1� ri=rð Þ2
s

(1)

ΔHmix ¼
X

n

i¼1;i≠j

Ωijxixj (2)

ΔSmix ¼ �R
X

n

i¼1;i≠j

xi ln xj (3)

Ω ¼ TmΔSmix

ΔHmixj j (4)

Φ ¼ ΔHmix � TmΔSmix

ΔHmax � TmaxΔSmax

�

�

�

�

�

�

�

�

(5)

In Eqs. 1–5, i and j represent the ith and jth element, ri is the
atomic radius of the ith element, r is the average atomic radius of
the alloy, Ωij = 4ΔHmix

AB (where ΔHmix
AB is the enthalpy of mixing of

Fig. 6 Composition optimization of a 10-element alloy system for 25 °C and 1000 °C. a Temperature-dependent yield strength, and (b)
corresponding changes in elemental composition starting from the equimolar base alloy and optimizing at 25 °C and 1000 °C. A 95%
confidence level error (±94 MPa) is shown for prediction.
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binary alloys), x is the element fraction, Tm is melting temperature
estimated from a rule-of-mixtures, ΔHmax is the maximum
enthalpy of mixing of a binary combination of the elements in
the alloy, Tmax is the maximum melting temperature of a single
element in the alloy, and ΔSmax is the maximum entropy of mixing
of a binary alloy (i.e., an equiatomic binary alloy). We have
investigated the accuracy of the rule-of-mixtures estimate for Tm
by comparing the estimates to those obtained from the liquidus
line in calculated phase diagrams of 33 HEAs. The mean absolute
error (MAE) in the rule-of-mixtures Tm estimate is 148 K
(Supplementary Fig. 14), which corresponds to an error of
approximately 6%. This error has likely been absorbed within
the random forest fitting of the data. While acceptability of this
level of uncertainty in Tm is certainly debatable, we argue that
using the rule-of-mixtures is a rapid and effective method to
estimate Tm for yet-to-be-synthesized alloys.
Recently, lattice distortion and moduli of distortion are thought

to be important parameters for determining phase formation and
mechanical properties of HEAs21,57. Therefore, we have included
them in our descriptor calculation. The lattice distortion around
atom i can be defined according to Senkov et al.58 as,

δai ¼ 9
8

X

j

xjδaij (6)

The 9 in the numerator is due to total number of atoms in the i
-centered cluster in the BCC lattice, while the 8 in the denominator
is due to the number of atoms around i in the cluster (excluding i).
The reduced atomic size difference, δaij , is defined as,

δaij ¼ 2ðri � rjÞ
ðri þ rjÞ (7)

Similarly, the modulus of distortion, δGi , is the defined as,

δGi ¼ 9
8

X

j

cjδGij (8)

δGij ¼ 2ðGi � GjÞ=ðGi þ GjÞ (9)

where G is the shear modulus. The atomic radii and moduli were
collected from published values (AZO Materials (https://
www.azom.com/))17.

In addition to solid solution strengthening, grain boundary
strengthening is another mechanism through which the mechan-
ical properties of an alloy can be affected. The primary empirical
equation governing the contribution of grain boundary strength-
ening to the observed mechanical property is the Hall-Petch
relationship59,60. The Hall-Petch relationship is frequently
expressed as,

σHP ¼ σ0 þ Kd�
1
2 (10)

Where σ0 is the base strength of the material, K is the locking
parameter, and d is the grain size of the material. In alloys, the
base strength is typically derived from the the individual element
yield strengths using the rule-of-mixtures. The locking parameters
of all elements of interest in this study have been tabulated in the
literature24. Here, a rule-of-mixtures has been used to estimate the
locking parameter of each alloy based on their elemental
composition. The grain size, d, is closely related to the specific
processing conditions affecting grain growth kinetics61,62, and is
typically not reported in the HEA literature. However, some HEA
literature have performed detailed studies on the effect of
ubiquitously reported processing conditions (e.g., annealing
temperature, annealing time, etc.) on the grain size. Therefore,
the specific processing conditions which we have collected from
the original literature cited by Couzinie et al.38 serve as a surrogate
for a more detailed microstructural knowledge.
Finally, we have utilized the temperature-dependent yield

strength model based on edge dislocation theory formulated by
Maresca and Curtin39 to augment the experimentally available
HEA dataset at temperatures between 25 °C and 600 °C. The
accuracy of ML approaches is always fundamentally limited by the
availability of adequate data, and RHEA yield strengths at
temperatures between 25 °C and 600 °C are typically not reported.
Using the experimental yield strengths at 25 °C and 600 °C and the
temperature-dependent yield strength model proposed by
Maresca and Curtin39, the yield strength for 200 °C and 400 °C
were computed. More details and an example calculation of the
yield strength at 200 °C and 400 °C based on experimentally
known values at 25 °C and 600 °C are provided in the SI.

Fig. 7 Yield strength predictions of 252 five-element equiatomic base alloys. a Distribution of yield strength at 25 °C for the five-element
equiatomic alloys. b Distribution of yields strength at 1000 °C. c AlMoTaTiZr and Al0.239Mo0.123Ta0.095Ti0.342Zr0.201 (optimized for 25 °C). Yield
strength improved by 7%. d AlHfMoTaTi and Al0.151Hf0.236Mo0.137Ta0.131Ti0.345 (optimized for 1000 °C). Yield strength improved by 2%. A 95%
confidence level error (±94 MPa) is shown for prediction.
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Descriptor selection, model training and validation
Descriptor selection constitutes an important part of our work.
Figure 8a outlines the procedure for training and validation of the
ML model. We used the sequential forward selection (SFS)
method43,44 for selecting the best set of descriptors that describes
the data within a given regression model. We have investigated
four different regression models, namely: random forest42,
gradient boosting47, LASSO45, and ridge regression46. The
procedure starts with first performing SFS coupled with a k-fold
cross-validation technique where k is taken as five (5). In 5-fold
cross-validation, the data were randomly divided into five sets,
with four sets are used for training and the rest is for testing. The
5-fold cross-validation was repeated until all groups are used for
validation. During this process, a set of best descriptors were
identified with a specified number of maximum descriptors
criteria. We have systematically varied the number of descriptors
in the computed 5-fold validation to identify a critical number of
descriptors beyond which there was negligible improvement of
the cross-validation regression coefficient R (CV). The cross-
validated R2, R2 (CV), remains constant beyond a six-descriptor
model (Fig. 8b) which indicates that there is insignificant
improvement in the predicted yield strength if more than six
descriptors are chosen. We then performed optimization of the
hyperparameters of the regression models using the six descrip-
tors to identify parameters that maximize R2 (CV). The following
hyperparameters were used to train the random forest model: 100
estimators, a minimum of two samples to split an internal node,
and a minimum of one sample required to be a leaf node. Once
we have identified the descriptor set and optimized the
hyperparameters, we performed a repeated k-fold validation. In
the procedure, we performed the repeated 5-fold cross-validation
step 1000 times. Each time, the members of each fold were
chosen randomly which eliminated the biasness of a single 5-fold
analysis. The repeated k-fold method provides a statistical
variation of the predicted yield strength of each RHEA allowing
us to compute the 95% confidence level of each yield strength
data point. The scikit-learn library63 was used to perform the
model training and validation steps described here. We believe
that our procedure provides a superior assessment of model’s
predictive ability compared to the commonly used single k-fold
validation, or train-test splitting. At the end, we also performed 25
runs of SFS with six descriptors in order to examine variability of
the selected features. The resulting feature selection probability
distribution is provided in Supplementary Fig. 15. Replicates of the
SFS process revealed that multiple composition-based descriptors
had an approximately equal likelihood of being selected. Since
multiple feature sets yielded nearly the same predictions, a
representative feature set was chosen for the forward model and
discovery process.

Yield strength optimization
For solving the inverse problem, we used the differential evolution
optimizer37, a genetic algorithm, implemented within scipy64 to
design an atomic composition that maximizes yield strength at a
specified temperature for a particular base alloy. Differential
evolution is a stochastic population-based method that is
frequently used for global optimization problems. At each pass
through the population, the algorithm mutates each candidate
solution by mixing with other candidate solutions to create a trial
candidate. A central feature of the optimization problem is the
definition of the objective function. For a minimization problem, the
goal is to identify a solution that causes the objective function to
be equal to zero, or minimizes the objective function to be as close
to zero as possible. In this case, the goal is to maximize the yield
strength. Therefore, the objective function should grow smaller as
the yield strength grows larger. In the current investigation, we
have found that defining the objective function as the reciprocal of
the yield strength allows for alloys with increased yield strength to
be found easily. The mutation constant was set between 0.5 and 1,
with dithering employed. The recombination constant (i.e., cross-
over probability) was 0.7. A linear constraint function was coupled
with the optimization using Lampinen’s approach65 to ensure that
the element fractions summed to 1. All individual element fractions
that were present in a given alloy were bounded between 0.02 and
0.35, typical values that are representative of an HEA.
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