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Crystal twins: self-supervised learning for crystalline material
property prediction
Rishikesh Magar 1, Yuyang Wang 1 and Amir Barati Farimani 1,2,3✉

Machine learning (ML) models have been widely successful in the prediction of material properties. However, large labeled datasets
required for training accurate ML models are elusive and computationally expensive to generate. Recent advances in Self-
Supervised Learning (SSL) frameworks capable of training ML models on unlabeled data mitigate this problem and demonstrate
superior performance in computer vision and natural language processing. Drawing inspiration from the developments in SSL, we
introduce Crystal Twins (CT): a generic SSL method for crystalline materials property prediction that can leverage large unlabeled
datasets. CT adapts a twin Graph Neural Network (GNN) and learns representations by forcing graph latent embeddings of
augmented instances obtained from the same crystalline system to be similar. We implement Barlow Twins and SimSiam
frameworks in CT. By sharing the pre-trained weights when fine-tuning the GNN for downstream tasks, we significantly improve the
performance of GNN on 14 challenging material property prediction benchmarks.
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INTRODUCTION
Machine Learning (ML) based predictive models have made rapid
strides in computational chemistry due to their efficiency and
performance. Characterized by their computational efficiency and
accuracy, these methods are capable of faster high-throughput
screening compared to classical physics models1,2. This capability
has roots in both novel learning algorithms and improved
hardware. Even though ML models can offer faster predictions,
the accuracy of these models is highly correlated with the
availability of clean labeled data3. In general, it is difficult to
develop accurate and robust ML models without sufficiently large
labeled data4. Moreover, the acquisition of labeled data is expensive
as it involves performing Density Functional Theory (DFT) simula-
tions or experiments to characterize materials5,6. On the other hand,
gigantic databases containing structures and compositions of
materials without labels (properties) are available. These databases
cannot be used in supervised learning tasks due to the lack of
labels. Given the availability of large unlabeled datasets, two
interesting questions are raised: (1) can we develop more efficient
ML models that are capable of learning the underlying structural
chemistry from unlabeled data, and (2) can these models be used
to make the supervised learning tasks more accurate?
In this work, we aim to address these questions by leveraging

Self-Supervised Learning (SSL) for material property prediction.
Unlike supervised learning which uses labels for supervision, SSL
makes use of the large unlabeled data for supervision to learn
robust and generalizable representations that can be used for
various tasks. Recently, SSL frameworks such as SimCLR7, Barlow
Twins8, BYOL9, SwAV10, MoCo11, SimSiam12, Albert13, and self-
supervised dialog learning14 have been successfully applied to
computer vision and natural language processing tasks. The
success of these SSL methods has inspired many works in
molecular ML, leading to the development of highly accurate
frameworks such as MolCLR15, dual view molecule pre-training16,
3D Infomax17, and numerous other popular works18–25. It should
be noted that SSL-based methods have been developed for

molecules, which have finite structures. However, the periodic
crystalline materials are different from the molecules, since
crystalline materials are composed of infinitely repeating unit
cells of atoms, ions, or molecules. Besides, crystalline materials can
have non-covalent bonds that are different from covalent bonds
in molecules. Based on the differences, specialized deep learning
architectures explicitly modeling crystals are required.
Most of the promising works developed for material property

prediction tasks are using graph neural networks (GNN). GNNs
consider non-Euclidean topology to construct a graph representa-
tion that can be learned and modified according to the task26–28.
In general, the GNNs developed for material property prediction
take input the 3D coordinates of the crystal and construct the
graph by modeling atoms as the nodes and the interactions
between the atoms as edges. GNNs developed for material
property prediction include CGCNN29, OGCNN30, SchNet31, Meg-
Net32, and other models33–44. Developments have also been made
in tasks such as material structure generation and prediction45–50

as well as identifying new materials with specific properties51.
Despite progress being made in developing self-supervised ML
architectures in the molecular ML, there is a noticeable lack of
research works implementing such techniques for the periodic
crystalline systems property prediction.
In this work, we introduce Crystal Twins (CT): an SSL framework

for crystalline material property prediction with GNNs (Fig. 1). In
pre-training, the models in the CT framework does not make use
of any labeled data to learn crystalline representations, instead, it
trains ML models in a self-supervised manner. In the CT
framework, we use the CGCNN29 as the encoder to learn
expressive representations of crystalline system. We adapt two
different SSL pretraining methods based on Barlow Twins8 and
SimSiamese7 loss functions. In CTBarlow which uses Barlow twins
loss for pre-training, the GNN encoder generates representations
of two augmented instances from the same crystal and the
objective of pre-training is to make the cross-correlation matrix of
the two embeddings as close as possible to the identity matrix
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(Fig. 1A). In the other model CTSimSiam that uses SimSiamese7 loss
function for pre-training, the objective is to maximize the cosine
similarity between the embeddings generated from the graph
encoder CGCNN for two augmented instances. Additionally, in
CTSimSiam, one branch has the stop gradient operation and the
other has predictor head after the graph encoder (Fig. 1B). To
create augmented instances, we introduce the combination of
three different augmentation techniques: random perturbations,
atom masking, and edge masking (Fig. 1C). The representations
learned by the encoder are later used for downstream material
property prediction tasks in the fine-tuning stage (Fig. 1D). In the
pre-training stage, graph encoder learns representations from
unlabeled data. Using the pre-trained weights to initialize the
graph encoder for fine-tuning, both CTBarlow and CTSimSiam

demonstrate superior prediction performances on 14 challenging
datasets. We also compare the performance of the CT models with

other competitive supervised learning baselines. We have
successfully demonstrated the use of self-supervised learning for
crystalline material property prediction.

RESULTS
To comprehensively evaluate the performance of models using
the CT framework, we test its performance on 13 challenging
regression benchmark datasets and 1 classification dataset. The
capabilities of the models in the CT framework are tested on a
wide variety of properties including exfoliation energy, frequency
of the highest frequency optical phonon mode peak, band gap,
formation energy, refractive index, bulk modulus, shear modulus,
Fermi energy, and metallicity. An overview of the datasets used for
benchmarking the performance of the models in the CT frame-
work is shown in Table 1. Among the total 14 datasets, we

Fig. 1 Overview of the crystal twins (CT) framework. We propose two methodologies for SSL pre-training based on the Barlow Twins loss
and SimSiamese loss function. The CT framework takes the structural file (CIF) as the input and then augments the structure to create two
different augmented instances. (A) In CTBarlow, each instance is passed to the CGCNN graph encoder followed by a projector to generate
embedding. The pre-training objective aims to maximize the cross-correlation between the two embeddings. (B) The CTSimSiam, each instance
is passed through same CGCNN encoder branch to generate embeddings. One branch has an projector MLP head after the encoder and the
other branch has stop-gradient operation. The pre-training objective is to maximize similarity between the embeddings. (C) To create
augmented instances, three augmentation techniques are used in this work: random perturbations, atom masking, and edge masking. (D) In
the pre-training stage we trained using SSL. In the fine-tuning stage, the pre-trained weights are shared with the encoder (CGCNN) which is
trained to predict the material property.
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benchmark the performance of the models on 9 datasets (Table 2)
from the MatBench suite and the remaining 5 datasets (Table 3)
follow the datasets used in previously published works of
CGCNN29 and OGCNN30. More detailed descriptions of these
datasets are available in the Supplementary Information.

Benchmarking the models on the MatBench Suite
The MatBench42 suite consists of multiple material property
prediction datasets. In this work, we consider 9 datasets that have
crystal structures as input for benchmarking our self-supervised
learning models CTBarlow and CTSimSiam. We compare the results of
our framework with the previously published supervised learning
baselines available on MatBench. The protocols for benchmarking
the performance of CTBarlow and CTSimSiam are exactly same as
introduced in MatBench. We make use of nested 5 fold cross
validation to generate the results in Table 2. The detailed
hyperparameters used for finetuning models are listed in the
Supplementary Information (Supplementary Table 3). We observe
that the models trained using SSL based approach consistently
outperform the supervised learning CGCNN baseline. Improved
results for models in CT framework over the CGCNN baseline are
observed for 7 out of the 9 datasets. For the Is Metal dataset, the
performance of the models in CT framework are within the
standard deviation of the supervised model. We also compare
the performance of our SSL model with AMMExpress42 model in
the MatBench suite. We observe that models in the CT framework
outperform AMMExpress on 6 out of the 9 datasets. Additionally,
we also benchmark our model against the state-of-the-art model
for material property prediction ALIGNN43. It was observed that
our model performs better than ALIGNN only for the classification
task. It must be noted that the ALIGNN achieves this high
performance by modeling three-body interactions whereas
CGCNN models two-body interactions. The enhancement of
explicitly modeling three-body interactions gives ALIGNN more
expressive power than CGCNN making it a more accurate baseline.
Since we are using CGCNN as the graph encoder model in the CT
framework, the CTBarlow and CTSimSiam are essentially modeling
two-body interactions and are unable to compete with ALIGNN.
The improvements demonstrated in our results over supervised

Table 1. Overview of the datasets used for benchmarking the
performance of the CT framework.

Dataset # Crystals Property Unit

JDFT2D(JDFT)63 636 Exfoliation Energy meV per atom

Phonons64 1,265 Last Phdos Peak 1 per cm

HOIP61 1,345 Band Gap eV

Lanthanides62 4,166 Formation Energy eV per atom

Dielectric65 4,764 Refractive Index Unitless

GVRH59,66 10,987 Shear Modulus log10VRH

KVRH66 10,987 Bulk Modulus log10VRH

Perovskites67 18,928 Formation Energy eV per atom

Fermi Energy68 26,447 Fermi energy eV

Formation Energy
(FE)68

26,078 Formation energy eV per atom

Band Gap (BG)68 26,709 Band Gap eV

MP-Is Metal (Is Metal)68 106,113 Metallicity NA

MP-Gap (MP-BG)68 106,113 Band Gap eV

MP-E-Form (MP-FE)68 132,752 Formation Energy eV per atom

Five of these datasets are in accordance to the previously published works
of CGCNN29 and OGCNN30. Additionally, we have also benchmarked on 9
datasets aggregated from the MatBench suite42.

Table 2. Mean and standard deviation of test MAE of Crystal Twins (CT) in comparison to the supervised baselines on MatBench42 regression
benchmarks.

Dataset JDFT63 Phonons64 Dielectric65 GVRH59,66 KVRH66 Perovskites67 MP-BG68 MP-FE68 Is Metal68

# Crystals 636 1265 4764 10,987 10,987 18,928 106,113 132,752 106,113

CGCNN29 49.24 ± 11.58 57.36 ± 12.31 0.599 ± 0.083 0.089 ± 0.001 0.071 ± 0.002 0.045 ± 0.001 0.297 ± 0.003 0.033 ± 0.001 0.952 ± 0.007

AMMExpress42 39.84 ± 09.88 56.17 ± 06.80 0.315 ± 0.067 0.087 ± 0.002 0.065 ± 0.002 0.200 ± 0.009 0.282 ± 0.006 0.172 ± 0.208 0.909 ± 0.001

ALIGNN43 43.42 ± 08.95 29.53 ± 02.11 0.345 ± 0.087 0.071 ± 0.001 0.057 ± 0.003 0.029 ± 0.001 0.186 ± 0.003 0.022 ± 0.001 0.913 ± 0.001

CTBarlow 46.79 ± 19.92 50.33 ± 08.88 0.434 ± 0.100 0.086 ± 0.004 0.067 ± 0.003 0.042 ± 0.001 0.264 ± 0.011 0.037 ± 0.001 0.945 ± 0.004

CTSimSiam 48.38 ± 18.68 48.86 ± 07.69 0.417 ± 0.079 0.087 ± 0.003 0.067 ± 0.003 0.042 ± 0.001 0.281 ± 0.025 0.037 ± 0.000 0.947 ± 0.003

The results in the table follow the protocols from MatBench. The best performing result has been shown in boldface and next best performing result has been
underlined. The mean and the standard deviation are calculated over 5 folds following the MatBench protocol.

Table 3. Mean and standard deviation of test MAE of Crystal Twins (CT) in comparison to the supervised baselines on 5 regression benchmarks.

Dataset HOIP61 Lanthanides62 Fermi Energy68 FE68 BG68

# Crystals 1333 4166 26,447 26,078 26,709

GIN20 0.666 ± 0.123 0.197 ± 0.038 0.605 ± 0.015 0.109 ± 0.007 0.601 ± 0.038

CGCNN29 0.170 ± 0.013 0.080 ± 0.003 0.400 ± 0.003 0.040 ± 0.001 0.369 ± 0.003

OGCNN30 0.164 ± 0.013 0.072 ± 0.002 0.446 ± 0.018 0.035 ± 0.001 0.353 ± 0.008

GINBarlow 0.395 ± 0.007 0.094 ± 0.000 0.478 ± 0.125 0.085 ± 0.003 0.337 ± 0.004

CTBarlow 0.153 ± 0.003 0.058 ± 0.001 0.399 ± 0.004 0.025 ± 0.001 0.328 ± 0.002

CTSimSiam 0.140 ± 0.004 0.054 ± 0.001 0.384 ± 0.004 0.024 ± 0.001 0.302 ± 0.001

The benchmark datasets have been taken from previously published OGCNN30. The best performing result has been shown in boldface and the second best
performing result has been underlined. The mean and the standard deviation have been calculated over 3 different runs.
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learning baselines CGCNN29, AMMExpress42 show the promise of
using SSL for learning representation of crystalline materials.

Benchmarking the models on additional datasets
Apart from benchmarking the performance on datasets from the
MatBench suite. We also benchmarked the performance of our
models on additional datasets similar to previously published works
OGCNN30 and CGCNN29. The datasets include properties like
formation energy, band gap and Fermi energy. As we pre-trained
the model with CGCNN encoder, the comparison with the CGCNN
model is the most direct and fair, and it offers insights into how self-
supervised learning methods can help in predicting the crystalline
material properties with a high degree of accuracy. We also
compare the performance of the models in the CT framework with
other popular supervised GNN models, i.e., GIN20 and OGCNN30 for
the datasets in Table 3. We would like to note that all the models
used for comparison in Table 3 are trained with the same
hyperparameters as suggested in their publicly available codes.
The train/validation/test split for all the datasets is the same and set
to 0.6/0.2/0.2 following previous standard benchmarking protocols.
The data splitting is performed randomly following the protocols in
the previously published works. The test Mean Absolute Errors
(MAEs) for the supervised training baselines and the models in CT
framework are shown in Table 3. The detailed hyperparameters
used for supervised models are listed in the supplementary Table 4.
It is observed that the CT models outperform all supervised

learning baselines on all the 5 regression tasks. We would like to
note that the performance improvements (Supplementary Table
1) achieved by the CT models over the baseline CGCNN model are
non-trivial. We observed an average improvement of 17.09% for
CTBarlow and 21.83% for CTSimSiam when compared to CGCNN. The
results in Table 3 clearly demonstrate the merit of using self-
supervised learning frameworks for periodic crystal property
prediction. In order to test the generic nature of our SSL
framework, we also implement GIN20 pre-trained via the Barlow
Twins loss. We observed impressive gains in performance for the
GINBarlow over the supervised GIN model. The average improve-
ment of the GINBarlow model when compared to the supervised
GIN model is 36.97%. The improvement in case of GINBarlow

indicates that CT framework can be applied with other graph
encoder architectures and performance gains may be expected
for those GNN models when compared to their supervised
counterpart.

Ablation study
To compare the effectiveness of the different augmentations
techniques, we pre-train three CTBarlow models, (1) using only
random perturbation augmentations (RP), (2) using only atom
masking and edge masking augmentations (AM+EM), (3) using all
three random perturbation, atom masking, and edge masking
augmentations (RP+AM+EM). We report the MAE of the model on
different fine-tuning datasets to determine the effectiveness of
the augmentation techniques (Fig. 2).
The performance of AM+EM augmentation is better than RP for

perovskites, BG and GVRH datasets, whereas RP augmentation has
better performance than AM+EM for Fermi energy, lanthanides,
and HOIP datasets. For FE dataset the performance of both RP and
AM+EM augmentation techniques is the same. It must be noted
that the performance of models trained with different augmenta-
tion techniques is almost identical, making it difficult to
conclusively ascertain which augmentation technique is better.
Moreover, we also observe that the effectiveness of the
augmentation techniques is dataset dependent. We would also
like to note that the standard deviation of MAE is always lower
when using the pre-trained model with all augmentation
techniques. Therefore, using a combination of all three augmenta-
tion techniques is most effective.

Understanding the CT representations
To understand the CT representations, we visualize the represen-
tations from the pre-trained and fine-tuned CTBarlow framework in
comparison to the CGCNN model in 2D using t-SNE52. The t-SNE
representation maps the embedding based on the similarity in the
2D space. The comparison between the representations of the
CGCNN model and the CTBarlow model for the perovskites dataset
is shown in Fig. 3. Each point is colored by the formation energy of
perovskites which is the label that the model is trained on in the
fine-tuning stage.
We observe that the t-SNE projection from the CTBarlow model

has a better clustering, namely, the crystalline materials with
higher formation energy are clustered at the top left of the t-SNE
projection plot (Fig. 3B) when compared to the CGCNN (Fig. 3A).
Similarly the materials with lower formation energy are clustered
at the bottom of the t-SNE plot (Fig. 3B) for the CTBarlow model. For
example, perovskites InOsO3 and LaReO3 with relatively lower
formation energies of −0.58 and −0.64 eV/atom, respectively, are
clustered closely together in t-SNE projection from CTBarlow
compared to CGCNN. This demonstrates the generalizability of
the representations learned by the CTBarlow model when

Fig. 2 Ablation study of three augmentation techniques, random perturbation (RP), atom masking (AM), and edge masking (EM), for
CTBarlow model. (A) Evaluating the effect of different augmentation techniques in Band Gap and HOIP dataset where the label is band gap. (B)
Evaluating the effect of augmentation techniques on the FE, Lanthanides, and Perovskites datasets for which the label is formation energy. (C)
Evaluating the effect of different augmentation strategies on the Fermi energy and log10 VRH - shear modulus of the structures prediction. The
error bars indicate variation in MAE over 3 different runs.
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compared to supervised learning. Such representation learnt from
the CT framework can also be used to characterize and under-
stand the large chemical space of materials.

DISCUSSION
In this work, we develop Crystal Twins (CT), a generic SSL
framework for crystalline material property prediction. In this
framework, we propose two SSL strategies using the twin graph
neural networks to learn representations by leveraging the Barlow
Twins loss and SimSiamese loss during pre-training. The models in
CT framework (CTBarlow and CTSimSiam) achieve superior perfor-
mance compared to other competitive supervised learning
baselines. The models in CT framework demonstrate high
generalizability and robustness by learning representations that
can be used to predict a variety of properties like formation
energy, band gap, Fermi energy, shear modulus, bulk modulus,
and refractive index of different crystalline materials. The pre-
training of models in the CT framework has been performed on
significantly less amount of data compared to SSL models in other
domains like molecular machine learning, computer vision, and
natural language processing. In general, SSL models are known to
demonstrate better performance with larger unlabeled data as it
allows them to learn more generalizable representations. We
expect the models in the CT framework to demonstrate a superior
performance with larger training data when compared to our
current results. The representations learned by the models in the
CT framework are of great promise and can open up avenues for
exciting research in understanding the chemical space and
designing materials with desired properties.

METHODS
In this section, we describe the components of the CT framework
(Fig. 1). In general, SSL frameworks employ correlations in the
input itself to learn robust and generalizable representations from

unlabeled data.53. As a part of CT framework we propose two
different SSL pretraining models namely CTBarlow and CTSimSiam.
For the CTBarlow, the goal during pre-training is to force the
empirical cross-correlation matrix created from the encoder
embeddings of two different augmentations generated by the
same crystal towards the identity matrix. All the elements in the
cross-correlation matrix lie between −1 and 1, with 1 representing
maximum correlation. Intuitively, since the embeddings are
generated from augmentations of the same crystalline system,
the cross-correlation matrix must be close to the identity matrix.
For the CTSimSiam, the pre-training objective is to maximize the
cosine similarities between encoder embeddings of augmented
instances generated from the same crystalline system. To avoid
model collapse, CTSimSiam implements an extra projection head on
one side of the twin networks and applies the stop-gradient
technique on the other side in training. Using such objectives
during pre-training allows the graph encoder to learn robust
representations. To create the augmented instances, we use
augmentation techniques, including atom masking, edge mask-
ing, and random perturbation (refer Supporting Information). The
embeddings for the augmented instances of the crystalline system
are generated via the CGCNN graph encoder. We pre-train the
CGCNN model with two SSL strategies using Barlow Twins and
SimSiamese loss function. The weights of the pre-trained self-
supervised model are used to initialize the graph encoder model
during the fine-tuning stage for material property prediction.

Graph neural network encoder
Most recent successful deep learning approaches for crystalline
material property prediction are based on GNNs because of their
ability to capture structural geometry and chemistry. In a crystal
graph (G), we consider the atoms as the nodes (V), and
interactions between them are modeled via edges (E). In general,
GNNs aggregate information from the neighborhood of the node
to construct embeddings that are updated iteratively. The update

Fig. 3 Visualizing the embeddings space for the perovskites dataset using t-SNE. Every point on the t-SNE plot is colored corresponding to
the formation energy of the crystalline system. (A) The t-SNE plot for the embedding was generated from the CGCNN model. (B) The t-SNE
plot for the embedding was generated from the graph encoder of CT model after fine-tuning.
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for the GNN can be described as in Eq. (1).

hðkÞv ¼ COMBINEðkÞ hðk�1Þ
v ;AGGREGATEðkÞ fhðk�1Þ

u ju 2 NðvÞg
� �� �

;

(1)

where hðkÞ
v is the feature of the node v at the k-th layer and hð0Þ

v is
initialized by node feature xv. NðvÞ denotes the set of all the
neighbors of node v. aðkÞv is the output from the aggregation
operation at the kth layer. The aggregation operation collects the
features of neighboring nodes and the combination operation
combines the original node feature with the aggregated features.
To extract the feature of the entire crystal system, hG, readout
operation integrates all the node features among the graph G as
given in Eq. (2).

hG ¼ READOUT fhðkÞ
v jv 2 Gg

� �
: (2)

The readout operations such as summation, averaging, and max
pooling are most commonly used54.
In this work, we implement the CGCNN29 architecture as the

GNN encoder. We choose CGCNN because of its competitive
performance and computational efficiency when compared to
other GNN baselines. Moreover, CGCNN is one of the most widely
benchmarked baseline models for material property prediction
allowing us to compare the performance of our SSL framework
with CGCNN and other baselines. To encode crystal features and
obtain an embedding, we use mean pooling to generate a latent
representation with the dimension of 64. After the GNN encoder,
the projection head with 2 MLP layers is attached to generate the
final embedding on which the SSL loss functions are applied for
pre-training. Additionally, we also implement a general purpose
graph neural network GIN20 to test the fidelity of SSL methods on
another architecture apart from CGCNN.
To generate self-supervised learning representations, we need

to construct different augmentations of the crystalline system.
Inspired by AugLiChem,55 we devise three different augmentation
techniques (Fig. 1C), namely, random perturbation, atom masking
and edge masking. The random perturbation augmentation
perturbs each atom by a distance drawn from the uniform
distribution between 0 Å and 0.05 Å. For atom masking, we
randomly mask 10% of the atoms in the crystal, similarly for edge
masking we randomly mask 10% of the edge features between
two neighboring atoms. More details on atom masking and edge
masking are provided in the Supplementary Information (Supple-
mentary Fig. 1). These augmentations are applied to the crystalline
systems and two augmented instances are generated randomly
on the fly at each epoch during pre-training. These augmented
instances are fed into the GNN encoder to generate embeddings
on which SSL loss functions are applied.

Barlow Twins loss
In the pre-training stage for CTBarlow, we use the Barlow Twins loss
function to learn graph representations from crystals. This loss is
based on the redundancy reduction principle proposed by
neuroscientist H. Barlow56,57 and was introduced to SSL by
Zbontar et al.8. We use the Barlow Twins loss function in CT
because of its high performance and ease of implementation.
Moreover, the Barlow Twins loss, unlike other contrastive loss
functions, does not explicitly require positive and negative pairs
for pre-training. The Barlow Twins loss function is applied to the
cross-correlation matrix created from encoder-generated embed-
dings of the two different augmentations generated from the
same crystalline system. The Barlow Twins loss function is
represented by Eq. (3),

LBT ≜
X
i

ð1� CiiÞ2 þ λ
X
i

X
j≠i

C2
ij ; (3)

where C is the cross-correlation matrix of embeddings from two
augmented instances, the cross correlation matrix is given by Eq.
(4). The λ used in this work is 0.0051 same as the original paper.

Cij ≜
P

bZ
A
b;iZ

B
b;jffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZA
b;iÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZB
b;jÞ

2
q (4)

where b is the index of the data in batch and i, j index the vector
dimensions of the projector output (ZA and ZB), for both the
augmented instances A and B from the same crystalline material.

SimSiam loss
We developed another variant of CT that uses SimSiam12 denoted
as CTSimSiam. In this case, an extra MLP head f( ⋅ ) is added to the
GNN backbone to map the latent vector Z to P, namely P= f(Z).
The distance between two vectors is defined as Eq. (5).

DðPA
b ; Z

B
bÞ ¼ � PA

b

kPA
bk2

� ZB
b

kZB
bk2

; (5)

where b denotes the index of the data in a batch and A, B denote
two augmented instances from the same crystalline material. The
objective to minimize given a batch is further shown in Eq. (6).

LSimSiam ≜
1
2

X
b

DðPA
b ;stopgradðZB

bÞÞ þ DðPB
b;stopgradðZA

bÞÞ
� �

; (6)

where stopgradð�Þ means the gradient is not back propagated
on this branch of the CTSimSiam model. Such an asymmetric
architecture and the stop-gradient operation avoid the collapse of
learned representations.

Training details
In the pre-training stage, the embedding dimension of the CGCNN
encoder is set to 128 for the CTBarlow and 256 for the CTSimSiam

model. We use the Adam optimizer58 with a learning rate of
0.00001 and a batch size of 64 and pre-train the model for 15
epochs. The other hyperparameters for the CGCNN (graph
encoder) model are kept the same as in the original paper. The
train/validation ratio for pre-training data is 95%/5%. For pre-
training, we combine the datasets from the Matminer database59

and the hypothetical Metal-Organic Framework dataset60, aggre-
gating a total of 428,275 samples. The labels in the datasets are
not used during CT pre-training. Additional details about the
hyperparameters during the pretraining stage are available in
Supplementary Table 2. In the fine-tuning stage, we add a
randomly initialized MLP head with two fully connected layers to
generate the final property prediction. The CTBarlow and CTSimSiam

are tested on a variety of datasets including some datasets from
previously published work OGCNN30 and matbench suite42.
Additional details about the hyperparameters used during the
finetuning stage are mentioned in Supplementary Table 3.

DATA AVAILABILITY
All data used in this work are publicly available. The authors used datasets from the
matbench suite and Materials project, which are public data repositories. Matbench
benchmark datasets are available at the website (https://
matbench.materialsproject.org/). The datasets can also be found on the Materials
Project website (https://materialsproject.org/). The codes and documentation for
matbench can be found at the website (https://github.com/materialsproject/
matbench). For the HOIP61 (Dryad Digital Repository: https://doi.org/10.5061/
dryad.gq3rg) and Lanthanides datasets62, relevant publications have been cited
from which data were obtained. These datasets are also made available at https://
github.com/RishikeshMagar/Crystal-Twins.

CODE AVAILABILITY
The code developed for this work is available at https://github.com/RishikeshMagar/
Crystal-Twins.
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