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Designing mechanically tough graphene oxide materials using
deep reinforcement learning
Bowen Zheng1, Zeyu Zheng2 and Grace X. Gu 1✉

Graphene oxide (GO) is playing an increasing role in many technologies. However, it remains unanswered how to strategically
distribute the functional groups to further enhance performance. We utilize deep reinforcement learning (RL) to design
mechanically tough GOs. The design task is formulated as a sequential decision process, and policy-gradient RL models are
employed to maximize the toughness of GO. Results show that our approach can stably generate functional group distributions
with a toughness value over two standard deviations above the mean of random GOs. In addition, our RL approach reaches
optimized functional group distributions within only 5000 rollouts, while the simplest design task has 2 × 1011 possibilities. Finally,
we show that our approach is scalable in terms of the functional group density and the GO size. The present research showcases
the impact of functional group distribution on GO properties, and illustrates the effectiveness and data efficiency of the deep RL
approach.
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INTRODUCTION
Graphene, a monolayer carbon allotrope, has been regarded as a
cornerstone in materials science research ever since its discovery1.
As such, there are several research directions related to graphene
in both computational and experimental works in science and
engineering applications2–5. Graphene oxide (GO), one of the best-
known graphene derivatives, inherits many unique and exquisite
properties of graphene and is playing an increasingly important
role in various research areas such as electronics, energy storage,
and biomedical applications6–12. Structurally, GO comprises a
graphene basal plane (GBP) and a variety of oxygen-containing
functional groups including hydroxyl (C–OH), epoxide (C–O–C),
carbonyl (C=O), and carboxyl (O=C–OH) groups. Among these
functional groups, hydroxyl and epoxide groups are dominant in
number and distribute on the face of the GBP, while carbonyl and
carboxyl groups are outnumbered and are only attached to the
edges of the GBP13. As a result, the total amount and the relative
ratio of hydroxyl and epoxide groups dictate the chemical
composition, which plays a central role in influencing the
mechanical properties of GO14. Contrarily, carbonyl and carboxyl
groups are shown to be insignificant in affecting the chemistry
and mechanical properties of GO.
However, the mechanical property of a GO cannot be accurately

inferred from only its chemical composition. Given one specific
chemical composition, there can exhibit a range of GO mechanical
properties, due to the variability in the functional group spatial
distribution on the GBP. Research has shown that the functional
group distribution can impact GO properties such as plasticity and
ductility due to the mechanochemical interactions between
functional groups15. One mechanical property of interest is
toughness, defined as the amount of energy per unit volume
that a material can absorb before rupturing. It quantifies the ability
of a material to absorb energy and plastically deform without
fracturing, thus requiring a balance of strength and ductility. GOs
with high toughness are much desired, which can potentially

enhance the performances of many GO-based applications such
as nanocomposites, flexible electronics, among others.
Given a specific chemical composition such as the oxygen-to-

carbon ratio and the relative concentrations of functional groups, our
goal is to maximize the toughness of GO by altering only the
functional group spatial distribution. The existing literature has not
sufficiently addressed this problem, and presumes that the effect of
functional group distribution is secondary. From the perspective of
optimization, it is a challenging task and has the following difficulties.
First, optimizing over functional group distribution is in essence a
combinatorial optimization problem, which can be NP-hard and
analytically intractable, especially when the problem dimension is
large. Second, the problem involves complex functional group
interactions that evolve over time. There is little intuition about
where to place functional groups at the beginning such that the GO
will benefit in the long run. Third, both GO simulations and
experiments can be expensive. Hence, an effective, data-efficient
optimization strategy is highly valued.
Recently, machine learning algorithms have been applied

successfully to materials prediction, design, and optimization
problems16–24. Reinforcement learning (RL), a mathematical
formalism for learning-based decision making, describes an
approach where an agent performs sequential actions based on
interactions with an environment so as to yield the most
cumulative rewards25. When integrated with deep neural net-
works and advanced computing, the capability of RL is greatly
amplified: Deep neural networks can process high-dimensional
input, while RL can choose complex actions. Deep RL applications
are numerous. One of the most famous examples is the
achievement of superhuman performance in the game Go26,27,
which was once considered an insurmountable task given the
complexity of more than 10140 possible solutions. In the context of
materials science, deep RL has been gaining ground in molecule
discovery and microstructure design28–33. More to our interest,
deep RL also has an advantage in solving difficult combinatorial
optimization problems. For these problems, many traditional
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algorithms involve using hand-crafted heuristics that sequentially
construct a solution. Nevertheless, the design of such heuristics
can be a daunting task that requires domain expertise, and can
often be suboptimal due to the difficult combinatorial nature of
the problems. Therefore, the idea to infer heuristics without
human intervention is enticing. Deep RL has shown promise to
learn efficient heurists to tackle these problems, and has been
used to solve combinatorial optimization problems such as the
Traveling Salesman Problem34–36, the Maximum Cut Problem37–39,
and the Bin Packing Problem40–42.
In this study, a deep RL framework is developed to design

mechanically tough GOs by optimizing over the functional group
distribution. In our deep RL framework, the task of functional
group assignment is formulated as a sequential (Markov) decision
process, where the state is the current functional group
distribution on the GBP and the action is to assign a new
functional group. A policy-gradient RL model is employed to
maximize GO toughness, which is calculated by reactive molecular
dynamics (MD) simulations. We design experiments of four
difficulties to gradually challenge our deep RL model, and each
difficulty consists of two experiments featuring two oxidation
levels. We aim to develop a deep RL model with the following
characteristics: (1) stable generation of mechanically tough GO
configurations; (2) good scalability in terms of functional group
density and GBP size; (3) tractable computation given the large
design space.

RESULTS
Graphene oxide simulations
In the present study, a majority of GOs are based on GBPs that
comprise a total of 94 carbon atoms, where 28 functional group-

free atoms near two opposite edges are clamped to enforce
displacement, and 66 free-to-move atoms in the middle are active
hosts for functional groups (referred to as the host atoms
hereafter, and the number of these atoms are denoted by nc),
as shown in Fig. 1a. Later in more complex experiments a larger
GBP that is roughly twice the size will be used. In our GO model
only hydroxyl and epoxide groups are considered, and less
important carbonyl and carboxyl groups on GBP edges are
omitted. Figure 1b shows an example GO model and illustrates
the molecular structures of hydroxyl and epoxide groups. Each
hydroxyl group resides on only one carbon atom, while each
epoxide group takes on two neighboring carbon atoms. This
difference adds to the optimization difficulty when both
functional groups are present on the GBP. In addition, these
functional groups can be attached to either side of the GBP. For
the loading condition, the GO sheet is subjected to uniaxial tensile
loading with a constant loading speed in the zigzag direction of
the GBP. The mechanical responses of GOs are computed by
reactive MD simulations, and the implementation details are
provided in Methods. Reactive MD simulations are favorable in
modeling the failure of nanomaterials because they account for
bond breaking and formation, which are of vital importance in the
fracture behavior at the nanoscale. We have observed in
simulations that given the same amount of hydroxyl and epoxide
groups, different functional group distributions can result in
substantially different stress-strain relations and failure behaviors.
Examples are given in Fig. 1c, d. GOs in Fig. 1c, d have the exact
same amount of hydroxyl and epoxide groups, but Fig. 1c shows a
brittle rupture while Fig. 1d shows a more ductile failure that
involves considerable new bond formation and configuration
change. Figure 1e compares the stress-strain curves of the two
GOs above. It is shown that GO in Fig. 1d is higher in both ultimate

Fig. 1 GO schematics and mechanical responses. a Schematic of GBP, where red atoms (66 in total) are hosts for functional groups while gray
atoms are functional group-free atoms on which the tensile loading is exerted. Arrows show the loading direction. b Illustrations of hydroxyl
and epoxide groups, where green and blue atoms are oxygen and hydrogen atoms, respectively. c Fracture of a low-toughness GO under
tension. d Fracture of a high-toughness GO under tension. e Stress-strain curves of GOs in c and d.
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stress and failure strain, suggesting superior mechanical proper-
ties. The toughness of a material can be expressed as u ¼

R ϵf
0 σdϵ,

where u is toughness; ϵ is strain; ϵf is the strain upon failure; σ is
stress. By the definition above, the toughness equals the area
under the stress-strain curve. It is calculated that the toughness of
GO in Fig. 1d is 2.1 times that of GO in Fig. 1c. This amount of
difference in toughness suggests that the functional group
distribution potentially has a profound impact on mechanical
properties, and that it is worthwhile to optimize GO mechanical
properties over functional group distribution. The two GO
configurations also give rise to different out-of-plane deformation,
due to different functional group distributions, of which the result
is provided in the Supplementary Information.

Deep reinforcement learning
The optimization problem we aim to solve is given a fixed number
of hydroxyl and epoxide groups, how we can distribute these
functional groups on the GBP so as to maximize the toughness of
GO. Instead of treating the optimization problem as choosing the
best functional group distribution in one shot, we model the
functional group assigning problem as a sequential decision
process and use RL to solve it. More specifically, each individual
functional group is assigned to a location on the GBP at each of a
sequence of discrete time steps t = 0, 1, 2, ..., T, where T equals the
total number of functional groups. At each time step t, the RL agent
receives the representation of the environment’s state st, which is
the current functional group locations. In our setup, the state space

is a discrete set that incorporates all functional group possibilities
associated with individual carbon atoms or carbon atom pairs on
the GBP, and is not defined in the continuous Euclidean space. After
receiving a state st, the RL agent selects an action at, which is to
assign a functional group to a functional group spot on the GBP.
This is done by a policy πθ, where πθ(at|st) is the probability of
selecting the action at if the state is st under the policy parameter θ,
i.e., πθ atjstð Þ ¼ P atjst; θð Þ. After taking an action at at state st, the
agent enters a new state st+1, and this process is called a state
transition. The state transition process involving policy network and
action is illustrated in Fig. 2a. A trajectory is formulated as
T ¼ s0; a0; s1; a1; ¼ ; sT�1; aT�1; sTf g, and GO configurations
throughout a whole example trajectory are shown in Fig. 2b. Upon
entering a new state st+1, the RL agent also receives a numerical
reward rtþ1 ¼ r stþ1ð Þ 2 R. We craft the reward as

r stð Þ ¼
0; t < T

û stð Þ; t ¼ T

�
(1)

where û stð Þ is standardized toughness given by

û stð Þ ¼ u stð Þ � μu
σu

(2)

where μu and σu are the mean and the standard deviation of
random GOs. For each trajectory, the MD simulation is only run
once at the final step when all functional groups have been
assigned to obtain the only non-zero reward u(sT). All RL
components in this study are summarized in Table 1, and more
details about the RL implementation are provided in Methods.

Fig. 2 Deep RL state transition and trajectory. a Illustration of deep RL policy and state transition. b An example full trajectory.

Table 1. Summary of deep RL components.

DRL component Notation Description

State st Current functional group locations on the GBP at time step t

State space S All possible functional group locations on the GBP

Action at To assign a functional group to a functional group spot on the GBP

Action space AðstÞ All available functional group spots left given st
Reward rt Standardized toughness if at terminal step; otherwise, 0
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To conduct GO optimization using RL, we progressively build up
experiment complexity and design four levels of difficulty: Easy,
Medium, Hard, and Extra Hard. For Easy experiments, only
hydroxyl groups are assigned to only one side of the GBP. For
Medium experiments, only hydroxyl groups are assigned to the
GBP, but they can be assigned to both sides of the GBP. Medium
experiments are more complex than Easy experiments in that the
state space and the action space are doubled in size. For Hard
experiments, both hydroxyl and epoxide groups are assigned to
the GBP, and they can be assigned to both sides of the GBP. The
settings of Hard experiments resemble GOs in reality and involve
competition between hydroxyl and epoxide groups. Extra Hard
experiments are similar to Hard experiments but a larger GBP is
used, consisting of 120 functional group hosts compared with 66
in all previous experiments. The descriptions of all experiment
difficulties are summarized in Table 2. In addition, each difficulty
consists of two oxidation levels: low and high, where the former
has an oxygen-to-carbon ratio of around 15% while the latter
doubles that. The Extra Hard difficulty is used to test the scalability
in terms of the GO size, while the different oxidation levels are for
the scalability with respect to the functional group density. In
summary, we have 8 different experiments in total to challenge
our deep RL algorithms, and the result of each experiment is
evaluated based on 4 different random seeds. The numbers of
hydroxyl and epoxide groups, and host atoms are summarized in
Table 3. In all experiments, invalid actions can be simply stated as
assigning a functional group to an already occupied carbon atom
on the GBP. However, as the difficulty increases, the elimination of
invalid actions becomes an increasingly delicate process, which is
detailed in the Supplementary Information. To compute the
reward formulated in Eq. (1), the mean μu and σu of random GO
configurations need to be calculated. The means and the standard
deviations of 2000 random GOs in all experiments are summarized
in Table 4, and the distribution histograms are provided in the
Supplementary Information.
The algorithm also varies with experiments. For Easy and

Medium experiments, only one policy network πθ is used to map
the state to a probability distribution of all legal actions, i.e.,
assigning a hydroxyl group to an available spot. However, for Hard
and Extra Hard experiments, two policy networks are needed to
assign two types of functional groups. We denote the network for
hydroxyl groups πhθ and the network for epoxide groups πeρ, where
θ and ρ are respective network parameters. Next, we need to
decide on the sequence of assigning hydroxyl and epoxide
groups. Because a non-zero reward is observed only at the

terminal step, only the network that assigns the last functional
group will get its parameters updated via backpropagation.
Therefore, the assignment sequence cannot be a deterministic
one since we need to improve both networks. To this end, we use
a Bernoulli distribution Bernoulli mh= mh=með Þð Þ to sample the
index of network used at each step, where mh and me are the
numbers of hydroxyl and epoxide groups left to assign at the
current time step. This approach randomizes the sequence of
functional group assignment in each episode and give both
networks an opportunity to update parameters. The pseudo-codes
of these two policy gradient algorithms are summarized in the
Supplementary Information. Figure 3 shows the deep RL
optimization results for all eight experiments. The numerical value
of the return represents how many standard deviations the design
is above the mean of random GOs with the same amount of
functional groups (summarized in Table 4). It is shown in Fig. 3a-c
that the final returns in the Easy, Medium and Hard experiments
reach an average return of around 3, suggesting that the RL
generated GO functional group distributions have a higher
toughness than 99.87% of all GO configurations. In the Extra Hard
experiments, our model achieves returns above 2, thus beating
97.73% of all GOs (Fig. 3d). In addition, all experiments reach a
local maximum within only 5000 episodes (no more than 5000 MD
simulations are run for each experiment), which is much smaller
than the number of possible GO configurations. For the Easy
difficulty, the low-oxidation and high-oxidation experiments have
C10(66)= 2.1 × 1011and C20(66)= 4.1 × 1016 possible functional
group arrangements, and there are even much more arrangement
possibilities for more difficult experiments. Last but not least, good
performances in experiments of different oxidation levels and the
Extra Hard experiments suggest that our RL design approach is
scalable in terms of the functional group density and the GO size.
The policy network architectures/parameters for all experiments
are presented in Methods. The distribution histograms of our RL
design within first 2000 episodes (to compare with the distribution
of 2000 random GOs) and full 5000 episodes are provided in the
Supplementary Information.
Finally, to gain insights from the perspective of microstructure, we

compare the molecular structure and detailed failure behavior
between a random GO and an RL-designed GO. The two GO
examples are drawn from the Hard, high-oxidation experiment, and
the comparison between the two GOs under different strains is
shown in Fig. 4. From the initial configurations, we observe that the
functional group distribution designed by RL tends to be more
spread out than the random GO. Nevertheless, there is little intuition

Table 2. Experiment difficulty descriptions.

Difficulty Description

Easy Assigning only hydroxyl groups on only one side of the GBP

Medium Assigning only hydroxyl groups on both sides of the GBP

Hard Assigning hydroxyl and epoxide groups on both sides of the GBP

Extra Hard Assigning hydroxyl and epoxide groups on both sides of a larger GBP

Table 3. Summary of the number of hydroxyl groups nh, the number
of epoxide groups ne, and the number of carbon atoms that are hosts
for functional groups nc for all experiments.

Easy Medium Hard Extra Hard

nh ne nc nh ne nc nh ne nc nh ne nc

low oxidation 10 0 66 10 0 66 5 4 66 9 8 120

high oxidation 20 0 66 20 0 66 10 8 66 18 16 120

Table 4. Summary of statistics of random GOs in all experiments
(unit: GPa).

Easy Medium Hard Extra Hard

μu σu μu σu μu σu μu σu

low oxidation 7.814 1.299 7.668 1.259 7.120 1.326 8.108 1.340

high
oxidation

7.694 1.368 7.245 1.355 6.236 1.249 7.115 1.310
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regarding how to design the specific functional group arrangement
to achieve a high toughness. As the strain increases, the random GO
fractures along a clearly defined path, while the fracture of RL
designed GO initiates from multiple spots and forms a network-like
structure that involves substantial new bond formation. This
phenomenon suggests that the RL designed GO has more atoms
contributing to energy absorption, which ultimately leads to a higher
toughness (11.88 GPa versus 4.96 GPa for the random GO). To gain
more physical insights as for what makes a GO tough, we conducted
analysis to locate functional group sites that are more frequently
occupied for high-toughness GOs. Concretely, we calculate the count
of functional group appearances on every possible functional group
site for high-toughness GOs for all levels of difficulty, and the results
are provided in the Supplementary Information. It is shown that
functional groups on high-toughness GOs seem to more likely
distribute near the edges and not at the center. We interpret the
observation as the following: functional groups generally have a
negative effect on the GO toughness, and distributing them away
from the center can help alleviate this effect. This is supported by the
toughness results of random GO configurations, where high
oxidation always has a lower mean toughness than low oxidation.
However, it is shown that highly occupied functional group sites are
not located only near the edges, and some sites inside the GBP also
have a high occupancy. This may be explained by the involvement of
other more complex mechanisms such as the interaction between
functional groups, which emphasizes the necessity of using our RL-
based design approach to solve this challenging problem.

DISCUSSION
Our RL framework is on-policy, where the RL agent needs to
sample a new trajectory for each episode. In our problem setting,

an MD simulation will be called to run at the terminal step of each
trajectory to generate the reward according to Eq. (1), and this is
where the most computation is spent. Future work includes
developing a surrogate model that takes the state as the input,
and outputs the reward to alleviate the computation of MD
simulations during RL rollouts. Another issue arises from the
present double policy network design. During each episode, only
one network can get improved while the other network remains
unchanged, which is not particularly a data-efficient algorithm
design. In addition, when the numbers of two types of functional
groups are imbalanced, the policy network of the minority
functional group type may update very slowly. Future work
includes designing a better policy network architecture to resolve
or mitigate the two issues above.
For heterogeneous or disordered nanoscale systems, the

arrangement of defects or functional groups has a major impact
on the material properties when the system is small. However, as
the system size increases, the effect of individual defect of
functional group becomes smaller. It is expected that the potential
of optimizing over functional group locations will become less
significant. In the future work, we will further investigate the effect
of functional group location on the mechanical properties of GOs
as a function of the system size, as well as its RL-based
optimization capability. Another limitation of the present study
is that we have not taken into account the thermodynamics of
designed GOs, meaning the output GO configurations may not be
thermally stable. We would like to make a note that our deep RL
design approach can still be of value in the following ways. First,
the approach can be used as an effective layer of materials
screening. For example, we can output 100 Deep RL designs and
then apply a thermodynamic criterion to select both mechanically
superior and thermally stable candidates. Second, we can modify

Fig. 3 Deep RL performances on various experiments. a Easy, (b) Medium, c Hard, and d Extra Hard experiments.
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the reward in the RL algorithm that favors thermally stable
graphene oxides. Concretely, we can include the binding energy
per oxygen in the reward, which can be expressed as

EB ¼ EGO � Eg � nhEh
ne þ nh

(3)

where EGO, Eg, and Eh are the total energies of the GO structure,
pure graphene, and hydroxyl groups, respectively. We will
investigate this approach in our future work. Third, our RL
approach can be used to efficiently establish an upper bound for
GO mechanical properties, given the chemical composition and
the size.
In summary, a deep RL framework is developed to design GOs

with high toughness by optimizing over the functional group
distribution. The design task is formulated as a sequential decision
process, where the state is the current functional group
distribution on the GBP and the action is to assign a new
functional group. A policy-gradient RL model is employed to
maximize the toughness of GO, which is calculated by reactive
molecular dynamics simulations. Eight experiments with increas-
ing difficulty are devised to gradually challenge our deep RL
model. We show that in the first six experiments our model can
stably generate functional group distributions that achieve a
toughness three standard deviations above the mean of random
GOs, suggesting that the RL generated GOs have a higher
toughness than 98.87% of all GOs. In the final two most difficult
experiments, our model achieves two standard deviations above
the mean of random GOs, thus beating 97.73% of all GOs. In

addition, our RL approach reaches an optimized functional group
distribution within only 5,000 rollouts, while the easiest experi-
ment has C10(66)= 2.1 × 1011 possibilities. Finally, we show that
our RL design approach is scalable in terms of the functional
group density and the GO size. The present research showcases
the impact of functional group distribution on GO properties, and
illustrates the effectiveness and data efficiency of deep RL in
optimizing it.

METHODS
Deep RL setup
At each time step t, the RL agent receives the representation of the
environment’s state st 2 S, where S is the state space that comprises
all possible states. In our case, st is the current functional group
locations at time step t, and S denotes the set of all possible
functional group locations on the GBP. We construct st as a one-hot
encoded vector, of which the dimension equals the number of all
possible spots for functional groups on the GBP. Using the Easy
experiment as an example, the dimension of st is 66 since there are
66 spots in total for hydroxyl groups. If we use both hydroxyl and
epoxide groups, the dimension of st will increase to account for all
possible spots for epoxide groups. If the ith spot has been assigned a
functional group, the value of the ith entry of st, st[i], is 1; otherwise,
st[i] is 0. The number of 1’s in st equals the number of functional
groups that have already been assigned at time step t. After receiving
a state st, the RL agent selects an action at 2 AðstÞ, where AðstÞ is

Fig. 4 Rupturing comparison between a random GO and an RL-designed GO. Examples are from the Hard, high-oxidation experiment.
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the set of legal actions given state st. In our case, at is to assign a
functional group to a functional group spot on the GBP, and AðstÞ is
the set of all available functional group spots left given st. at is also a
one-hot encoded vector, of which the dimension equals the number
of possible spots for assigning a specific type of functional group. In
our RL framework, at is different from st in that at only accounts for
one specific type of functional group (either hydroxyl or epoxide
group) while st accounts for both types. If the action is to assign a
functional group to ith spot among all possible spots, at[i]= 1.
Because each action is restricted to the assignment of one functional
group, there will only be one 1 entry in at. In the present work we use
neural networks to model the policy πθ, where θ is the neural
network parameters including weights and biases. In addition, at is
strictly enforced by the hybridization condition of host atoms on the
GBP, which requires that one host atom can be only associated with
one functional group. Therefore, after each functional group
assignment, one or more actions will become infeasible for the next
time step, and the possibilities of selecting these actions will be set to
zero. The elimination process of invalid actions depends on the
nature of the experiment in which the RL is implemented, and is
detailed in the Supplementary Information. After taking an action at
at state st, the agent enters a new state st+1. In our context, after
assigning a functional group to the current GO, we obtain a new GO.
Details of how the state and the action are obtained at each time
step are summarized in Algorithms 1 and 2 in the Supplementary
Information. State transitioning function f s; a; ξð Þ defines the
successor state after selecting action a in a state s and random
input ξ . In the present research the state transitions are deterministic,
f s; a; ξð Þ ¼ f s; að Þ. Notably, our states have the Markov property,
where the future states depend only upon the current state, not on
the past states, i.e., P stþ1jst; st�1; ¼ ; s1; s0ð Þ= P stþ1jstð Þ. The
functional group positions on the GBP serves as a Markov state
which summarizes the functional group assignment history that has
led up to it.
The goal of RL is to maximize the expected return, where the

return is a function of the reward sequence. However, based on
the reward setting in Eq. (1), the agent will only receive a non-zero
reward at the terminal step. This is inspired by the AlphaGo
research where the agent only receives a non-zero reward when
the game ends: r= 1 if the agent wins the game; r=−1 if the
agent loses the game. In this study, policy gradient algorithms are
used to maximize the expected return, which directly optimizes a
parametrized policy via gradient descent. Concretely, for a policy
πθ(a|s) parametrized by θ, the change of parameter after each
episode (sampling a full trajectory T ) is given by43

Δθ ¼ ∂

∂θ

XT
t¼1

log πθ atjstð Þ
 !

Eτ�Pθ τð Þ
XT
t¼1

r stð Þ
" #

(4)

Using the Monte Carlo sampling we have

Eτ�Pθ τð Þ
XT
t¼1

r stð Þ
" #

� 1
N

XN
i¼1

XT
t¼1

r stð Þ (5)

In this study, we update the policy network parameter once
every trajectory, therefore N=1. We arrive at

Δθ ¼ ∂

∂θ

XT
t¼1

log πθ atjstð Þ
 ! XT

t¼1

r stð Þ
 !

(6)

The parameter update follows θ←θ+αΔθ, where α is the current
learning rate.

Neural networks
For all experiments, we use fully connected neural networks of
various sizes and ReLU activations. At the last layer we use a fully
connected layer followed by a softmax activation which outputs

the probability distributions of actions, as a way to address the
exploration-versus-exploitation dilemma. The input and output
dimensions in different experiments are summarized in Table 5.
We next set zero the probabilities of selecting invalid actions

and re-normalize the distribution such that the sum of the
probabilities of all legal actions at each time step equals 1. An
Adam optimizer is used. Learning rate shrinks by a factor of two
every 500 iterations, but is set no smaller than 5e-5. The sizes and
initial learning rates used in all experiments are summarized in
Table 6. Weights and biases are initialized from
U �1=

ffiffiffiffiffiffi
din

p
; 1=

ffiffiffiffiffiffi
din

p� �
, where U denotes a uniform distribution,

and din denotes the dimensionality of the input for each layer.

Molecular dynamics simulations
Molecular dynamics simulations are performed using the open-
source code LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator)44. ReaxFF potential, a reactive force field, is
adopted to model the interactions among carbon, hydrogen and
oxygen atoms in GOs45. ReaxFF potential models both non-bonded
interactions such as van der Waals and Coulomb interactions, and
bond breaking and formation. Specifically, potential parameters
developed in Ref. 45. are used, which have been proved reliable by
various studies on the physical and chemical behavior of graphene
systems46–49. A three-dimensional, full atomistic model is used.
Periodic boundary conditions are applied in all three spatial
dimensions. The size of the simulation box is initialized at 58.5 Å
by 21.4 Å by 15.2 Å for Easy, Medium, and Hard experiments, and is
initialized at 63.3 Å by 25.6 Å by 15.2 Å for Extra Hard experiments.
The equations of motion are integrated with a timestep of 0.1 fs
(0.1 × 10−15 s) using the Verlet algorithm, which ensures the
computational stability. The trajectories, velocities, forces, and
energies of all atoms are recorded every 10 timesteps. To simulate
tensile loading at room temperature, an ensemble of random
velocity corresponding to the temperature 300 K is firstly generated
throughout all atoms. Then an equilibrium is realized by running a
simulation in the isothermal-isobaric (NPT) ensemble with a
Nose–Hoover thermostat50 at the same temperature for 5000
timesteps. The loading scenario is simulated in the canonical (NVT)
ensemble at 300 K. The unidirectional in-plane tensile load is applied
along the zigzag direction based on a deformation-control manner
until failure. The loading speed is 1000m·s−1. During the NPT
simulation the box size changes but very minimally, and during the
NVT simulation the box size does not change. The box size as a

Table 5. Neural network input and output dimensions for all
experiment difficulties.

Easy Medium Hard Extra Hard

input (st) 66 132 308 570

output (π �jstð Þ) 66 132 132; 176 240; 330

For Hard and Extra Hard outputs, the first number refers to the hydroxyl
network and the second number refers to the epoxide network.

Table 6. Neural network parameters for all experiments.

Easy Medium Hard Extra Hard

low high low high low high low high

hidden layer number 2 2 2 2 2 2 2 2

hidden layer size 200 400 300 600 600 800 800 800

initial learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3 1e-3
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function of time in the Fig. 1c, d examples are provided in the
Supplementary Information.
The components of stress tensor [σ] are calculated by the

following:

σab ¼
1
Ω

X
i

X
j>i

x ið Þ
a � x jð Þ

a

� � ∂V

∂ x ið Þ
b � x jð Þ

b

� ��X
i

m _x ið Þ
a _x ið Þ

b

0
@

1
A (7)

where a and b take on spatial dimensions 1 (zigzag), 2
(armchair), or 3 (out-of-plane) to generate the 6 independent
components of the symmetric tensor; Ω= Ate is the system
volume; A is the area of the GBP; te is the effective thickness of
graphene oxide; i and j are atom indices; x denotes the
displacement; _x denotes the derivative of x with respect to
time; V is the interatomic potential model. In this study, te ¼
7:76Å is used, the interlayer spacing of GOs measured in
experiments51,52.

DATA AVAILABILITY
All data used in in this work can be generated using the codes at https://github.com/
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