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Data-driven discovery of 2D materials by deep generative
models
Peder Lyngby 1✉ and Kristian Sommer Thygesen 1

Efficient algorithms to generate candidate crystal structures with good stability properties can play a key role in data-driven
materials discovery. Here, we show that a crystal diffusion variational autoencoder (CDVAE) is capable of generating two-
dimensional (2D) materials of high chemical and structural diversity and formation energies mirroring the training structures.
Specifically, we train the CDVAE on 2615 2D materials with energy above the convex hull ΔHhull < 0.3 eV/atom, and generate 5003
materials that we relax using density functional theory (DFT). We also generate 14192 new crystals by systematic element
substitution of the training structures. We find that the generative model and lattice decoration approach are complementary and
yield materials with similar stability properties but very different crystal structures and chemical compositions. In total we find
11630 predicted new 2D materials, where 8599 of these have ΔHhull < 0.3 eV/atom as the seed structures, while 2004 are within
50 meV of the convex hull and could potentially be synthesised. The relaxed atomic structures of all the materials are available in
the open Computational 2D Materials Database (C2DB). Our work establishes the CDVAE as an efficient and reliable crystal
generation machine, and significantly expands the space of 2D materials.

npj Computational Materials           (2022) 8:232 ; https://doi.org/10.1038/s41524-022-00923-3

INTRODUCTION
The discovery of new materials that meet specific requirements
e.g., in terms stability, compatibility, or physical properties, is an
exciting scientific challenge of great relevance for our society.
First-principles quantum mechanical calculations, e.g., based on
density functional theory (DFT)1, can predict the structure and
properties of materials with high accuracy even before they are
made in the lab. However, a DFT code by itself is insufficient for
realising the paradigm of inverse materials design, where
instead of mapping from structure to property using ab initio
methods, the goal is to do the inverse map: from target property
to atomic structure.
Considering the vast number of possible materials and the

complexity of general structure-property relations, it becomes
clear that successful inverse design relies on the following critical
components: (i) automated execution and management of large
numbers of atomistic calculations, (ii) access to large amounts of
relevant high quality materials data, and (iii) efficient algorithms
that can propose new candidate materials from data. In addition,
synthesis and characterisation experiments must be included in
the loop as well, but this aspect will not be considered here.
Components (i) and (ii) are largely in place. Indeed, the advent

of workflow management engines for computational materials
science2–6 have made it possible to perform high-throughput (HT)
computations for thousands of materials with minimal human
intervention7–22. Atomic structures and basic materials properties
from such HT studies have been stored in computational
databases2,23–31, which together contain results of millions of
DFT calculations. Complemented by experimental crystal struc-
ture databases, this makes a rich and rapidly growing data source
for materials science.
The main challenge concerns component (iii). In previous HT

studies, the candidate materials to be explored were mostly
produced by lattice decoration of known reference materials. An
obvious limitation of this approach is that the resulting materials

by construction will be similar to the reference materials. In
particular, the 3-tuple: (space group, occupied Wyckoff positions,
stoichiometry) is invariant under element substitution.
Generative machine learning algorithms could potentially

broaden the diversity of candidate materials beyond the lattice
decoration paradigm. However, designing a successful genera-
tive model for periodic materials has proved challenging due the
problem of creating representations of the lattice, atomic
coordinates and elemental composition that are both invariant
to translations and rotations and is invertible32. The vast chemical
space of elements that can be present in inorganic crystals further
complicates the design of representations. Therefore, previous
implementations of generative models for periodic materials have
either been limited to a fixed subset of chemical elements33–35

and/or a subset of possible crystal structures36,37. Recently, a
general invertible representation has been proposed38, which
encodes the material as a matrix of both real and reciprocal space
features, but is not invariant under translations and rotations. Xie
et al. developed a crystal diffusion variational autoencoder
(CDVAE) model39, which uses a generative diffusion model to
circumvent the need for an invertible representation by working
directly on the atomic coordinates of the structures and employs
an equivariant graph neural network to ensure invariance (in fact,
equivariance).
In this work, we train a CDVAE39 on 2615 2D materials with

formation energy up to 0.3 eV/atom from the convex hull, and
generate 10000 two-dimensional (2D) crystals. We compare these
structures to a set of 14192 2D crystals obtained by systematic
lattice decoration of the training structures. While ref. 39 assessed
validity and diversity of the generated crystals by means of
qualitative measures, such as charge neutrality and minimum
bond distance, we here conduct a systematic, unbiased quanti-
tative analysis by performing full DFT-based relaxations and
stability analysis of the generated structures. Compared to the
crystals in the training set, the structures generated by the CDVAE
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(after DFT relaxation) show similar formation energies but
significant differences in both composition and crystal structure.
In general, CDVAE seems able to produce more complex materials
without compromising stability.
As a direct test of the CDVAE model’s capacity to learn the

stability properties of the training structures, we also train a
CDVAE on materials lying at least 0.4 eV/atom above the hull. We
find that the structures generated by this model have significantly
higher formation energies than those produced by the CDVAE
trained on the more stable materials.
In addition to providing a quantitative assessment of the

CDVAE, our work identifies no less than 8599 new unique 2D
materials with an energy above the convex hull below 0.3 eV/atom
many of which could potentially be synthesised. The generated
crystal structures are freely available as part of the C2DB29.

RESULTS
Crystal diffusion variational autoencoder
The CDVAE combines a variational autoencoder40 and a diffusion
model to generate new periodic materials. The crystal is
represented by a tuple consisting of the atomic number of the
N atoms, their respective coordinates, and the unit cell basis
vectors. CDVAE consist of three networks: the encoder, a property
predictor, and the decoder which all are trained concurrently. The
encoder is a SE(3) equivariant periodic graph neural network
(PGNN), which encodes the material onto a lower dimensional
latent space from which the property predictor predicts the
number of atoms N, the lattice vectors, and the composition,
which is the fraction present of each element. The decoder is a
noise conditional score network diffusion model41 that takes a
structure with noise added to the atom types and coordinates
and learns to denoise it into the original stable structure. Noise
added to the atom types changes type of element for each atom
into another element within the predicted composition with a
certain probability given by the noise-level. Coordinate noise on
the other hand is simply Gaussian noise added to the coordinates
of each atom of the structure. The score of the conditional score
network diffusion model is an estimate of the gradient of the
underlying probability distribution of the materials and is
predicted by another SE(3) equivariant PGNN. The use of a
equivariant diffusion model as the decoder makes it possible to
work directly with the atomic positions without the need for any
intermediate representations like descriptors or graphs. This in
turn makes the CDVAE framework quite general and agnostic to
the kind chemical elements and structure which it is used for,

which allows CDVAE to generate 2D materials even though it was
designed for 3D bulk materials.
New materials can be generated after training by using the

property predictor to sample the latent space. A unit cell with the
predicted basis vectors is then initialised with the predicted atoms
placed at random positions. Using the decoder, the atom types
and coordinates of the initial random placed atoms are then
gradually denoised into a material that is similar to the data
distribution of the training data. CDVAE utilizes that adding noise
to a stable material will likely decrease its stability and, thus, by
learning to denoise the noisy stable structure, the decoder learns
to increase the stability of the structure. Therefore CDVAE should
be trained only on stable materials. An in-depth description of
CDVAE can be found in Xie et al.39.
The set of materials used as training data for the CDVAE and

seed structures for the lattice decoration protocol (LDP),
respectively, consists of 2615 unique 2D materials from the
C2DB29,31. As our aim is to discover new stable materials we
limited the initial set of materials to the subset of C2DB with
energy above the convex hull ΔHhull < 0.3 eV/atom. This was done
because both the CDVAE (LDP) are more likely to generate stable
materials when trained on (seeded by) stable materials. We did
not exclude dynamically unstable materials.
After training the CDVAE model, 10.000 structures were

generated of which 1106 failed CDVAE’s basic validity check
(charge neutrality and bond lengths above 0.5 Å). Of the
remaining 8894 structures, 3891 are duplicate structures which
are sorted out (see “Method” for more details) and the rest are
relaxed using DFT.

Lattice decoration protocol
The lattice decoration protocol (LDP) substitutes the atoms in the
seed structures by atoms of similar chemical nature. As a measure
of chemical similarity we use the probability matrix PAB introduced
by ref. 42, which describes the likelihood that a stable material
containing a chemical element A remains stable after the
substitution A→ B. Glawe et al. constructed this probability matrix
based on an analysis of materials in the Inorganic Crystal Structure
Database43. We choose a substitution probability of 10% (PAB >
0.1), which generates the substitutions shown in Fig. 1. Based on
these substitution relations, we perform all possible single and
double substitutions for all seed structures. For example, the seed
structure MoS2 generates six MX2 structures with M=Mo,W and
X=O, S, Se (the seed structure itself included). The total set of
resulting materials are analysed for structures that share the same
reduced formula and space group. Such structures are considered

Fig. 1 Heat map of the relative occurrence of each element in the 2D materials used to train (seed) the CDVAE (LDP). The middle row
shows the element substitutions for the LDP corresponding to PAB > 0.1. The relative occurrence is shown in the last row.
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as duplicate structures and are filtered out. After removal of
duplicates, we are left with 14,192 unique 2D crystals (the seed
structures excluded) which are relaxed using DFT.

Workflow
Our workflow is illustrated in Fig. 2. Starting with the initial set of
2D materials, we generate two new sets of crystal structures using
CDVAE and LDP, respectively. Duplicate structures within each set
are removed (see “Method” for more details). The now unique
crystal structures are relaxed using DFT calculations employing the
PBE xc-functional (see “Method” for more details). After the
relaxation, any new duplicate structures are removed again and as
are materials that have relaxed into non 2D structures (we refer to
ref. 31 for details on the dimensionality analysis). Finally the heat of
formation, ΔH, and the energy above convex hull, ΔHhull, are
calculated.
In Table 1, we report the success rates for the DFT relaxations of

the structures generated by CDVAE and LDP, respectively,
together with the average number of relaxation steps and the
average energy decrease from the initial to the relaxed structure.
All three parameters are assumed to describe how close the initial
structures are to the final DFT relaxed structures - e.g., a structure
from a perfect generative method would only need one relaxation
step and the energy decrease would be zero. As expected, neither
LDP or CDVAE generate stable relaxed structures. However, while
the LDP on average requires less steps to relax, the CDVAE
structures are closer in energy to the relaxed structure. The fact
that the number of relaxation steps and reduction in energy upon
relaxation is comparable for LDP and CDVAE, suggest that the
CDVAE-generated crystals are as close to relaxed structures as the
LPD-generated structures.

We observe that the DFT relaxation fails for about 18% of the
LDP-generated and about 31% of the CDVAE-generated struc-
tures. The vast majority of these failures are due to problems in
converging the Kohn–Sham SCF cycle. We suspect that a large
fraction of the convergence problems occur for materials with
magnetic ground state (all calculations are performed with spin
polarisation). This is supported by the fact that 30% of the
materials containing one or more of the magnetic 3d-metals (V, Cr,
Mn, Fe, Co, Ni), fails due to convergence errors, while this is only
happens for 10% of other materials. Moreover, 38% of the CDVAE-
generated structures contains at least one of the the magnetic 3d-
metals, while this is only the case for 30% of the LDP-generated
structures. This difference is consistent with the difference in the
observed success rate.

Thermodynamic stability
A histogram of the heat of formation and the energy above the
convex hull for the (DFT-relaxed) structures resulting from the
CDVAE and LDP are shown in Fig. 3. The distributions of both ΔH
and ΔHhull obtained for the two structure generation methods are
remarkably similar. For example, 73.8% of the CDVAE materials
have ΔHhull below 0.3 eV/atom (as the training data) while this is
the case for 74.0% of the LDP materials. It should, however, be
noted that the smaller success rate of the DFT relaxation of the
CDVAE generated materials could influence these statistics as it
likely that many of the structures which could not be converged
would have resulted in unstable structures. The inset of Fig. 3
shows how the energy above the convex hull is distributed
depending on the number of different elements in the structure.
First of all it is evident that CDVAE is able to create structures with
a larger number of unique elements than is present in the training
data (5 unique elements is the maximum in the seed structures),
while LDP is limited to the stoichiometries present in the seed
materials. However, generally the thermodynamic stability is lower
for the materials with larger number of unique elements.
Examples of some of the most stable CDVAE generated structures
is shown in Fig. 4. The material Zr2CCl2 shown in c) is one of the 22
materials which are found both by the CDVAE and LDP method.
To predict whether a given 2D material can be synthesised is a

complex problem that involves many factors. Often the size of
ΔHhull is used a soft criterion for synthesizability as it determines
the material’s thermodynamic stability relative to other competing

Fig. 2 Workflow diagram. Workflow to generate candidate 2D materials using the CDVAE generative model (left branch) and lattice
decoration (right branch). The same set of 2615 materials is used to train the CDVAE model and as seed structures for lattice decoration,
respectively. Black numbers indicate the number of materials present at a given step of the workflow while orange numbers indicate number
of materials discarded.

Table 1. Summary statistics for the DFT relaxation of the two methods
for generating initial structures.

LDP CDVAE

Success rate 82% 69%

Avg. number of steps 40.1 55.5

Avg. energy decrease [eV/atom] 0.62 0.51
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phases (this criterion neglects growth kinetics and substrate
interactions both of which can be important for 2D materials). A
previous study of 700 polymorphs in 41 common inorganic bulk
material systems showed that a threshold of ΔHhull < 0.1 eV/atom
will exclude 26% of the known synthesised polymorphs44. We also
note that the T-phase of MoS2 was synthesised both as a
monolayer45 and a layered bulk46, despite having ΔHhull= 0.18 eV/
atom47. These examples demonstrate that many of the predicted
2D materials with ΔHhull < 50 meV/atom (2004) or even
ΔHhull < 100meV/atom (3400), are likely to be synthesizable.
While the ΔHhull-distributions in Fig. 3 are clearly peaked close

to zero they also have a tail of less stable materials. In particular,
about 26% of the materials have ΔHhull > 0.3 eV/atom (the
threshold to select the training structures). A natural question to
ask is then to what extent the structures produced by the CDVAE
are in fact biased towards high stability structures? To answer this
question, we trained a CDVAE model on 988 2D materials with a
ΔHhull > 0.4 eV/atom and used it to generate another 10.000 struc-
tures from which we randomly selected 1000 non-duplicate
structures, which we relaxed following the same workflow as
described before. The distribution of the energy above the convex
hull of the relaxed structures for both the stable and unstable
CDVAE models are shown in Fig. 5 together with the distribution
of their respective training sets. We clearly see that the CDVAE
model trained to generate unstable materials produces structures
that are significantly further from the convex hull than the stable
model. This illustrates that CDVAE successfully learns the
chemistry of the materials in the training data.

Structural diversity
Having established the capability of the CDVAE to produce
materials with good stability properties, we now turn to its ability
to generate crystals of high chemical and structural diversity.
While the LDP is restricted to stoichiometries and crystal structures
already present in the seed structures, the CDVAE (in principle) has
no such limitations. Figure 1 shows the relative occurrence of each
element in the seed/training structures. The corresponding plots
for the materials generated by LDP and CDVAE (after relaxation)
are shown in Supplementary Fig. 1. Both LDP and CDVAE
produces diverse compositions with elements covering most of
the periodic table. However, CDVAE has a significantly higher
occurrence of oxygen and chalcogens (S and Se) as well as
halogens (Cl, Br and I). This trend is also present for the materials
prior to relaxation and, thus does not originate from a potential
higher DFT convergence rate for these elements. Instead, the six
elements are also more prevalent, albeit slightly, in the seed
structures which could indicate an overfitting of the model.
The CDVAE generates significantly different chemical composi-

tions and crystal structures as compared to the seed structures
and those generated by the LDP. Figure 6 shows the relative
frequencies of stoichiometry, space group number and occupied
Wyckoff positions, respectively. Only the most common classes of
the seed structures are shown. We find 239 unique stoichiometries
among the CDVAE-generated materials, while there is only 87 and
103 unique stoichiometries in the seed structures and LDP-
generated structures, respectively. The higher number of unique
stoichiometries in the LDP-generated structures than in the seed
structures is due to new stoichiometries being created when two

Fig. 3 Histogram of the heat of formation and energy above convex hull for the DFT-relaxed structures resulting from the CDVAE and
LDP methods. a, b CDVAE generated structures (c, d) LDP generated structures. The inset shows the energy above convex hull with respect to
the number of unique elements in the structure.
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different elements are substituted by the same element, or when
an element is being substituted with an element already present
in the seed material. For example, the seed materials Te2Cu4O12

(stoichiometry AB2C6) becomes Cu4S14 (stoichiometry A2B7) under
the double substitution O→ S and Te→ S. The significantly larger
number of unique stoichiometries generated by CDVAE compared
to the LDP shows that the former is able to produce new classes of
structures that are not present in the training data. Another
indication of new structural prototypes being created is the

occurrence of new occupied Wyckoff positions within each space
group when comparing to the training data. These new
combinations of space group and occupied Wyckoff position are
shown in Supplementary Tables 1 and 2 for both the CDVAE
dataset and the LDP dataset. In total there are 130 new
combinations and 357 materials with these new combinations in
the CDVAE-generated materials, while there are only 76 new
combinations in the LDP-generated materials and only 339
materials with the combinations - even though the LDP dataset

Fig. 4 Examples of CDVAE generated structures. a–g Examples of CDVAE generated materials with negative convex hull energies.
h, i Examples of CDVAE generated stable materials with the new discovered combination of stoichiometry ABC2D2, space group number 25
and occupied Wyckoff positions a, b, c, d.
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is almost three times as large as the CDVAE dataset. It might seem
strange that LDP generates new combinations of space group and
Wyckoff position as simple element substitution should preserve
the space group and occupied Wyckoff position. However during
the DFT relaxation the crystal symmetry can change and thus so
can the space group and occupied Wyckoff positions.
The CDVAE tends to generate rather complex, low-symmetry

structures, which is illustrated by the large fraction of materials
with space group number 1 and occupied Wyckoff position a.
Moreover, the average number of different elements in the unit
cell is 4.0 for the CDVAE generated materials while it is only 2.6 for
the C2DB seed structures. The larger number of different elements
is part of the reason for the higher fraction of materials with low
symmetry. This tendency of CDVAE to generate structures with
more complex composition is also noted by Xie et al., who
attributes this to a non-Gaussian distribution of the underlying
structure of the materials. Thus, when CDVAE generates new
materials it samples from a Gaussian distribution Nð0; 1Þ from
which it predicts the number of atoms and composition. However
if Nð0; 1Þ is not representative of the latent space, out of
distribution materials can be generated. For materials discovery
this could, however, be advantageous as this makes CDVAE able
to generate new crystal types which are not present in the
training data.

To give a global overview of the structural distribution of the
three data sets, a t-SNE embedding is shown in Fig. 7. The t-SNE
analysis is made for 2500 materials sampled randomly from each
data set. Here the structure is represented as a tuple given by the
space group, occupied Wyckoff positions, and stoichiometry, where
each is one-hot encoded before the t-SNE embedding. We see that
most of the training data form clear clusters, which represent the
most common stoichiometries, space group and Wyckoff positions.
The LDP generated materials mostly follow the same pattern as the
seed structures. However, the CDVAE generated structures are more
spread out, which is partly due to the large variation in their
stoichiometries, while a few clusters appear due to the large fraction
of low symmetry materials with space group number 1. One
noteworthy example is the cluster of CDVAE generated materials
with stoichiometry ABC2D2, space group number 25 and occupied
Wyckoff positions a, b, c, d. For this specific combination, CDVAE
discovered 123 new materials of which 30 lies within 50 meV of the
convex hull, while there is no examples of such materials in the
training set nor in the LDP generated structures. Two of the most
stable discovered materials of this type can be seen in Fig. 4h, i. The
new class of structures have broken out-of-plane symmetry either
due to the outermost atoms (i) or the innermost atoms (h). The fact
that the CDVAE is able to generate new classes of stable materials,
which are not present in the training data, is very promising and a
clear advantage of deep generative models compared to lattice
decoration protocols.

DISCUSSION
In conclusion, we have successfully employed a deep generative
model in combination with a systematic lattice decoration protocol
(LDP) to generate more than 8500 unique 2D crystals with
formation energies (ΔH) within 0.3 eV/atom of the convex hull.
Out of these, more than 2000 have ΔH within 50meV/atom of the
convex hull, and could potentially be synthesised. This represents at
least a doubling of the known stable 2D materials.
In addition to the very significant expansion of the known space

of 2D materials, our work provides a quantitative assessment of the
crystal diffusion variational autoencoder (CDVAE)39, and establishes
its excellent performance with respect to the two key criteria:
ability to learn the stability properties of the training structures, and
ability to generate crystals with high chemical and structural
diversity. In fact, only 25% of the generated materials had ΔHhull

above the 0.3 eV/atom threshold used to select the training
structures, and the stoichiometries of the generated materials
span 239 types versus 87 present in the training structures.

Fig. 5 Kernel density estimate showing the distribution of the
convex hull energies for the stable and unstable CDVAE
generated dataset. The dashed line shows the distribution of the
corresponding training data.

Fig. 6 Histograms of structural parameters. Relative frequency of the stoichiometry, space group number and occupied Wyckoff position for
each of the data set.
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Generally, the crystal structures generated by CDVAE have higher
complexity and lower symmetries than the training structures. We
found the method of lattice decoration to be complementary to
the CDVAE generator with the two methods yielding only 22
common crystals out of the 11630 structures generated in total.
While the LDP is limited to the structural blueprint of the seed
materials, CDVAE is able to generate new classes of materials,
which are not present in the initial data set. This is promising for an
autonomous materials discovery method as it adds new genes to
pool of trial materials and thus goes beyond the lattice decoration
paradigm.
The fact that CDVAE is comparable to lattice decoration (with

substitution by chemically similar elements) in terms of stability
while producing new and diverse crystal structures, is a
testimony to the prospect of using deep generative models in
materials discovery.
All the structures are available in the C2DB database47, and their

basic properties will also be made available as the execution of the
C2DB property workflow proceeds.

METHOD
Workflow
To set up and manage the workflow we use the Atomic Simulation
Recipes5, which has implemented tools for DFT relaxation,
duplicate removal, dimensionality check, and for calculating the
thermodynamic properties. The DFT calculations are performed
using the GPAW code48 with the PBE xc-functional, a plane wave
cut-off energy of 800 eV and a k-point density of at least 4 Å. The
relaxation is stopped when the maximum force is below 0.01 eV/Å
and the maximum stress is below 0.002 eV/Å3.
The duplicate removal recipe finds duplicate structures using the

root mean square distance (RMSD) between the structures which is
calculated using the Python library pymatgen49. We consider
structures to be duplicate if RMSD < 0.3Å and only keep the
structure with the lowest heat of formation. See ref. 31 for more

information. For the initial LDP generated materials (before the DFT
relaxation) a more crude duplicate sorting of the structures is
employed, where two materials with the same reduced formula
and space group are considered duplicates.
To determine the convex hull we use as reference databases the

C2DB as well as a database of reference structures comprising
9590 elementary, binary, and ternary crystals that all lie within
20 meV of the convex hull in the Open Quantum Materials
Database (OQMD)25. These reference structures were relaxed
using the VASP50 code at the PBE level (PBE+U for selected
transition metal oxides) as part of the OQMD project. Since we use
the GPAW code to relax and evaluate the energy of the 2D
materials, we have re-calculated the total energy of the reference
structures (without re-optimisation) using the GPAW code.

CDVAE
CDVAE is designed to generate 3D bulk crystals, where the unit
cell is periodic in all three directions. This introduces a problem
when generating 2D materials, which are non-periodic in one
direction. We solve this issue by introducing an artificial
periodicity in the non-periodic direction with a lattice vector
which is an order of magnitude larger than those in the
periodic directions. This ensures that the graph networks only
connect atoms in the 2D layer and thus CDVAE learns to
generate 2D materials. When training the model, we used 70%
of the materials in the training set, while 15% was used for
validation and 15% for test. We used the same hyperpara-
meters as employed by Xie et al. for their MP-20 data set. See
ref. 39 for more information.

DATA AVAILABILITY
All the discovered crystal structures and their properties are available as a part of
C2DB (https://cmr.fysik.dtu.dk/c2db/c2db.html). The discovered materials can be
selected using the key origin, which have the values Lyngby22_CDVAE or
Lyngby22_LDP for the CDVAE and LDP generated materials respectively.
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