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Charge carrier mobilities of organic semiconductors:
ab initio simulations with mode-specific treatment of
molecular vibrations
Sebastian Hutsch1, Michel Panhans1 and Frank Ortmann 1✉

The modeling of charge transport in organic semiconductors usually relies on the treatment of molecular vibrations by assuming a
certain limiting case for all vibration modes, such as the dynamic limit in polaron theory or the quasi-static limit in transient
localization theory. These opposite limits are each suitable for only a subset of modes. Here, we present a model that combines
these different approaches. It is based on a separation of the vibrational spectrum and a quantum-mechanical treatment in which
the slow modes generate a disorder landscape, while the fast modes generate polaron band narrowing. We apply the combined
method to 20 organic crystals, including prototypical acenes, thiophenes, benzothiophenes, and their derivatives. Their mobilities
span several orders of magnitude and we find a close agreement to the experimental mobilities. Further analysis reveals clear
correlations to simple mobility predictors and a combination of them can be used to identify high-mobility materials.
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INTRODUCTION
Organic semiconductors are used in various electronic devices,
including organic field effect transistors1–4, organic photovol-
taics5–7, and organic light emitting diodes8–10. Many applications
rely on charge-transport processes and the charge-carrier mobility
is an important property affecting the device performance. This is
a strong motivation to improve the understanding of charge
transport in organic semiconductors and a variety of methods
have been suggested11–24. The modeling of charge transport,
however, remains challenging, because the electrons couple
strongly to the molecular vibrations. This coupling, known as
electron-phonon coupling (EPC), prevents a straightforward
analytical treatment of the electronic and vibrational degrees of
freedom. Recent improvements in computational methods allow
to model the charge transport numerically while propagating
vibrations semiclassically22,25. Although these numerical
approaches are generally promising, performing them fully based
on ab initio simulations is still expensive for the screening of new
materials. Therefore, the number of materials that can be studied
and compared simultaneously remain limited. To tackle the
complexity, the exploitation of analytical limits can improve the
computational efficiency and, more importantly, may push
the microscopic understanding of the carrier mobility forward.
One of the first classes of analytical models that go beyond a semi-
classical treatment of nuclei are polaron theories11,13,26, which
describe the formation of the polaron, a charge carrier accom-
panied by dynamic molecular vibrations. However, the polaronic
character is assumed to be weak for the slow, thermally populated
vibrations27,28, which often show large EPC. Transient localization
theory, initially developed by Troisi, Fratini, Ciuchi, Mayou, and
colleages21,29,30, on the other hand focusses on these strongly-
coupling low-frequency vibrations, which tend to localize the
electronic wave packets in an electronic disorder landscape that is
static at small times. At longer times, however, the inevitable
motion of the low-frequency modes sets in, presumably lifting this
effect – hence the name transient localization (TL). The quasi-static

approximation inherent to TL is successful because a strong
contribution to the EPC stems from thermally activated low-
frequency vibrations. Still, the fast intramolecular high-frequency
vibrations, which must not be modeled quasi-statically but
generate coherent polaron dressing, also show a large EPC and
should not be neglected, which eventually implies a separation of
the vibrational mode spectrum31–33.
Here, we present an approach to simulate coherent electronic

transport, which combines the quasi-static treatment of slow
modes in the TL approach with the polaronic treatment of the
high-frequency vibrations from polaron approaches (cf. Fig. 1a for
a prototypical vibrational spectrum of an OSC material). The EPC of
slow low-frequency vibrations generates quasi-static disorder
(Fig. 1b, blue), while the EPC of fast high-frequency vibrations
generates polaron narrowing (orange). Using the combined
model, we calculate the hole mobilities via simulations for
extended 3D system utilizing linear-scaling quantum transport
methods34,35. To assess the predictive capability of the approach
statistically, it is applied to 20 prototypical organic crystals with
known experimental mobilities that span two orders of magni-
tude. We find a close agreement between the mobilities obtained
with this approach and the experimental mobility trend. Finally,
the validity of simplified mobility predictors like reorganization
energies, transfer integrals, and dimensionality is analyzed and a
combination of easy-to-compute predictors for fast mobility
estimates is found, which is superior to their single predictor
components and can be useful in machine-learning schemes to
find high-mobility organic semiconductors.

RESULTS AND DISCUSSION
Combination of the quasi-static and polaronic treatment
Organic molecules and their crystals show a rich vibrational
spectrum. In Fig. 1a, this is illustrated for a DNTT crystal built by a
supercell cell with 8 molecules. The vibration frequencies are
spread over two orders of magnitude, ranging from ~10 cm−1 to
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above 1000 cm−1. To account for this wide range, the slow modes
are modeled within the quasi-static limit of TL (blue) and enter via
their instantaneous configuration, while the faster high-frequency
modes enter in the dynamic polaronic limit (yellow), integrating all
configurations. Both treatments influence the electronic energies,
but in a different fashion as we will elucidate in the following.
The starting point for the calculations and mode separations is

the Holstein-Peierls-Hamiltonian11,36, which includes the electro-
nic, vibrational, and EPC contributions

H ¼ Hel þ Hel�ph þ Hph

¼P
MN

εMNa
y
MaN

þP
MN

P
Q
_ωQgQMN byQ þ b�Q

� �
ayMaN

þP
Q
_ωQ byQbQ þ 1

2

� �
(1)

in a mixed representation with the electronic operators aM (ayM),
the onsite-energies εMM and transfer integrals εMN. The phonon
operators bQ (byQ) are used with Q= (λ,q) and λ being the mode
index and q the wave vector. The coupling between the phonons
and electrons is described by the linear EPC constants gQMN ,
including local coupling (coupling to the onsite-energies) for
M= N and nonlocal coupling (coupling to the transfer integrals)
for M ≠ N. To calculate the charge-carrier mobility by an electronic
quantum-transport approach, the Holstein-Peierls-Hamiltonian in
Eq. (1) will be reduced to a completely electronic Hamiltonian. To
this end, the impact of the phonon contributions to the electronic
energies in the quasi-static and polaronic limit will be analytically
pre-evaluated. We briefly summarize the essential steps of the
derivation here, while more details can be found in Supplemen-
tary Note 1. The slow modes are assumed to generate a (quasi-)
static disorder ΔεMN in the electronic energies due to their
instantaneously frozen configuration31. With a Gaussian distribu-
tion of the disordered energies εMN+ ΔεMN around εMN, the

variance σ2
MN of ΔεMN can be evaluated to37

σ2
MN ¼

Xslow
Q

_ωQð Þ2 gQMN

�� ��2 1þ 2NQð Þ; (2)

with the Bose-Einstein distribution NQ ¼ e_ωQ=kBT � 1
� ��1

, the
Boltzmann constant kB, and absolute temperature T.
In contrast to the slow modes, the fast modes are treated here

by a Lang-Firsov-transformation13,38 of Eq. (1). As a result, the
transfer integrals εMN are reduced by a narrowing factor fnar and
the onsite-energies εMM are shifted by the polaron binding
(relaxation) energy Epol ¼

Pfast
Q _ωQ gQMM

�� ��2as 13

~εMN ¼ εMNfnar; for M 6¼ Nð Þ
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~εMM ¼ εMM � Epol:

(3)

In case of equal molecules at each site M (gQMM ¼ gQNN for all M and
N), Epol is an energetic shift that applies to all sites and can be
disregarded.
By combining Eq. (3) and Eq. (2) and Eq. (1), the Holstein-Peierls-

Hamiltonian is reduced to the effective electronic Hamiltonian:

H ¼P
MN

εMNa
y
MaN;

εMM ¼ εMM þ ΔεMM;

εMN ¼ εMN þ ΔεMNð Þfnar for M 6¼ Nð Þ
(4)

and ΔεMN follows a Gaussian distribution according to Eq. (2).
Although in real systems there is no sharp transition between slow
and fast modes, the separation has to be numerically performed
with a distinct cut-off criterion. Here, we chose the maximum
between twice the thermal energy32 (red dotted bar in Fig. 1) and
the maximum transfer integral εmax

MN (red bar in Fig. 1) as a

Fig. 1 Separation of quasi-static and polaronic vibration modes. a Mode spectrum of a DNTT crystal. The separating energy (the maximum
transfer integral εmax

MN ) is highlighted as red vertical bar. Modes with lower energy are treated in the quasi-static limit (blue), modes with larger
energy in the polaronic limit (orange). As a reference, twice the thermal energy 2kBT at room temperature is highlighted as dashed red bar.
b The quasi-static treatment generates static disorder in the transfer integrals εMN and onsite energies εMN. The polaronic treatment generates
a narrowing of the electronic transfer integrals εMN.
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separation criterion, i.e.,

_ωslow � max εmax
MN ; 2kBT

� �
< _ωfast: (5)

This simultaneously ensures that the thermally activated low-
frequency vibrations are treated quasi-statically in the case of
small transfer integrals, while only the fast high-frequency
vibrations are treated in the polaron limit in the case of large
transfer integrals.

Calculation of the charge-carrier mobility
The calculation of the charge-carrier mobility is based on linear-
response theory within the Kubo formalism39. This can be
evaluated in the presence of disorder εMN (cf. Eq. (4)). Since the
disorder landscape changes on the effective time-scale of the slow
quasi-static modes τslow, this short-time behavior is lifted at longer
times than τslow, which thus acts as a decoherence time. With this
in mind, the TL mobility is calculated as30

μ ¼ e

2kBT τ2slow
� � Z 1

0
e�

t
τslowhΔX2 tð Þidt ¼ e

2kBT
L2loc
τslow

; (6)

L2loc ¼ 1
τslow

R1
0 e�

t
τslowhΔX2 tð Þidt is the squared localization

length – it measures the average spread of the wave-packet up
to the time τslow and is derived from the thermally averaged, time-
resolved quantum spread hΔX2 tð Þi. While there exist simplified
versions to compute Lloc for 2D systems by a direct diagonaliza-
tion40 of the disordered Hamiltonian similar to Eq. (4), we calculate
the localization length by calculating the time-resolved quantum
spread hΔX2 tð Þi via propagation in real-space 3D systems. In this
way, we include the effect of possible 3D percolation pathways in
the sample. The thermally averaged quantum spread is calculated

as

hΔX2 tð Þi ¼
Z

dE f Eð Þ 1� f Eð Þ½ �DOS Eð ÞΔX2 E; tð Þ
N0

; (7)

with the Fermi-Dirac distribution f Eð Þ ¼ 1= e E�ζð Þ=kBT þ 1
� �

and the
charge-carrier concentration N0 ¼

R
dE f Eð ÞDOSðEÞ. The chemical

potential ζ is chosen such that the charge-carrier concentration
equals N0= 0.001 for all materials. More details on the calculation
of the time- and energy-resolved quantum spread ΔX2(E,t) can be
found in the methods section. With the chosen system size of
approximately 12 million sites, a single transport simulation
requires only about 2500 CPUh and can be readily performed in
parallel on any computer cluster.

Transport parameters
Regarding EPC parameters, we distinguish between three types of
EPC, which are visualized in Fig. 2 for DNTT and briefly introduced
here. There are (i) the local terms gQMM (Fig. 2a). It is the coupling of
molecular vibrations to the onsite-energy of a single molecule M
(top). The local coupling covers the full range of vibration
frequencies (bottom), necessitating a separation into quasi-static
contributions (blue) and polaronic contributions (orange). The
resulting polaronic narrowing factor is, in average over the studied
materials, f nar ¼ 0:6. (ii) The nonlocal EPC gQMN (Fig. 2b) is the
coupling to the transfer integrals mediating between sites M and
N (top). It is clearly dominated by low-frequency vibrations,
leading to a quasi-static disorder landscape in the transfer
integrals21,40. (iii) The environmental coupling gQ;CFMM (Fig. 2c) is
the coupling of the crystal vibrations to the electrostatic
interaction energy ECF between the charge carrier at site M and
the crystal field of the surrounding molecules. Similar to the

Fig. 2 Mode-resolved EPC. Top: three types of EPC implemented in this approach: a local coupling to the onsite energies, b nonlocal coupling
to the transfer integrals between two molecules and c environmental coupling to the electrostatic crystal field. Bottom: mode-resolved
squared EPC constant g2 for the three types of coupling of the exemplary molecule DNTT. The energy scale of transport εmax

MN is indicated as red
vertical bar. The modes that are treated quasi-statically are highlighted in blue, while the ones that are treated with the polaron approach are
highlighted in orange. Twice the thermal energy 2kBT at room temperature, which is the separating energy for small transfer integrals, is
highlighted as dashed red bar.
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nonlocal coupling it is dominated by low-frequency vibrations,
generating quasi-static disorder in the onsite energies. The
environmental coupling is found to contribute only little to the
disorder compared to the nonlocal coupling and is included for
completeness. Details on the implementation of the three types of
couplings and corresponding first principles calculations of the
parameters can be found in the methods section. We note here
that the calculation of the nonlocal EPC is the step that requires
the largest computation time of the approach (~10,000CPUh per
material in dependence on the molecular size), but has the

advantage of using quantum-chemical methods that are transfer-
able to new materials.
The timescale τslow in Eq. (6) is a crucial parameter defining the

“lifetime” of the quasi-static disorder landscape. It is usually set to
the inverse of the circular frequency τslow ¼ ω�1

slow of the
dominating vibrations, which can be, for example, extracted from
molecular dynamics (MD) simulations21. To avoid costly ab initio
MD simulations, we follow a different route and extract τslow from
the mode-resolved disorder Eq. (2) based on the mode-resolved
EPC. The disorder landscape is defined by both the disorder in the

Table 1. Analyzed materials and their properties.

Material μexp
cm2

Vs

� �
μsim

cm2

Vs

� �
μAPTsim

cm2

Vs

� �
εmax
MN meVð Þ σMN (meV) σMM (meV) σenv (meV) dmol(Å) δdim τslow (fs) Λ (meV)

Anthracene 2.9 2.7 6.2 46 24 0 25 6.0 1.52 185 141

BB-PTA 0.5 0.25 0.25 180 82 110 20 3.9 1.04 180 243

C10-DNBDT 12.1 14.2 14.2 49 14 25 16 6.1 1.97 201 89

C10-DNTT 11.0 12.1 12.1 70 12 31 15 6.0 1.81 143 136

DBTDT 1.8 2.0 4.5 49 13 23 21 5.0 1.66 165 103

DNTT 8.3 3.5 7.2 98 19 30 24 6.2 1.42 238 134

DPA 3.7 4.8 10.4 32 13 5 19 8.6 1.70 196 154

DT-TTF 1.4 0.64 0.64 55 89 45 27 4.0 1.77 203 233

Durene 5.0 8.6 8.6 74 45 7 19 5.7 1.86 116 193

HM-TTF 10.0 8.3 19.6 111 38 53 23 6.4 1.42 146 218

Naphthalene 1.0 2.7 4.7 42 25 0 25 5.9 1.48 139 189

NTMTI 0.37 0.33 0.36 31 16 45 16 3.2 1.46 61 226

Pentacene 5.0 2.8 10.3 77 30 8 24 4.8 1.80 156 95

Picene 9.0 15.5 15.5 79 14 35 22 6.1 1.88 100 190

PMSB 0.17 0.07 0.07 44 26 78 25 4.8 1.30 198 408

Rubrene 15.3 12.4 12.6 104 43 30 16 7.2 1.24 113 160

Tetracene 2.4 2.9 3.1 79 41 5 32 4.8 1.45 267 116

TIPS-Pentacene 2.7 3.0 3.1 52 34 19 18 7.6 1.14 248 138

TTF-α 1.2 1.0 1.1 122 74 73 27 4.0 1.23 96 288

TTF-β 0.23 0.76 0.89 50 65 39 26 5.5 1.68 164 288

Presented are the experimental mobility μexp, simulated mobility μsim, and the simulated mobility μAPTsim using all positive signs for the transfer integrals. Further,
the bare maximum transfer integral εmax

MN , the nonlocal disorder in the same σMN, the local disorder σMM, and environmental disorder σenv are collected. We
further present the center-of-mass distance between the molecules dmol connected by the largest transfer integral, the dimensionality factor δdim and
relaxation time τslow. Finally, the reorganization energy Λ as a convenient measure of the local coupling is shown, albeit not directly used in the simulations. It
enters via the local disorder σMM and narrowing factor fnar (not shown, with an average value of f nar ¼ 0:6). References to the experimental crystal structures
and mobilities can be found in Supplementary Table 2.

Fig. 3 The 20 materials studied with the combined approach. They were chosen to cover a wide range of experimental mobilities. For the
TTF molecule, we studied two known crystal structures. References to the studied crystal structures can be found in Supplementary Table 2.
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onsite-energies (with standard deviation σ2
MM), caused by local and

environmental EPC, and disorder in the transfer integrals (with
standard deviation σ2

MN), caused by nonlocal EPC. We thus extract
ωslow from the collective disorder strength using a weighted
average (see methods section). The resulting values of τslow for the
20 crystals range from 60 fs to 270 fs and are summarized in Table 1.
The average value over all compounds is about τslow ¼ 170 fs,
being of the same order of magnitude to the values obtained from
MD simulations21,22. We note that their calculation via mode-
resolved EPC allows the calculation of the ab initio parameters for
new materials for which no force fields are available.

Studied materials and transport simulations
We assess the applicability of the combined approach by
calculating the charge-carrier mobility at room temperature
(T= 300K) using a set of 20 different organic semiconductor
crystals and comparing them to known experimental mobilities.
The molecular structures of the studied molecules are shown in
Fig. 3. They include different classes of typical organic semi-
conductors, such as acenes, thiophenes, benzothiophenes, and
some of their functionalized derivatives. The materials cover a
broad range of ab initio parameters and experimental mobilities,
ranging from μPMSB= 0.17 cm2/Vs for PMSB41 to μrubrene=
15.3 cm2/Vs for rubrene42. The mobilities, as well as ab initio
parameters are listed in Table 1.
While Eq. (6) enables the calculation of the mobility in any

possible direction, here we focus on the maximum intrinsic mobility
in transport direction. Figure 4a shows the computed mobilities
μsim in comparison to the experimental mobilities μexp. The black
dotted diagonal line is a guide for the eye, representing the ideal
case μexp= μsim. We find that simulated and experimental
mobilities correlate closely. This means that the simulation
approach allows identifying low- and high- mobility organic
crystals, which suggests that the approach could be used to
estimate the charge-carrier mobility of new, unknown materials. We
further quantify the correlation between simulation and experiment
by calculating the ratio of both μisim=μ

i
exp for the 20 studied

materials, and analyze its average Σ ¼ expð1n
Pn

i lnðμisim=μiexpÞÞ and
the corresponding spread Δ ¼ expð1n

Pn
i jlnðμisim=μiexpÞjÞ. We obtain

∑= 0.98 and Δ= 1.54. That is, in average the simulated mobilities
deviate by a factor of 1.54 (over- or underestimation) from the
experimental mobilities, rendering the approach predictive.
Interestingly, we find that the present methodology, which is

based on the coherent quantum diffusion, also yields good results
for the low-mobility materials with μ ≤ 1 cm2/Vs, although these
are more likely in the hopping-transport regime that is driven by
molecular vibrations. To explain this observation, we study the
localization lengths Lloc from Eq. (6). For convenience, we use the

material dependent length unit dmol, which is the center-of-mass
distance between neighboring molecules with the largest transfer
integral (see Table 1 for the numerical values). We define nloc ¼
Lloc=dmol as a measure for the number of molecules the wave-
packet can approximately reach in transport direction during the
time τslow. In Fig. 4b we plot this localization length nloc against the
experimental mobility for all 20 materials. As intuitively expected,
the higher the mobility, the larger is the number of molecules the
wave-packet delocalizes over22. As a guide for the eye, we also
show the analytical dependency, which is obtained by resolving
Eq. (6) for Lloc and use an averaged molecular distance of
dmol = 5.5 Å and averaged relaxation time τslow ¼ 170 fs:

nloc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTμτslow=e

p
=dmol: (8)

For materials with mobilities below 1 cm2/Vs, nloc is about one
to two molecular distances. Thus, in this regime the TL approach
can be interpreted to describe a hop of a localized wave-packet
from one molecule to the other during the time τslow in analogy to
hopping-transport simulations31. It is worth mentioning that, in
contrast to hopping approaches, this observed behavior is not an
a priori assumption but arises from the inability of the wave-
packet to delocalize further than one neighboring molecule in
transport direction due to strong disorder potentials. When
focusing on the opposite limit, i.e. if one extrapolates Eq. (8) to
estimate when a mobility of μ= 100 cm2/Vs could be reached, one
would obtain a required delocalization to nloc= 17.
A key proposal in the TL model is the dependency of Lloc (and

the resulting charge-carrier mobility μsim) on the relative signs of
the transfer integrals that occur between a molecule and its
neighbors,21 which is due to changes in the band structure when
the sign of the transfer integrals change. This effect is explained in
detail in Supplementary Note 2. For holes, a positive product of
the signs of non-equivalent neighbors within the high-mobility
plane would favor transport, whereas a negative product impedes
transport.
To study this effect, we compare the simulated mobility using

the original DFT-simulated signs (see methods section) with
mobilities using all positive transfer integrals (APT) μAPTsim for all 20
materials in Fig. 4c (values in Table 1). For most of the materials,
the change of the signs has only a minor effect (green circles). The
reasons are either already existing ideal sign combinations (e.g.
C10-DNBDT and C10-DNTT) or a strong tendency for 1D transport
(e.g. BB-PTA and PMSB) in which other transfer integrals but the
largest are of minor importance. For seven materials, we see a
significant increase in the mobility by an average factor of 2.3
(orange circles). These are indeed materials that show only one
transfer integral with negative sign within the high-mobility plane,
yielding a negative sign product (e.g. for most of the acenes,

Fig. 4 Comparison of simulated and experimental hole mobilities. a Highest mobilities simulated in transport direction with the combined
approach versus experimental mobilities. The black dotted line represents the case in which both coincide. b Experimental mobility versus the
simulated localization length nloc= Lloc/dmol ≤ in transport direction in units of molecular center-of-mass distances dmol. The black dotted line
shows the dependency according to TL (Eq. (8)) using the stated averaged τslow and dmol values. c Simulated mobility using the original signs
of the transfer integrals (x-axis) versus the simulated mobility by using all positive signs for the transfer integrals (y-axis). Materials that show a
large increase of the mobility (of in average a factor of 2.3) due to the sign change are highlighted in red.
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DNTT, DBTDT). Consequently, the relative signs of the transfer
integrals can have a significant impact on the electronic structure
and transport and should be considered when using transfer
integrals as a material predictor.
Due to the variety of studied structures, it is also possible to

analyze the correlation between simplified predictors and the
simulated mobility. The reduction of the complexity of the
transport simulation to predictors can improve the understanding
of which parameters influence the mobility most. This knowledge
is helpful as a guidance for design principles or can be used as a
fast measure of transport capabilities in machine learning in the
future, where a large number of structures have to be screened
efficiently43,44. To analyze for possible dependencies, we graphi-
cally compare the dependency of the simulated mobility on
different predictors in Fig. 5 and calculate the correlation
coefficients r. Since the mobilities cover several orders of
magnitude, while the predictors cover only one, we calculate
the correlation to both the logarithmized mobility ln μð Þ ! rlog and
original mobility μ ! rlin. We further present a linear fit of the
predictor to In(μ) as black dashed line, which corresponds to the
predicted mobility using solely this predictor and assuming an
exponential dependency. The corresponding fit parameters can
be found in Supplementary Note 3. Finally, the average spread
around the prediction Δ (see above for the definition) is also
shown. We first study obvious descriptors, like the transfer integral
εmax
MN and its disorder, which has been studied before by Troisi and
coworkers32, and then proceed to more complex descriptors to
improve the predictability.
A first predictor is the maximum transfer integral εmax

MN enabling
electronic transport. As suggested by early hopping approaches,
where the hopping rate is proportional to ε2MN , one might expect a
distinct positive correlation between the simulated mobility and
εmax
MN . As shown in Fig. 5a, in contrast to the expectation, we
observe a very weak correlation with rlin= 0.0532. When hypothe-
tically excluding the two most outlying data points of the

molecules BB-PTA and TTF-α (half gray circles), which show large
transfer integrals (εmax

MN > 100meV) but small mobilities (μ ≤ 1 cm2/
Vs), we can indeed find a much stronger correlation of rlog= 0.52.
Our analysis shows that, besides large transfer integrals, these two
materials also show exceptionally large nonlocal and local
disorders, which suggests that the mere transfer integral is
unsuitable as a general predictor for the mobility. Therefore, we
analyze a related one, namely the ratio between the maximum
transfer integral εmax

MN and the disorder σMN in the same
(cf. Fig. 5b). We indeed find a correlation of rlin= 0.62, while for
the nonlocal disorder σMN alone we find a weaker correlation of
rlog ¼ �0:41 (not graphically shown). The reason that the
combination of both parameters yields a good predictor is quite
intuitive: the larger the transfer integral compared to the disorder,
the better is the delocalization of the states and the larger are the
localization length Lloc and the mobility.
A quantity that is directly connected to the localization length

Lloc is the molecular center-of-mass distance dmol. If all other
parameters are constant, a larger dmol directly increases Lloc since
the charge carriers travel larger distances between molecules. In
Fig. 5c, we compare the simulated mobility with dmol in the
direction of the largest transfer integral. Indeed, a good correlation
of rlog ¼ 0:64 can be found. This suggests that the molecular
center-of-mass distance in transport direction is a good predictor
for the mobility and should be optimized experimentally, e.g. via
functionalization. A prominent example is rubrene where the large
center-of-mass distance (dmol= 7.2 Å) is caused by a special crystal
packing that is induced by the functionalization of tetracene with
phenyl side groups.
A popular transport parameter is the single-molecule reorgani-

zation energy Λ, which is a measure of the local EPC. It can be
computed easily and enters into fast mobility estimations like
Marcus theory45,46. In the present approach, the reorganization
energy does not enter the mobility calculation, still we can check
for possible correlations. The ratio Λ=εmax

MN is compared to the

Fig. 5 Correlation between material parameters and the simulated mobility. We present the correlation coefficient with respect to the
logarithmized mobility (rlog) and the original data (rlin). The black dotted line is a linear fit between the studied material parameter and
logarithmized mobility, while Δ is the average deviation from this fit. The fit details and fit parameters can be found in Supplementary Note 3.
a shows the dependency of the simulated mobility on the maximum transfer integral εmax

MN . Here, a second fit is performed by hypothetically
neglecting two outliers (gray half circle), leading to the correlation shown in gray. The further studied parameters are b the ratio between the
maximum transfer integral εmax

MN and its nonlocal disorder σMN, c the molecular center-of-mass distance in the direction of the largest transfer
integral dmol, d the ratio between the reorganization energy Λ and transfer integral εmax

MN , e the ratio between the local disorder σ2MM and
transfer integral εmax

MN , and f the dimensionality δdim. The last plots show combinations of the previous predictors: the combined predictor ζ I in
g, and fast-to-calculate combined predictor ζ II in h.
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carrier mobility in Fig. 5d and we observe a correlation with
rlog ¼ �0:65. This is further improved in case of the ratio between
the local disorder strength σ2

MM and the maximum transfer integral
εmax
MN (shown in Fig. 5e), exhibiting a strong correlation of
rlog ¼ �0:81. We find the physical reason for this strong
correlation of this quantity in the energetic distribution of the
band-edge states. When the density-of-states approximately
exhibits an exponential Urbach tail47, the predictor σ2

MM=ε
max
MN is

closely related to the corresponding exponential steepness
parameter, i.e. the Urbach Energy EU48. A steeper exponential tail
(low values of σ2

MM=ε
max
MN ) means that the Fermi energy is closer to

the band center, causing an increased contribution of delocalized
states and thus larger charge-carrier mobilities.
The next predictor in our analysis is the dimensionality of

transport. Materials showing 1D transport characteristics (e.g. by
having only one set of equivalent neighbors with large transfer
integrals) are not good transport materials, since they are prone to
localization in case of static disorder due to limited percolation
pathways21,32. Here, we measure the dimensionality of transport
δdim of the studied systems by analyzing the directional
distribution of all transfer integrals to all nearest-neighbor
molecules of a center molecule. We restricted ourselves to the
distribution of transfer integrals within the high-mobility 2D plane
(details on the calculation can be found in the methods section).
Thus, δdim can take on values between 1 (1D transport, i.e. only
one large transfer integral in one direction) and 2 (2D transport,
i.e. equally large transfer integrals within a 2D plane). Figure 5f
shows the dependency of the simulated mobility on δdim. A
correlation of rlog= 0.43 is found, which is weaker than for the
previous predictors. Still the dimensionality is worth considering
when assessing the transport capability of new materials.
In a final analysis, we study if an even better correlation can be

found by combining multiple predictors that correlate well with
the simulated mobility. The first combination (shown in Fig. 5g) is
σ2MM=ε

max
MN (the best predictor in Fig. 5e) and the molecular center-

of-mass distance dmol (the second-best predictor that does not
depend on the local coupling, cf. Fig. 5c). Both predictors are
combined via a product: ζ I ¼ σ2

MM= εmax
MN � dmol

� �
. This combination

shows a slightly higher correlation of rlog ¼ �0:84 compared to
the sole predictor σ2

MM=ε
max
MN . The second combination focuses on

fast-to-calculate, but less reliable predictors. We chose the ratio
between reorganization energy and transfer integral Λ=εmax

MN
(Fig. 5d), the center-of-mass distance dmol (Fig. 5c), and the
dimensionality δdim (Fig. 5f). Here, we obtained the best result
by combining them via the geometric average ζ II ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εmax
MN � dmol � δdim=Λ3

p
, which is shown in Fig. 5h. Indeed, the

correlation of the combined predictor ζ II (rlog ¼ 0:81) is better
than the one of the individual terms. We thus suggest it as an
easy-to-compute predictor for the mobility, which is more reliable
than its sole components like the reorganization energy Λ or
transfer integral εmax

MN .
The values of all studied predictors (Table 1) can be used to

understand differences between the simulated mobilities of the
studied materials, whereby we here pick out the most clear-cut
cases for the discussion. C10-DNBDT and C10-DNTT for example
show the highest simulated mobilities with medium transfer
integrals (50–70meV), whereas BB-PTA shows one of the lowest
simulated mobilities despite having the largest transfer integral
(180 meV). Therefore, the bare value of the transfer integral alone
is no reliable predictor for the mobility. This weak correlation
indicates that other factors, like the vibrations and EPC, are very
important. For example, more relevant is the ratio between the
transfer integral and the electronic disorder due to EPC. This is
high for C10-DNBDT and C10-DNTT but low for BB-PTA, leading to
stronger localization effects for the latter. For BB-PTA this effect is
further enhanced due to the 1D-like transport channel induced by
the crystal packing, where there are large transfer integrals to only

two nearest-neighbor molecules. This 1D channel makes BB-PTA
prone to localization in analogy to the concept of conventional
Anderson localization in disordered systems due to the lack of
additional percolation pathways49. In contrast, C10-DNBDT and
C10-DNTT have 2D high-mobility planes which are enforced by
their core-alkyl-side-chain molecular structure, which opens up
additional percolation pathways and makes them less susceptible
to localization. Finally, the intermolecular distance of BB-PTA is by
a factor of 1.5 smaller than for C10-DNBDT and C10-DNTT, directly
reducing the distance the charge carriers can diffuse over. All
these effects sum up in the simulation, leading to mobilities of BB-
PTA that are factor of 50 smaller than for C10-DNBDT and C10-
DNTT despite more-than-doubled transfer integrals. On top, the
latter two molecules show ideal sign combinations of the transfer
integrals (all positive transfer integrals), which maximizes the total
bandwidth and producing the highest simulated mobilities.
In conclusion, we presented a framework to calculate the

charge-carrier mobility of organic semiconductors by combining
the quasi-static treatment of slow molecular vibrations (transient
localization model) with the treatment of fast molecular vibrations
from polaron theory. It is required, since the wide vibrational
spectrum of organic molecules does not allow for a collective
description of all modes in a single analytical treatment. The
agreement between simulated and experimental mobilities for the
full range of studied materials (quantified to an expected ratio of
1.54) suggests a good predictability for novel compounds. Using
purely quantum-chemical methods to calculate the material
parameters, the total computational expense is quite modest
with about 15,000CPUh per material, where most of the
computation time is required for the calculation of the nonlocal
EPC. All simulations can be performed in parallel on high-
performance computing clusters.
Finally, the correlation between the simulated mobility and

simple predictors potentially allows estimating μ without perform-
ing all ab initio calculations. Since multiple parameters enter the
transport simulation, there are also several predictors that
correlate with the mobility. While the maximum transfer integral
εmax
MN was shown to fail as a predictor for certain materials, there are
several alternatives that work well such as the dimensionality of
transport δdim or the center-of-mass distance to the neighboring
molecule with the largest transfer integral dmol. The tightest
correlations among all predictors showed r values between 0.64
and 0.81. The best predictor was the ratio σ2

MM=ε
max
MN between the

local disorder strength and largest transfer integral, which requires
only low computational resources due the absence of nonlocal
EPC. To further increase the predictability, not a single but a set of
predictors can be used. From our analysis, we suggest the
geometric average of an easy-to-calculate set of predictors: (i) the
ratio between reorganization energy Λ and the maximum transfer
integral εmax

MN (ii) the dimensionality δdim and (iii) the center-of-mass
distance dmol. While these predictors cannot reach the predict-
ability of the full mobility simulations with ab initio parameters,
they are fast to calculate and can be applied to estimate the
mobility for a much larger set of systems in the future.

METHODS
Transfer integrals
The transfer integrals were calculated within the fragment-orbital
approach50,51 for molecular dimer pairs in a 3D nearest-neighbor
shell of a given central molecule. Including Löwdin orthogonaliza-
tion52, they are defined as

εMN ¼ hϕM S�1FS�1
�� ��ϕNi (9)

The matrix F, overlap matrix S and molecular Kohn-Sham orbitals
ϕM (corresponding to the highest occupied molecular HOMO
orbital in case of hole transport) were calculated with density
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functional theory (DFT). To this end, the B3LYP exchange-
correlation functional53,54 and 6–311 G** basis set55,56 were used
within the Gaussian 16 program package57.
The signs of the transfer integrals were obtained via comparison

to the signs between maximally localized Wannier functions58 that
were obtained with the Wannier90 code59,60 in combination with
the VASP package61,62 using a plane-wave basis set. The
calculations were based on the projector augmented-wave
method63,64 and PBE functional65,66. Depending on the number
of molecules in the unit cell, two or four valence bands were used
for the wannierization to obtain the sign.

Vibrational analysis
The local coupling was calculated with DFT using the vibrational
modes of a single, isolated gas-phase molecule. The mode energy
and displacement patterns were obtained using the normal mode
analysis as implemented in Gaussian 1657 using the B3LYP
exchange-correlation functional53,54 and 6–311 G** basis set55,56.
The nonlocal and environmental coupling is based on the

vibrational crystal modes. Due to the increased system size, the
calculation was performed with density functional tight binding
(DFTB)67 instead of DFT. It has been shown that, while DFTB is not
perfectly suited for the calculation of electronic properties, it
describes vibrational properties sufficiently well68. The normal
mode analysis was performed for unit cells consisting of, in
general, 8 molecules and periodic boundary conditions. The
specific choice of the supercell size ensures, that the supercell
includes one of the two equivalent nearest neighbor molecules of
the 3D shell for which we calculated the transfer integrals. Thus,
we include symmetric (q= 0, phase between adjacent molecules
is eiqa= 1) and anti-symmetric (q ¼ π

a, phase between adjacent
molecules is eiqa=−1) vibrations. More q points could in principle
be sampled by further increasing the unit cell size68,69, but
drastically increases the computational load.
For four molecules (rubrene, C10-DNBDT, C10-DNTT, and TIPS-

pentacene) we included only 4 molecules in the unit cell due to the
large molecular and unit cell size. We included the nearest-neighbor
molecules, corresponding to two sampled q-points, within the high-
mobility plane. Consequently, in the third low-mobility direction, we
included only the symmetric vibrations (q= 0, eiqa= 1).
The crystal mode analysis was performed with third order

DFTB70 implemented in the DFTB+ program package70,71 using
the 3ob parameter sets70. For TIPS-Pentacene, the pbc72 parameter
sets, which include silicon, were used. Additionally, Grimme’s
dispersion correction GD373 was included in every calculation.
To compensate numerical errors in the mode frequencies occurring

during normal mode analysis, which are most impactful for the low-
frequency modes, the frequencies obtained from the normal analysis
were re-computed. This is done by calculating the second derivative
of the DFTB crystal energy ECrystalDFTB XQð Þ in dependence on the
deflection XQ. The new frequencies are obtained as:

ωQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2ECrystalDFTB XQð Þ

∂X2
Q

s
(10)

If negative frequencies were obtained for (non-translational)
crystal modes, the crystal was shuffled according to these modes,
followed by a second relaxation and frequency calculation. In rare
cases, very small but non-negative mode frequencies (<5 cm−1)
remained. These modes fully contributed to the disorder potential
in Eq. (2) but were suppressed in the calculation of τslow in Eq. (15).

Calculation of electron–phonon coupling

The local coupling gQMM, nonlocal coupling gQMN and environmental
coupling gQ;CFMM , collectively notated as GQ, were calculated using
the deflection of the normal modes XQ and mode energies ωQ

according to:

GQ ¼ ∂E XQð Þ
∂XQ

1ffiffiffiffiffiffiffiffiffiffiffi
2ω3

Q_
q (11)

The derivative is calculated in the frozen-phonon approach74 and
the energy E in Eq. (11) stands for the onsite energy εM (local
coupling), the transfer integral εMN (nonlocal coupling) and the
electrostatic interaction energy of the charge carrier with the
surrounding molecules EMCF . The calculations of the respective
energies are performed in real-space to ensure scalability to larger
molecules, since the required DFT simulations can then be
performed for smaller subsystems.

Onsite energies and local coupling
The onsite energies, corresponding to the binding energy of the
charge carrier in the HOMO orbital in case of hole transport, is
calculated as75:

εMM
!¼ IP ¼ E0DFT � EþDFT; (12)

where E0=þDFT is the total DFT energy for the neutral or positively
charged molecule, respectively. The energies are calculated with
the B3LYP functional53,54 and the 6–311 G** basis set55,56 in
Gaussian 1657.
In gas phase, the molecules TTF, DT-TTF, and HM-TTF show very

large local coupling constants for low-frequency bending modes (and
consequently large reorganization energies), which are not present to
that extent in a crystalline environment. To account for the constraints
within the crystal, we calculated the reorganization energy in a cluster
environment using the well-established 4-point method76. The cluster
included all nearest-neighbor molecules of a central molecule that is
allowed to relax. The atomic positions of the neighbor molecules
were kept constant, while the charging states of the central molecule
were controlled via charge constraints. These calculations were
performed with the NWchem package77 on the level of theory
presented above. The mode-resolved electron-phonon couplings of
these molecules were scaled down, so that twice the total polaron

binding energy (relaxation energy) Epol ¼
P

Q _ωQ gQMM
�� ��2 is equal to

the reorganization energy obtained within the cluster environment.

Nonlocal coupling
The transfer integrals εMN used to calculate the nonlocal coupling
according to Eq. (11) have been calculated similar to Eq. (9),
however the DFT calculations were performed using the smaller
6–31 G* basis set instead of 6–311 G** to reduce the computa-
tional load. Further, we used a method proposed by Landi et al.78

to calculate the derivatives ∂εMN XQð Þ
∂XQ

more efficiently. For a unit cell
consisting of N ¼ nmol

unit
� natom

mol
there are 3N normal modes, for which

the derivative in Eq. (11) has to be performed. However, only
2�natom

mol
atoms contribute to the transfer integral εMN. Thus, the

derivative with respect to the full displacement pattern is replaced
by a derivative with respect to only the displacement s of the
atoms l in direction α contributing to the transfer integral
weighted with the displacement pattern eαQ. of mode Q:

∂εMN XQð Þ
∂XQ

¼
X
αl

eαlQ
∂εMN slα

� �
∂slα

(13)

As a consequence, only 3 � 2 � natom
mol

derivatives have to be
computed. In our case, this treatment saves computational time
of a factor of nmol

unit
=2 ¼ 4.

Electrostatic interaction energy and environmental coupling
The final type of electron-phonon coupling is the environmental
coupling arising due to changes in the electrostatic interaction
energy between the charge carrier and the crystal field generated
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by the surrounding molecules ECF. Although the surrounding
molecules are neutral, the interaction energy is nonzero due to
non-vanishing quadrupole moments, and, for some molecules,
non-vanishing dipole moments. For the calculation, the charge
carrier is approximately localized on a single molecule M76. The
interaction energy of the electronic charge distribution is modeled
by atomic point charges q75,76 obtained by an electrostatic
potential fit (ESP)79,80 and reads

EMCF ¼
1

4πϵ0

XM
i

Xenv
j

Δqi � qj
ϵ Rj j : (14)

The sum over i goes over all atomic point charges of the excess
charge carrier Δqi ¼ qþi � q0i localized on site M and the sum over
j goes over all atomic point charges of the neutral molecular
environment. Rj j ¼ ri � rj

�� �� is the distance between both charges.
ϵ0 is the vacuum permittivity and ϵ is the relative (isotropic)
permittivity of the medium. It is set to ϵ= 3.6 for all materials, which
is a common (average) value for organic semiconductors. We note
that the environmental coupling is the smallest disorder contribu-
tion compared to the nonlocal coupling and is included in this
approximated fashion for numerical efficiency and completeness.

Relaxation time
In the TL approach, the relaxation time is set to the timescale of
the slow quasi-static modes τslow on which the quasi-static
disorder landscape changes. It is set to the inverse of the circular
frequency of a dominating low-frequency mode τslow ¼ ω�1

slow.
Here, the disorder landscape consists of two contributions: the
local disorder σMM and nonlocal disorder σMN. Thus, we extract the
dominating frequency from the combined disorder σ2

MM þP
MN σ

2
MN (for a given center molecule M and nearest-neighbors

N) in a weighted average:

τslow ¼ σ2MMþ
P

N
σ2MNPslow

Q
_2ωQ

P
N

gQMNj j2 þ gQMMj j2
� �

1þ 2NQð Þ

 !�1

¼
Pslow

Q
_ωQð Þ2

P
N

gQMNj j2 þ gQMMj j2
� �

1þ 2NQð ÞPslow

Q
_2ωQ

P
N

gQMNj j2 þ gQMMj j2
� �

1þ 2NQð Þ

 !�1
(15)

Charge transport simulations
The charge-carrier mobilities are calculated according to Eq. (6) of
the main text and are based on the time- and energy-resolved
quantum spread of Eq. (7) of the main text:

ΔX2 E; tð Þ ¼ hΦ0
RP tð Þjδ E � Hð ÞjΦ0

RP tð Þi
hΦRPjδ E � Hð ÞjΦRPi ; (16)

with |Φ′RP(t)〉 = [X,U(t)]|ΦRP〉, U(t) = e−iHt/ℏ. The energy-projection
and time-evolution is performed with respect to the purely
electronic Hamiltonian in Eq. (4) of the main text. To this end, we
build a 3D model Hamiltonian consisting of 12,288,000 sites for
each material. The system is initialized in a random-phase state81

ΦRPj i ¼ N�1=2
sites

Psites
j eiθj Φj

�� �
, i.e. a state having a different random

phase θj for each site j. This allows us to simulate the quantum
spread in Eq. (7) of the main text as an average over different
disorder landscapes in different parts of the 3D sample in a single
run since the wave-packet localizes in only a small region of the
full 3D sample. The energy projection in Eq. (16) is performed
using the Lanczos algorithm82, while the time-evolution is
performed using the Chebyshev-polynomial expansion83.

Estimation of the dimensionality
The dimensionality is studied by analyzing the directional
distribution of all transfer integrals to all nearest-neighbor

molecules of a given center molecule. We therefore establish a
standardized, orthonormal frame: the vector ex points in the
direction of the largest transfer integral, ey lies in the plane
spanned by the vectors in direction of the two largest transfer
integrals and is chosen to be perpendicular to ex, and ez is
perpendicular to both ex and ey. We now calculate the averaged
nearest-neighbor transfer integral εαOP (for a given center molecule
O) in direction α in a weighted average, whereby the weight is the
projection of the center-of-mass distance vector dOP onto ea:

εαOP ¼
P

P εOPdOPeαP
P dOPeα

(17)

the sum runs over all nearest-neighbor molecules P. To study the
two-dimensionality as done in the main manuscript, we take the
sum εxOP and εyOP , which is the sum of the averaged transfer
integrals within the high-mobility plane, and normalize it to the
maximum transfer integral:

δ2Ddim ¼ εxOP þ εyOP
� �
max εxOP; ε

y
OP

� � (18)

This choice ensures that δ2Ddim equals to one if there are strong
contributions of transfer integrals in only one direction (i.e. 1D
transport), while it is two if there are equal contributions into two
orthogonal directions within the high-mobility plane (i.e. 2D
transport).

DATA AVAILABILITY
The data that support the findings of the study are available from the corresponding
author upon reasonable request.
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