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Adaptable physics-based super-resolution for electron
backscatter diffraction maps
Devendra K. Jangid 1,5, Neal R. Brodnik 2,5✉, Michael G. Goebel1, Amil Khan1, SaiSidharth Majeti3, McLean P. Echlin 4,
Samantha H. Daly 2, Tresa M. Pollock4 and B. S. Manjunath 1

In computer vision, single-image super-resolution (SISR) has been extensively explored using convolutional neural networks (CNNs)
on optical images, but images outside this domain, such as those from scientific experiments, are not well investigated.
Experimental data is often gathered using non-optical methods, which alters the metrics for image quality. One such example is
electron backscatter diffraction (EBSD), a materials characterization technique that maps crystal arrangement in solid materials,
which provides insight into processing, structure, and property relationships. We present a broadly adaptable approach for
applying state-of-art SISR networks to generate super-resolved EBSD orientation maps. This approach includes quaternion-based
orientation recognition, loss functions that consider rotational effects and crystallographic symmetry, and an inference pipeline to
convert network output into established visualization formats for EBSD maps. The ability to generate physically accurate, high-
resolution EBSD maps with super-resolution enables high-throughput characterization and broadens the capture capabilities for
three-dimensional experimental EBSD datasets.
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INTRODUCTION
The term image super-resolution is used to describe methods
designed to infer high-resolution (HR) image output from low-
resolution (LR) input. Since their development, super-resolution
methods have been used in applications such as surveillance and
security, biometric information identification, remote sensing,
astronomy, and medical imaging1. Generally, these algorithms can
be categorized into three groups based on the information
available during training: (a) supervised, which have paired LR-HR
images during training, (b) semi-supervised, where no LR-HR
image pairing is available, and (c) unsupervised, where no ground
truth HR is available. Recently, because of their superior
performance to traditional methods, various supervised deep
CNN architectures using recursive residual blocks2,3, residual
connections, and attention-based modules4–7 have seen signifi-
cant use in super-resolution applications.
The approaches for different super-resolution methods vary, but

they all share the common goal of producing high-resolution
image output that is a clear representation of the low-resolution
input in the context of both image content and visual fidelity.
Generally, evaluation metrics are centered around the idea that
the output image is the product of intensity-based visible-light
photography, where the goal is to represent what is seen with the
human eye. However for scientific image applications, this idea is
often incorrect, since many experimental methods construct
images or image maps using electromagnetic information
gathered from outside the visible-light range (e.g., X-rays, infrared
information), or even not from light at all (e.g., electrons,
neutrons), which means the ideas of sharpness and visual clarity
have very different meanings. One such example, electron
backscatter diffraction (EBSD), used for characterization of crystal-
line materials, relies on electron diffraction to build maps of
material crystallographic information.

EBSD is a scanning electron microscopy technique that maps
crystal lattice orientation by analyzing Kikuchi diffraction patterns
that are formed when a focused electron beam is scattered by the
atomic crystal structure of a material according to Bragg’s law. A
grid of Kikuchi patterns is collected by scanning the electron beam
across the sample surface. These patterns are then indexed to
form a grid of orientations, which are commonly represented as
images in RGB color space using inverse pole figure (IPF)
projections. EBSD datasets are used to determine microstructural
properties of materials such as texture, orientation gradients,
phase distributions, and point-to-point orientation correlations, all
of which are critical for understanding material performance8.
Furthermore, the fact that EBSD datasets are maps with
orientation information, rather than just images with intensity
values, changes both the notion of image quality and the
motivation for super-resolution methods.
EBSD has two types of resolution: the accuracy with which the

EBSD pattern collected at each pixel can be indexed into a
crystallographic orientation, and the spacing between pixels in a
given mapping. During EBSD mapping, the electron beam must
dwell at each point long enough to form a high-quality Kikuchi
pattern, which is then indexed into a specific crystallographic
orientation9–11. The indexing problem has many salient issues
associated with it, among them are the crystallographic differ-
entiation of matrix and precipitate phases, the identification of
local strain effects, and the decoupling of overlapping diffraction
patterns at grain boundaries. While accurate indexing is critical to
EBSD, it is an independent challenge unrelated to super-
resolution, as each indexing problem is treated as having no
correlation with its neighbors. The lack of assumed spatial
correlation separates indexing from other pixel-based problems
and makes it ill-suited for SISR. Therefore, the issues associated
with indexing accuracy described above are not addressed here.
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Instead, we consider the improvement of spatial resolution, which,
in experiment, equates to collecting a higher density of data
points during mapping. This requirement can lead to long
mapping times or force the choice to use a coarser resolution
mapping grid for expediency. The necessity to reduce EBSD
collection time becomes even more critical when performing
many scans during serial-sectioning 3D EBSD measurements12,
where material is removed layer-by-layer with 2D maps collected
at each slice, and then stacked into a 3D dataset. In almost all
serial-sectioning experiments, the minimum slicing thickness/
resolution is much lower than the achievable in-plane imaging
resolution, creating anisotropic voxels. Furthermore, poor elec-
trically conductive materials become electrostatically charged by
the beam or degrade from beam exposure (e.g., bio materials,
polymers), requiring extremely short exposure times and resulting
in Kikuchi patterns with weak contrast.
As the demand for greater volume and more detailed resolution

material information grows, so too does the demand and expense
of EBSD mapping. Spatial resolution in EBSD is of particular
interest in the characterization of deformed materials and additive
manufacturing13, where subgrain misorientation gradients are
used to quantify local plastic deformation effects and geome-
trically necessary dislocation densities14–16. In efforts to improve
EBSD resolution and quality, simulations and experimental
studies17–21 have shown that lowering the electron beam
accelerating voltage can significantly improve the spatial resolu-
tion of EBSD maps, but map quality and achievable resolution vary

with differing materials and imaging conditions. To improve
indexing accuracy, multiple algorithmic approaches have been
developed for better Kikuchi pattern mapping22,23, which
improves both the precision and accuracy of the orientations
shown at each pixel. Machine learning approaches have also been
used to accelerate several tasks in the EBSD map construction
process, including Kikuchi pattern indexing24, classification25, and
crystal identification26. Recently, a residual-based neural network
with traditional L1 loss (ResNet) was used to produce super-
resolved EBSD maps from inverse pole figure (IPF) color and Euler
angles as an image input27. The desire to accelerate and improve
the EBSD mapping process has motivated a wide array of machine
learning approaches, but many challenges still exist. One of the
most prominent of these is that orientation space is discontinuous
and repeating, and the fundamental shape of orientation space
changes with the symmetries of the crystal being observed. This
makes brute-force network learning with traditional methods
highly dependent on the available data for training, and,
depending on the orientation, small variations in accuracy can
produce dramatically incorrect results.
Given these challenges, we present an adaptable framework for

neural-network-based super-resolution of EBSD maps, where all
network learning is built around the physics of crystal orientation
symmetry. We define a physics-based loss that accounts for
crystallographic symmetries, which is used alongside either a
traditional L1 loss metric or a loss based directly on rotational arc
lengths, which correspond to conventional misorientation

Fig. 1 Network architecture. Training pipeline: a low-resolution EBSD map in quaternion orientation space is given to an image super-
resolution network architecture that generates a high-resolution EBSD map in quaternion orientation space. A crystallographic symmetry
physics-based loss with L1 or approximate rotational distance is used during training. Inference pipeline: the image super-resolution network
generates a high-resolution EBSD map in quaternion orientation space, which is reduced to a fundamental zone space, and converted to Euler
orientation space to visualize in IPF color map. Symmetry loss: takes all possible hexagonal symmetries for the titanium alloy, and computes
the minimum distance between all possible generated output and ground truths. The distance can be L1 or approximate rotational distance.
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measurements in crystallography. All super-resolution is done on
crystal orientation data expressed as quaternions, meaning each
pixel in a given map contains four channels. Using quaternion
space allows for complete representation of orientation space,
enabling a training approach that is translatable across all 230
crystallographic space groups. As a proof of concept, four state-of-
the-art residual and channel-attention networks are used to
generate high-resolution EBSD maps from low-resolution input
using this physics-based approach. We demonstrate that regard-
less of network choice, physics-based approaches outperform
traditional approaches both qualitatively and quantitatively. This
approach has direct application to experimental EBSD measure-
ments of electron beam-sensitive or low-conductivity materials
where charge buildup and extended beam exposure are limiting
factors, and for 3D EBSD data collection where high out-of-plane
imaging resolution is costly. We expect SR-EBSD to accelerate
EBSD mapping for defect detection and fast screening of
microstructure configurations that limit material properties.

RESULTS
Framework architecture
Unlike traditional SR architectures that focus on 1 or 3-channel image
data, the framework developed in this study, shown in Fig. 1, directly
operates on vector-based orientation data, which is expressed as
4-channel quaternions. Quaternions are mathematically robust for
crystal orientation representation and allow easy application of
symmetry operators between different crystal systems.
The process for this framework follows similar methodologies to

experimental EBSD mapping, where a priori crystal symmetry
information is used to inform the training and inference processes.
For the physics-informed framework, a loss function satisfying space
group symmetry requirements is defined, and networks are trained
with that loss function on datasets of materials from the correspond-
ing space group. Once trained, the network can infer on EBSD maps
for materials that fall under the same space group symmetry. The full
framework consists of a shallow feature extractor, a deep-feature
extractor, an upscaling and reconstruction module, and the loss
function, which dictates symmetry reinforcement.

Shallow feature extractor. This module uses a single convolution
layer to reduce spatial size of original EBSD Map and extract shallow
features from a given low-resolution 4-channel EBSD map (ILR).

F0 ¼ HSFðILRÞ (1)

Here, HSF(. ) is a single convolution layer of kernel size 3 × 3, which
has 4 input channels and 128 output channels. The generated
shallow features (F0) are fed to the deep-feature extractor module
(HDF).

Deep-feature extractor. To extract essential deep features from
EBSD maps, we implemented deep-feature extractors from four
well-known single-image super-resolution network architectures.
These four architectures employ a variety of recent approaches to
the SISR problem: deep residual (EDSR)4, channel attention
(RCAN)5, second-order attention (SAN)6, and holistic attention
(HAN)7 methods. Testing across all four networks enables both a
robust analysis of loss functions and a broader understanding of
the performance of different architectures in the EBSD-SR
problem. It also emphasizes that any deep-feature extractor in
existence today or developed in the future can be readily applied
to this physics-based learning framework.

FDF ¼ HDFðF0Þ (2)

where, HDF(.) is a deep-feature extractor module, and FDF is a 128
channels feature map, which goes to upscale and reconstruction
module.

Upscale and reconstruction module. The extracted deep feature
(FDF) uses upscale modules that employ the pixel shuffle operation
to initialize new pixels for each resolution increase28. The upscaled
feature is then mapped into a super-resolved EBSD map using
convolution layers that are proportional to the resolution scaling
factor.

F" ¼ H"ðFDFÞ (3)

ISR ¼ HRðF"Þ (4)

H↑ is the upscale module, and HR is convolution operation of
kernel size 3 × 3 for reconstruction. ISR is the 4 channels generated
high-resolution EBSD map in quaternion space.

Loss functions
All networks mentioned in section “Framework architecture” were
trained using three different loss functions based on a combina-
tion of both established practices for the super-resolution problem
and the underlying physics associated with EBSD orientation
maps. The losses used are traditional “L1 loss” and two different
physics-guided losses, termed “L1 with symmetry”, and

Fig. 2 Orientation loss distributions. Probability distribution of loss distances between pairs of randomly sampled 3D rotation vectors. L1
distance is shown in blue, L1 distance accounting for crystal symmetry is shown in green, and approximate rotational distance accounting for
crystal symmetry is shown in red.

D.K. Jangid et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   255 



“approximate rotational distance with symmetry”. A histogram
comparison of all loss distances for a sample of random
orientation vector pairs is shown in Fig. 2.

L1 loss. L1 loss is a standard norm loss that has been widely used
in image restoration tasks and has been shown to have
advantages over L2 loss29 in terms of sharpness and visual clarity.
There is no underlying physical motivation for using L1 loss
beyond its observed advantages in traditional image restoration
tasks, which have established the precedent for its use in the SISR
problem. The L1 loss between generated and ground truth EBSD
maps is described using the following equation.

L1 ¼ 1
N

XN

i¼1

jjHðIiLRÞ � IiHRjj1 (5)

where IHR is the ground truth EBSD map, H(ILR) is the generated
EBSD map, and N is the batch size.

Space group symmetry. The orientations in an EBSD map for a
given material can only be understood properly in the context of
the space group of that material. These same symmetry operators
persist in the EBSD diffraction patterns, and create boundaries in
orientation space during pattern indexing, dividing the complete
sphere of possible quaternion orientations into repeating subsec-
tions. For this reason, the crystallographic relationships associated
with pixel rotation values in the EBSD maps were accounted for
using what we have termed symmetry loss, as shown in Fig. 1.
Symmetries were accounted for according the space group
conventions used to describe crystal symmetry systems. This
space group information is provided a priori during training and
inference, but this requirement is not considered overly rigorous,
as EBSD measurements typically use a priori space group
information to simplify the indexing problem. The titanium
datasets investigated in this work are part of space group 194,
which has a total of 24 symmetries, but only 12 that do not involve
a change of handedness. For symmetry-based loss, every pixel
value generated by the network is considered as a collection of
rotations across all of these symmetries, and the loss distance is
calculated as the minimum distance between the ground truth
and any value within this collection. For this study, space group
symmetry is enforced at the image level. For multi-phase
materials, enforcement could also be done at the pixel level
through implementation of a phase map.

L1 loss with symmetry. This loss uses L1 distance to calculate loss
magnitude, but incorporates physics to account for space group
symmetry in the EBSD map.

Rotational distance approximation loss with symmetry. Rotational
distance loss computes the misorientation angle between the
predicted and ground truth EBSD map in the same manner that
they would be measured in crystallographic analysis, with
approximations to avoid discontinuities. The rotational distance
between two quaternions can be computed as the following:

θ ¼ 2cos�1 Reðq1q�2Þ
� �

¼ 2cos�1 <q1
!; q2

!>
� �

¼ 2cos�1 1� 1
2 jjq1!� q2

!jj22
� �

¼ 4sin�1 1
2 jjq1!� q2

!jj2
� �

θ ¼ 4sin�1 deuclid
2

� �

(6)

where, deuclid= ∣∣q1− q2∣∣2.
While deuclid is Lipschitz, the gradient of θ goes to ∞ as

deuclid→ 2. To address this issue in training a neural network, a
linear approximation was computed at deuclid= 1.9, and utilized
for points > 1.9. This can be seen in Fig. 3 as a clamp on the max
value the derivative of the function can take on. This loss is the
most physically accurate of the three considered, and the
distribution of loss values for random rotation vectors for
rotational distance loss (shown in red in Fig. 2) matches with
the probability distribution of misorientations for hexagonal
polycrystals30.
Network output is evaluated using a combination of image

quality and domain relevant metrics. Initially, each set of
generated images is evaluated using peak signal-to-noise ratio
(PSNR) and structure similarity index measure (SSIM). Images are
then segmented into individual grain regions using watershed
segmentation based on a relative misorientation tolerance. This
approach, coupled with domain knowledge, is commonly used to
identify and segment grains in EBSD maps.

Qualitative output comparison
To evaluate framework performance, an experimentally gathered
dataset of Ti-6Al-4V31, discussed in section “Data preprocessing,”
was chosen as a candidate dataset for super-resolution testing.
This set was of particular interest because of its large number of
grains, small grain size, varying local texture, and wide range of

Fig. 3 Approximation of the rotational distance equation. The derivative is not defined at deuclid= 2, so a linear approximation is computed
to ensure smooth loss behavior. a Plot of rotational distance functions against euclidean distance. b Plot showing the derivative of rotational
distance against euclidean distance, showing divergence.
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represented orientations, all of which make it challenging for the
super-resolution problem, as it is desirable to preserve both the
gradual orientation gradients within grains as well as the sharp
orientation discontinuities at grain boundaries. For training and
testing, all LR input was downscaled by a factor of 4 using direct
removal of pixel rows and columns to reflect how EBSD resolution
would be reduced in actual experiments. When comparing
qualitative image results, the reduction from HR to LR by removal
of rows and columns from the dataset causes a reduction in visual
quality of EBSD maps while offering no possible information
inference from subpixel values. This makes shape inference from
LR input particularly difficult, as any features removed during
downsampling are lost completely. Although it is challenging, our
goal is direct application to experimental data, and this form of
data loss is exactly what occurs when low-resolution EBSD maps
are gathered experimentally. The difficulty associated with this
dataset and downsampling is apparent in the traditional bilinear,

bicubic, and nearest neighbor upsampling algorithms, shown in
Fig. 4. Bilinear and bicubic approaches produce non-physical
results that are the product of interpolations made through
quaternion orientation space with no regard for symmetry
relationships. Nearest neighbor approximations produce higher
resolution visual replicas of the low-resolution input.
A full comparison of image quality on the test set for all

networks and losses is shown in Fig. 5. All investigated networks
produced significantly better results than traditional algorithms,
but there were variations in quality across the different network
types and the loss function used. For all networks, grain shapes
differed from HR, as many of the fine grain features are lost. This is
expected, as the downsampling method removes much of this
information, and networks cannot infer on data that does not
exist. However, even with different shapes, L1 and L1 with
symmetry produce grains with smooth contours and a range of
facet angles, which is a good reflection of what would be

Fig. 4 Comparison of HR ground truth to traditional upscaling. Compared to a high-resolution ground truth EBSD map, b bilinear, c bicubic,
and d nearest neighbor upscaling produce inferior results. Bilinear and bicubic results are non-physical, and nearest neighbor results are
visually identical to LR input.

Fig. 5 Visual Comparison of 4x EBSD-SR on a test EBSD map. L1 has non-physical structure at grain boundaries, and L1 with symmetry and
approximate rotational with symmetry reduce the non-physical structures at grain boundaries. a The comparison of LR and HR for a single
patch of size 64 x 64 in an EBSD map. b Compares super-resolved EBSD maps for the same patch across different architectures and losses.

D.K. Jangid et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   255 



expected in real materials. However, across all networks, both of
these losses produce non-physical image artifacts at the edges of
grains. Including physics-based symmetry into L1 reduces the the
quantity of these compared to traditional L1, but the most
dramatic reduction in artifacts occurs for approximate rotational
distance with symmetry. Although rotational distance tended to
produce slightly more cube-like grain shapes, the overall
reduction in visual artifacts makes network output much more
physically accurate.

Quantitative output comparison
Quantitative evaluations of peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) across different archi-
tectures and losses are shown in Table 1. Comparing between
networks, HAN consistently performed best in all cases of physics-
based loss. Across all network architectures, the incorporation of
physics into the loss function led to improvement in both PSNR
and SSIM. Overall, the most physically accurate loss metric,
approximate rotational distance, performed best. Bilinear, bicubic,
and nearest neighbor scores for Ti-6Al-4V are shown in row 1 of
Table 2, but their scores were dramatically lower, and their
nonphysicality made further consideration irrelevant.
Table 3 shows the percentage of pixels in the test set identified

as single-pixel features in a watershed segmentation with a
misorientation tolerance of 10∘. With high-resolution ground truth
having around 0.2% single-pixel features, this metric can be
considered as a close approximation to the percentage of single-
pixel artifacts, which appear as salt-and-pepper noise at grain
boundaries. Across all architectures, the incorporation of physics-
based loss leads to a clear reduction in single-pixel artifacts.
Overall, RCAN with rotational distance loss with symmetry had the
fewest single-pixel features, but RCAN showed comparatively
worse values for L1 loss with symmetry. These variations in noise
are small when compared to the differences between physics-
based and non-physics-based loss.
Table 4 shows the percentage difference in number of features

relative to LR input, when a watershed segmentation with a
misorientation tolerance of 10∘ is applied. A larger percentage
value indicates higher feature counts than the LR input, which
correlates to occurrence of noise and spurious features, and arises
from regions of noise at grain boundaries or overemphasized
misorientation gradients within grains. All network outputs
produced greater feature quantities than the input, but L1 loss

without symmetry caused the greatest number of spurious
features, having over 450% more features than the initial input.
Once symmetry is introduced, performance improves across all
networks, with HAN producing the fewest excess features for L1
loss with symmetry, and RCAN producing the fewest excess
features for approximate rotational distance with symmetry.

Additional material systems
To verify the robustness of the SR-EBSD approach across different
materials datasets, the holistic attention network (HAN), which
showed consistently strong performance, was trained on two
additional experimental datasets of Ti-7Al32, which were plastically
deformed to 1% and 3% strain respectively, and are discussed in
section “Data preprocessing”. These two datasets contain much
larger grains than the Ti-6Al-4V set, and also exhibit texture due to
material processing. The HAN was trained on all three datasets
together rather than on each set individually. Results are shown in
Table 5, and comparison to traditional upscaling algorithms for Ti-
7Al is shown in rows 2 and 3 of Table 2.
When comparing PSNR/SSIM values, the values for both Ti-7Al

datasets are much higher than those for the Ti-6Al-4V set. This is
likely due to a combination of grain size and texture differences
between sets, with the Ti-6Al-4V set having smaller grains and
microtextured regions. Much larger grains makes shape inference

Table 1. PSNR/SSIM comparison for 4 × super-resolution scaling: physics-based loss consistently outperforms bilinear, bicubic, nearest neighbor, and
pure L1 loss with no physics, regardless of architecture.

EDSR RCAN SAN HAN

L1 (no physics) 14.85/0.472 14.89/0.474 14.83/0.465 14.65/ 0.450

L1 with symmetry 15.05/0.483 15.07/0.484 15.04/0.484 15.13/ 0.497

Rot. dist. approx with symmetry 15.02/0.486 15.24/0.509 15.23/0.510 15.30/ 0.513

Rows represent different loss functions and columns represent different network architectures. Higher number is desired for both PSNR/SSIM.
Bold values indicate architecture with best performance for each loss metric.

Table 2. PSNR/SSIM comparison for 4× algorithmic scaling: PSNR/
SSIM values for bilinear, bicubic, and nearest neighbor are consistently
lower than network-based methods.

Bicubic Bilinear Nearest neighbor

Ti-6Al-4V: (PSNR/SSIM) 11.22/0.211 11.30/0.237 13.25/0.373

Ti-7Al 1% (PSNR/SSIM) 18.47/0.7135 18.66/0.751 22.63/0.823

Ti-7Al 3% (PSNR/SSIM) 19.49/0.7372 19.65/0.773 24.11/0.8328

Table 3. Percentage of single-pixel features: rows represent different
loss functions and columns represent different network architectures.

EDSR RCAN SAN HAN

L1 (no physics) 5.7 5.5 6.0 7.4

L1 with symmetry 4.6 4.9 4.4 2.7

Rot. dist. approx with symmetry 1.8 0.9 1.3 1.4

Lower values indicate better performance, with ground truth containing
approximately 0.2% single-pixel features. Physics-based loss reduces noise,
leading to lower single-pixel feature counts.
Bold values indicate architecture with best performance for each loss
metric.

Table 4. Percent feature difference over input: rows represent
different loss functions and columns represent different network
architectures.

EDSR RCAN SAN HAN

L1 (no physics) 522.2 475.7 530.0 628.2

L1 with symmetry 433.3 444.4 415.5 284.1

Rot. dist. approx with symmetry 244.3 152.7 166.4 159.3

Lower values indicate better performance. Physics-based loss reduces
noise and spurious features, which keeps the overall feature count closer
to the amount expected based on input.
Bold values indicate architecture with best performance for each loss
metric.
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at a 4× scale reduction less difficult and strong material texture
makes the range of orientations in the dataset narrower, both of
which reduce the burden on the network during the learning/
inference process. Regardless of dataset difficulty, rotational
distance loss with symmetry consistently produces the highest
quality results.

DISCUSSION
The results demonstrate that regardless of architecture or
approach, the incorporation of domain-related physics into the
training process leads to better results for the SISR problem for
scientific data. In both qualitative and quantitative evaluation
across every metric considered, physics-based loss consistently
outperformed traditional L1 loss regardless of the network used.
When comparing physics-based losses specifically, rotational
distance consistently outperformed all other losses on all
quantitative metrics, though it should be noted that L1 with
symmetry exhibited well-behaved grain shapes in qualitative
evaluation while also having quantitative results superior to
traditional methods. For the architectures studied here, compar-
ison across all evaluation metrics shows that attention-based
models outperform purely residual architectures in the EBSD-SR
problem, with holistic attention (HAN) exhibiting the best
performance. This result is somewhat expected, as the layer
attention module and channel-spatial attention modules present
in the HAN architecture provide additional ability to learn spatial
correlations across different channels and layers7. For this reason,
the HAN architecture also exhibited the strongest performance on
benchmark datasets for the traditional single-image super-
resolution problem7.
The results of this investigation present a strong case for the

benefits of an adaptable learning approach that can be easily
applied to future architectures. Although HAN was the best
preforming network overall, it still was not able to consistently
outperform other networks across all metrics presented here.
Furthermore, when considering the range of possible microstruc-
tures that can exist across 230 different space groups and their
multi-phase combinations, it is likely there will never be a single
architecture that consistently performs best. The physics-based
approach presented here improves performance and presents a
path for EBSD super-resolution to keep pace with developments
across the SISR field as a whole. This approach can be readily
extended to other materials and microstructures using phase
masks labeled by space group, accounting for each of their
respective symmetries using the methods described here. Going
forward, this approach to physics-informed EBSD super-resolution
can be used in high-throughput EBSD experiments for the
generation of larger, more robust datasets, and also to make
higher resolution 3D datasets when combined with asymmetric
serial-sectioning approaches (higher resolution in x, and y, lower
resolution in z). With spatial super-resolution, the number of time-

consuming pattern gathering steps can be reduced. EBSD patterns
in 2D, which would normally take minutes or hours to gather can
be super-resolved in seconds, and 3D EBSD patterns, which would
normally take days or weeks to gather can be super-resolved in
minutes. These super-resolution tools can accelerate the materials
development process while ensuring that all network learning
occurs in the domain boundaries established by physics and
crystallography.
In conclusion, we designed an adaptable, physics-guided

approach to the super-resolution problem for EBSD orientation
maps that employs several deep-feature extraction methods from
existing single-image super-resolution architectures, as well as
losses accounting for crystal symmetry and rotation physics.
Unlike existing SR methods, which operate on scalar image data,
the training pipeline is implemented in quaternion orientation
space. The inference pipeline produces quaternion output that is
converted into Euler angle representation and colored based on
IPF projection conventions. Qualitative and quantitative image
analysis demonstrate that networks with physics-based learning
consistently outperform both traditional upscaling algorithms and
analogous network approaches that do not employ physics.
Accounting for crystal symmetry in learning leads to increases in
PSNR and SSIM, and also reduces single-pixel artifacts and
spurious visual features. L1 loss with symmetry produces well-
behaved grain shapes, and approximate rotational distance with
symmetry greatly reduces the occurrence of noise and visual
artifacts. The presented framework can be readily applied to
future super-resolution network architectures.

METHODS
Orientation representation
The focus of this investigation centers on orientation vector maps
that describe crystalline domains, which are fundamentally
anisotropic and periodic in nature. Orientations for each pixel
within the network learning environment are expressed in terms
of quaternions of the form q ¼ q0 þ îq1 þ ĵq2 þ k̂q3. For orienta-
tion representation, quaternions are beneficial due to their lack of
ambiguity with respect to orientation representation and crystal
symmetry. To avoid redundancy in quaternion space (between q
and−q), all orientations are expressed with their scalar q0 as
positive. For visualization according to established conventions,
quaternions are reduced to the Rodrigues space fundamental
zone based on space group symmetry, converted into Euler
angles, and projected using inverse pole figure (IPF) projection
using the open-source Dream3D software33.

Pipeline
In order to maximize applicability of EBSD super-resolution to
materials research, network output must be interpretable based
on established crystallography conventions. To facilitate this, we
designed an inference pipeline where network output can be
converted to the visualization space used and accepted within the
field, as shown in Fig. 1. During training, we use a physics-based
symmetry loss within existing image super-resolution network
architectures, but modified to have the appropriate number of
input and output channels. The input to the network is a LR EBSD
map, and the generated output is a HR EBSD map, both in the
quaternion domain. The physics-based loss, which gives the
network information about crystal symmetry, is computed in
quaternion orientation space. During inference, the network
outputs a HR EBSD map in quaternion space, which is then
reduced to the fundamental zone in Rodrigues vector space
before being converted into Euler space and projected using
inverse pole figure (IPF) color to visualize orientations. IPF color
maps are generated with the commercially available open-source
Dream3D software33.

Table 5. PSNR/SSIM comparison for 4 × super-resolution scaling
across different materials: Ti-6Al-4V, Ti-7Al 1%, and Ti-7Al 3% for HAN
network: physics-based loss consistently outperforms bilinear, bicubic,
nearest neighbor, and pure L1 loss with no physics, and columns
represent different titanium datasets.

Ti-6Al-4V Ti-7Al 3% Ti-7Al 1%

L1 (no physics) 14.94/0.478 26.66/0.865 25.37/0.852

L1 with symmetry 15.19/0.497 26.82/0.869 25.38/0.856

Rot. dist. approx with
symmetry

15.35/0.5264 27.25/0.881 25.72/0.871

Higher number is desired for both PSNR/SSIM.
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Data preprocessing
High-resolution (HR) ground truth. The ground truth data is
experimental 3D EBSD data gathered from two titanium alloys, Ti-
6Al-4V and Ti-7Al, using a commercially available rapid-serial-
sectioning electron microscope known as the Tribeam12,34. The Ti-
6Al-4V dataset, shown in Fig. 6a, is of pixel size
346 × 142 × 471 × 4, where the last dimension is the quaternion
component. Analogously, the Ti-7Al shown in Fig. 6b, c are of size
770 × 674 × 132 × 4 and 770 × 770 × 224 × 4 pixels, respectively,
with all edges cropped to produce a perfect parallelpiped volume.
Each voxel in the Ti-6Al-4V set has resolution of 1.5 × 1.5 × 1.5 μm,
and in both Ti-7Al sets, each voxel has a resolution of
1.3 × 1.3 × 1.3 μm.
These titanium alloys are composed primarily of the hexagonal

close packed grains. In total, the Ti-6Al-4V dataset contains about
57,000 grains, visible in the IPF maps as regions of different color.
The Ti-7Al material has larger grain size, with 500–1000 grains in
each dataset. The datasets were proportionally divided into
training, validation, and test subsets in ratios of 65%, 15%, and
20%, respectively. The sample volume was sectioned such that
each subset contains an equivalent fraction of orthogonal images
from each face of the sample to avoid any bias due to material
anisotropy. During training, each volume was broken into two-
dimensional patches of size 64 × 64 pixels.

Low-resolution (LR) input. Low-resolution EBSD maps used as
network input are downscaled versions of the high-resolution
ground truth. However, because of how EBSD information is
gathered, these images are not downscaled using pixel averaging.
Instead the low-resolution EBSD maps are produced by removal of
rows and columns from the high-resolution ground truth with a
downscale factor of 4 (LR= 1

4HR). This is done to imitate the beam
raster steps that would occur in an EBSD experiment with lower
resolution, where a lower resolution would not influence the
electron beam-material interaction volume at each pixel, but
rather lead to greater raster distance between consecutive pixels
of the same size.

Network implementation and output evaluation
We use a learning rate of 0.0002, Adam optimizer with β1= 0.9,
β2= 0.99, ReLU activation, batch size of 4 and downscaling factor
of 4. The patch size of HR images is 64. The framework is
implemented in PyTorch and trained on NVIDIA Tesla V100 GPU.
For a batch size of 4 and patch size of 64 across the 3 datasets in
this work, the training time for each network for 2000 epochs was
~60 h. Once training is complete, inference time for a given input

is on the order of less than one second for an imaging area that
would normally take about 10 min to gather manually.
For performance evaluation using watershed segmentation, we

use a misorientation tolerance of 10 degrees. This is considered a
conservative tolerance for feature identification, making it well
suited for identification of image artifacts. Watershed segmenta-
tion was performed using Dream3D33.

DATA AVAILABILITY
Pre-trained versions of the network modules produced in this paper are publicly
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client_service/. Material datasets will be available by request at discretion of the
authors.

CODE AVAILABILITY
Architecture code is publicly accessible at https://github.com/UCSB-VRL/EBSD-
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