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RadonPy: automated physical property calculation using all-
atom classical molecular dynamics simulations for polymer
informatics
Yoshihiro Hayashi 1,2✉, Junichiro Shiomi 1,2,3, Junko Morikawa1,4 and Ryo Yoshida 1,5,6✉

The spread of data-driven materials research has increased the need for systematically designed materials property databases.
However, the development of polymer databases has lagged far behind other material systems. We present RadonPy, an open-
source library that can automate the complete process of all-atom classical molecular dynamics (MD) simulations applicable to a
wide variety of polymeric materials. Herein, 15 different properties were calculated for more than 1000 amorphous polymers. The
MD-calculated properties were systematically compared with experimental data to validate the calculation conditions; the bias and
variance in the MD-calculated properties were successfully calibrated by a machine learning technique. During the high-throughput
data production, we identified eight amorphous polymers with extremely high thermal conductivity (>0.4 W ∙m–1 ∙ K–1) and their
underlying mechanisms. Similar to the advancement of materials informatics since the advent of computational property databases
for inorganic crystals, database construction using RadonPy will promote the development of polymer informatics.
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INTRODUCTION
Materials informatics (MI) is a growing interdisciplinary field of
materials science, attracting significant attention in recent years.
MI utilizes machine learning to model, predict, and optimize the
properties of new materials1,2. Naturally, the most essential
resource in MI is data. Hence, significant efforts have been made
to develop open databases for inorganic materials and light-
weight organic molecules, such as the Materials Project3 (~140,000
inorganic compounds), the Automatic-Flow4 (AFLOW: ~3,000,000
inorganic compounds), the Open Quantum Materials Database5

(OQMD: ~1,000,000 inorganic compounds), and QM96 (~134,000
organic molecules). In particular, the huge databases of computa-
tional properties built using high-throughput first-principles
calculations have brought remarkable progress in MI and their
widespread use in science and technology. However, for
polymeric materials, despite their industrial usefulness and unique
characteristics, such as lightness, high tenacity, elasticity, and ease
of processing, the development of open databases has consider-
ably lagged behind other material systems7. This is due to the
following reasons: (1) high costs of data production, (2) the
difficulty in creating common data due to the diversity of
polymeric materials in terms of structures and processing
conditions, and (3) cultural barriers to avoiding information
leakage to competitors2. In addition, the computational difficulty
in performing high-throughput calculations and their high
computational costs have hindered the development of computa-
tional property databases for polymeric materials.
PoLyInfo8 is the current largest database of polymer properties,

built from manually collected literature data. Currently, it contains
~100 properties of more than 18,000 polymers. However, the

overall data in PoLyInfo are rather sparse as there are few cases
where more than one property is simultaneously recorded for one
polymer. Polymer Genome9–12 is a database containing seven
different electronic and optical properties of crystalline and single
chain states of polymers from first-principles calculations and
several experimental properties of amorphous polymers. The
computational properties include the crystal bandgap (562
polymers), polymer chain bandgap (3881 polymers), static
dielectric constant of polymer crystals (383 polymers), and
refractive index of polymer crystals (383 polymers). A common
feature of these databases is that they do not provide application
programming interfaces (APIs) and therefore do not allow
automatic batch downloading of the data. Therefore, the creation
of data resources conducive to data-driven research is vital for
advancing polymer informatics.
Large-scale data of computational properties have proven to be

an essential resource for machine learning applications in MI. For
example, such big data have been used as source data for transfer
learning when dealing with limited data in materials research.
Transfer learning represents a statistical methodology for reusing
knowledge, data, or models acquired in one domain (source
domain) to another (target domain)13,14. Suppose that directly
establishing a machine learning model from scratch is difficult due
to the lack of sufficient amount of experimental data, in such
cases, a model is trained on a large amount of computational
property data, and the pretrained model is fine-tuned using a
small amount of experimental data, to build a highly accurate
prediction model in the target domain. Successful examples of
cross-domain transfer between computational and experimental
data have been reported for various material systems15–20,
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including our previous work on the prediction and synthesis of
thermally conductive amorphous polymers using neural networks
transferred from computational properties in which only 28 sam-
ples were available in the target domain21.
For polymer properties, even computational data are rather

scarce. Polymer Genome9–12 is the only existing database, which is
constructed using first-principles electronic structure calculations
of polymers in crystalline states. However, currently, the number
of samples is small, and the calculation is limited to seven
electrical and optical properties. For the all-atom classical
molecular dynamics (MD) simulations, which are powerful
techniques for computing the equilibrium and non-equilibrium
properties of the condensed-phase systems of polymeric materi-
als, there are only a few reported works that have constructed
large datasets with high-throughput calculations22–24. Afzal et al.
created a dataset of 315 polymers using high-throughput MD
simulations; however, the target properties were limited to the
glass transition temperature (Tg) and thermal expansion coeffi-
cient24. To build a computational polymer property database, a
workflow of high-throughput MD simulations should be estab-
lished, which is considered technically challenging. The entire
workflow of an MD simulation comprises several sub-modules,
such as the specification of an empirical potential, the initialization
of polymer chains, equilibrium and nonequilibrium MD simula-
tions, and the calculation of the properties from simulated
molecular trajectories, which complicate the job control and error
handling when fully automating the workflow. While this workflow
can be partially streamlined using the pysimm Python package25,
there is still no open-source software that facilitates the building
of the entire workflow. In addition, various types of conditional
parameters, such as the degree of polymerization, number of
polymer chains, and annealing schedules, need to be determined
appropriately. Furthermore, a unified platform is required to create
various polymeric states such as amorphous structures, oriented
structures, and polymer blends. It also requires vast computational
resources. For example, an equilibrium MD simulation of a
conventional amorphous polymer requires an average run time
of more than 30–50 h based on our experiments conducted on a
workstation with a dual CPU (Intel Xeon Gold 6148; 2.4 GHz)
having 40 cores.
Herein, we present RadonPy (https://github.com/RadonPy/

RadonPy), which is an open-source Python library for fully
automated calculation, for a comprehensive set of polymer
properties, using all-atom classical MD simulations. For a given
polymer repeating unit with its chemical structure, the entire
process of the MD simulation can be performed fully automati-
cally, including molecular modeling, equilibrium and nonequili-
brium MD simulations, automatic determination of the completion
of equilibration, scheduling of restarts in case of failure to
converge, and property calculations in the post-process step. In
this first release, the library comprises the calculation of 15
properties, such as the thermal conductivity, density, specific heat
capacity, thermal expansion coefficient, and refractive index, in
the amorphous state. In this study, we calculated 15 properties for
more than 1000 unique amorphous polymers. These calculated
properties were systematically validated with respect to experi-
mental values obtained from PoLyInfo. In particular, the focus here
is on the thermal conductivity of polymers, which will be an
important performance metric for designing polymeric materials
used as insulating resins, molding resins, adhesives, and coating
agents for mobile devices, given the increase in heat generation
brought on by miniaturization and performance improvement of
mobile devices. During the high-throughput data production, we
computationally identified eight amorphous polymers with
extremely high thermal conductivities (>0.4 W ∙m–1 ∙ K–1), includ-
ing six polymers with unreported thermal conductivities. These
polymers exhibited a high density of hydrogen bonding units or
rigid, linear backbones. In addition, a decomposition analysis of

the heat conduction, which is implemented in RadonPy, revealed
the underlying mechanisms that yield such a high thermal
conductivity: heat transfer via hydrogen bonds and dipole–dipole
interactions between polymer chains having hydrogen bonding
units or via covalent bonds of polymer backbones with high
rigidity and linearity.

RESULTS AND DISCUSSION
Software overview
RadonPy is compatible with Python 3.7 to 3.9. RadonPy is
designed to be used jointly with the chemoinformatics Python
library RDkit26, with high compatibility between the input/output
systems of each module in RadonPy and those of RDKit. The input
parameter set for RadonPy comprises a simplified molecular input
line entry system (SMILES)27 string with two asterisks representing
the connecting points of a repeating unit, the polymerization
degree, the number of polymer chains in a simulation cell, and
temperature. Subsequently, the following processes are fully
automated (Fig. 1): the conformation search for the repeating
unit, calculation of the electronic properties, such as the atomic
charge and dipole polarizability, based on the density functional
theory (DFT), generation of initial configurations of polymer chains
based on the self-avoiding random walk, assignment of the force
field parameters, creation of a simulation cell such as an isotropic
amorphous cell, MD simulation to equilibrate the system,
determination of whether to reach equilibrium, execution of
nonequilibrium MD simulation (NEMD) for thermal conductivity
calculation, and calculation of various physical property values.
RadonPy is mainly designed to run on a supercomputer; multiple
polymers are calculated independently in parallel using many
computation nodes in a supercomputer. The DFT and MD
calculations were performed using the Psi428 and Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)29,
respectively, through the RadonPy interface. Each step will be
detailed in the Methods section (see also Supplementary Notes in
the Supplementary Information for a “Getting started with
RadonPy” guide).
With the current release, the following properties are calculated

from the equilibrium calculations: density, radius of gyration (Rg),
specific heat capacities at constant pressure (CP) and at constant
volume (CV), isothermal/isentropic compressibility, isothermal/
isentropic bulk modulus, volume expansion coefficient, linear
expansion coefficient, self-diffusion coefficient, refractive index,
static dielectric constant, and nematic order parameter. Thermal
conductivity and thermal diffusivity are calculated from the NEMD.
RadonPy outputs and stores trajectory data, including atomic

coordinates and velocities, and thermodynamic data in the text-
based dump files of LAMMPS. Calculated physical properties are
stored in CSV format. In addition, the final system state, including
atomic coordinates and velocities, in the equilibration and the
NEMD are saved as Python pickle files, allowing the final system
state to be restored to restart further MD calculations.

Dataset
The PoLyInfo database contains 15,335 homopolymers, which
have only organic 10 element species, H, C, N, O, F, P, S, Cl, Br, and
I. Among these, we selected 1138 unique homopolymers as the
calculation target in this study, for which as many experimental
properties as possible were recorded. The selected polymer set
was composed of a wide variety of polymer backbones, such as
polystyrenes, polyvinyl, polyacrylates, polyamides, polycarbonates,
polyurethanes, and polyimides. The validation data of the density,
thermal conductivity, refractive index, specific heat capacity CP,
linear expansion coefficient, and volume expansion coefficient
were collected from PoLyInfo. The data used were limited to
homopolymers and those meeting the following conditions: their
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material type was labeled as one of neat resin, samples contained
no additives, fillers, and dopants, the measured temperature was
in the range of 273–323 K, the postforming state was amorphous
or unidentified, and the topology of the polymers was linear or
unidentified.

Distribution of calculated polymers in chemical space
The automated MD calculations were conducted for the 1138
homopolymers selected from the PoLyInfo database. Of the five
independent calculations, the automatic calculations succeeded at
least once for 1070 polymers, more than thrice for 1001 polymers,
and in all the five cases for 759 polymers. The failed calculations
were classified into four cases: the structural optimization of the
DFT calculation did not converge, the MD simulation did not reach
equilibrium, the system was partially oriented (nematic order
parameter > 0.1), and the temperature gradient in the NEMD
calculation did not become linear.
To investigate the distribution of the backbones of the 1070

calculated polymers over the 15,335 polymers in PoLyInfo, their
chemical structures were visualized onto a 2D space using the
uniform manifold approximation and projection (UMAP)30. The
chemical structure of each polymer was transformed into a
2048 bit vector with an extended connectivity fingerprint with a

radius of three atoms (ECFP6)31. To consider the repeating
structure of polymers, the ECFP6 descriptor was constructed after
generating the macrocyclic oligomer with 10-mer of the repeating
unit. The UMAP with the Hamming distance was used to create
the 2D representation of the 15,335 fingerprinted polymers, as
shown in Fig. 2a, in which its subset corresponding to the 1070
polymers successfully calculated at least once is shown in Fig. 2b.
The plot colors indicate the 21 classes of the polymer backbones
according to the PoLyInfo database. The two distributions
exhibited similar patterns in the UMAP plot, confirming no
significant selection bias in the calculated polymers. In addition,
the calculated polymers were selected to cover the 20 classes
except for the class of others.

Validation of the calculated physical properties
To evaluate the performance of the automated MD pipeline, the
calculated properties were systematically compared with the
experimental values from PoLyInfo (Fig. 3). In the validation
process, we used the 1001 polymers for which the automatic
calculation was successfully completed at least thrice out of the
five independent trials. We also examined the effect of the
simulation box size on the calculated properties (see “Examination
of box size effects” in the Supplementary Discussion in the

Fig. 1 Flowchart of the automated MD calculation workflow for polymer properties using RadonPy. RadonPy can automate each process
to perform all-atom classical molecular dynamics simulations. Multiple polymers are calculated independently in parallel using many
computation nodes in a supercomputer.
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Supplementary Information). For the validation test, 28 different
polymers were chosen by taking structural variations into account
(Supplementary Fig. 11). The number of polymer chains varied
from 10 to 50 with the number of atoms in each of a polymer
chain set to 1000‒2000. According to the experimental results, the
box size had no significant effect on the calculated properties in
these conditions (Supplementary Figs. 6‒10).
The calculated density well reproduced the experimental values

(R2= 0.890), albeit with a slight underestimation, as the slope of
the fitted straight line in the parity plot was equal to 0.805 in
Fig. 3a. The standard deviation (SD) of the calculated values in the
five independent trials was low. The slight underestimation can be
explained as follows: since the polymerization degree in the
present MD simulations is smaller than that in the experimental
conditions in PoLyInfo, the mobility of the simulated polymer
chains becomes larger than that observed in the real systems,
resulting in an overestimation of the free volume. In addition,
unobservable partial crystallization behind experimental data
could result in higher experimental density than in the amorphous
states. Note also that, as reported in a previous study, the MD
calculation of the density of the organic molecule liquids using the
GAFF2 force field is often poorly performed in high-density
regions32. On the other hand, in our calculation, such a
discrepancy never occurred in the high-density regions. This is
because of the use of the modified force field parameters
developed by Träg and Zahn33 for fluorocarbon polymers (see
“Assignment of force field parameters” in the Methods section).
The calculated thermal conductivities also showed good

agreement with the experimental values in PoLyInfo (R2= 0.490),
as shown in Fig. 3b. However, the correlation was not so high. This
could be because the experimental values of the thermal
conductivity involve fluctuations due to differences in the
measurement methods and temperature dependence. Moreover,
there is a gap between the real and model systems, owing to the
differences in various factors, including the degree of polymeriza-
tion and its distribution, degree of orientation, crystallinity,
impurities, and polymer chain entanglement. In addition, as the
level of the thermal conductivity increases, the fluctuation in the
calculated values within the independent trials increases signifi-
cantly (Supplementary Fig. 1). Thus, for polymers with potentially
high thermal conductivity, the number of independent trials of MD
calculations should be increased to improve the accuracy.

The calculated refractive index well reproduced the PoLyInfo
dataset (R2= 0.809) with a trivial underestimation where the slope
of the fitted straight line in the parity plot was equal to 0.839
(Fig. 3c). The slight underestimation would arise from the reported
underestimation of the density because the refractive index is
defined to be the increasing function of the density. The variation
in the MD simulations was quite small. It can be concluded that a
sufficiently high prediction accuracy was obtained for the
refractive index.
Figure 3d shows the correlation of CP between the calculated

and experimental values (R2= 0.602). The calculated CP showed
an evident overestimation as the fitted slope in the parity plot was
1.430. This observation is inevitable in the classical MD because
classical MD calculations do not include quantum effects: the
vibrational energy in a classical harmonic oscillator is significantly
higher than that in a quantum harmonic oscillator at the same
frequency. The quantum-corrected-to-classical CP ratio decreases
monotonically with increasing frequency of vibration. Thus, the
ratio of the CP in PoLyInfo (CP

PoLyInfo) to the MD-calculated value
(CPMD) should decrease with the increasing mean of the bond-
stretching and -bending force constants. The theoretical con-
sideration and experimental observations are described in the
Supplementary Discussion and Supplementary Fig. 12 in the
Supplementary Information, respectively. Fortunately, since the
observed correlation is relatively clear, it would not be difficult to
correct the systematic bias by applying e.g., transfer learning or
multi-fidelity learning.
The linear and volume expansion coefficients showed weak

correlations (R2= 0.178 and 0.217) between the calculated and
experimental values (Fig. 3e, f). The variations in the linear and
volume expansion coefficients within the same polymer were
significant both experimentally and computationally. Previous
studies also reported that MD-calculated values of the volume
expansion coefficients in molecular organic liquids are highly
variable and less reproducible with respect to the experimental
values32. Possibly, the timescale and simulation cell size of the MD
simulations should be sufficiently large for an accurate simulation.

Data distribution
The marginal distributions of the six properties for the calculated
1070 unique amorphous polymers are presented in the diagonal
panels of Fig. 4, and their statistics are summarized in Table 1. The

Fig. 2 UMAP plot visualizing the distribution of the polymer backbones. The UMAP plots show the distribution of (a) 15,335 homopolymers
in PoLyInfo and (b) 1070 homopolymers calculated in this study. The 21 classes of the polymer backbones are color-coded according to the
definition of PoLyInfo.
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Fig. 3 Comparison between the MD-calculated properties of various amorphous polymers (vertical axis) and their experimental values in
PoLyInfo (horizontal axis). The six panels show parity plots of (a) density (N= 382), (b) thermal conductivity (N= 34), (c) refractive index
(N= 107), (d) specific heat capacity (N= 66), (e) linear expansion coefficient (N= 165), and (f) volume expansion coefficient (N= 144). The error
bar indicates the standard deviation of the calculated or measured properties within the same polymer. The dashed black line indicates the
y= x line. The red line is the regression line fitted to the calculated and experimental values.
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calculated thermal conductivities were distributed between 0.082
and 0.619W ∙m–1 ∙ K–1, with their mean being 0.240W ∙m–1 ∙ K–1.
The thermal conductivity of the unoriented polymers in the
amorphous states is known to be typically less than
0.3 W ∙m–1 ∙ K–1. On the other hand, few of the calculated polymers
exhibited exceedingly high thermal conductivities. However, as
mentioned above, in the high-thermal-conductivity regions, the
fluctuations in the MD-calculated properties became significant.
Thus, we narrowed down to eight highly reliable polymers, as
shown in Fig. 5, with small variation in the repeated calculations
(SD < 0.05W ∙m–1 ∙ K–1). For polyethylene (PI1) and poly(vinyl
alcohol) (PI241), the experimental thermal conductivities were
recorded in the PoLyInfo. The calculated thermal conductivity of
PI1 was 0.456W ∙m–1 ∙ K–1, which is consistent with the reported
values (0.39–0.53 W ∙m–1 ∙ K–1) of the polyethylene neat resin in
PoLyInfo. On the other hand, the calculated thermal conductivity
of PI241 was 0.439 W ∙m–1 ∙ K–1, which is overestimated compared
to the reported value (0.31 W ∙m–1 ∙ K–1) of the poly(vinyl alcohol)

neat resin in PoLyInfo. The experimental thermal conductivities of
the other six polymers were unrecorded in the PoLyInfo. Apart
from polyethylene (PI1), the structural features of these polymers
fall into three types: (1) polymers with a high density of hydrogen
bonding units (PI241 and PI305), (2) aromatic polyamides with
rigid, linear backbones (PI626), and aromatic polyimides (PI687,
PI711, PI715, and PI1093).
In addition, the calculated values of the density and refractive

index sufficiently correlated with the experimental values;
therefore, we investigated the distributions of these properties
from a quantitative viewpoint. The calculated density values
were distributed between 0.742 and 1.914 g∙cm–3 with their
mean being 1.133 g∙cm−3. Twelve amorphous polymers were
identified as having a high-density state: >1.75 g∙cm−3. These
polymers were found to contain rich halogen atoms (Supple-
mentary Fig. 2). The calculated values of the refractive index
ranged from 1.274 to 1.839 with their mean equal to 1.550. Nine
polymers were identified as high-refractive-index polymers in

Fig. 4 Joint distribution of the six properties calculated from the automatic MD simulation, including the thermal conductivity
(W∙m–1∙K–1), density (g∙cm−3), specific heat capacity CP (J∙kg−1∙K−1), bulk modulus (Pa), linear expansion coefficient (K−1), refractive
index, and radius of gyration Rg (scaled). The diagonal panels represent the histograms of the individual property values. In the upper off-
diagonal panels, a scatter plot of each pair of properties is shown with its Pareto front set displayed as large dots that indicates higher and
lower bounds of specific heat capacity and thermal conductivity, refractive index and thermal conductivity, and thermal conductivity and
refractive index. The lower off-diagonal panels represent the kernel density estimation of the bivariate joint distributions, which is displayed
with contours.
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amorphous states, with their refractive index being greater than
1.75. These polymers had large π-conjugated backbones
(Supplementary Fig. 3), indicating that the calculated high
refractive index originated from the high polarizability of the
large π-conjugation.

An observation of the joint distribution of the multiple
properties, as shown in the off-diagonal panels of Fig. 4, provides
hypothetical insights into the hidden dependency of the multiple
properties, and the existence and location of the Pareto frontiers
with the chemical features of the constituent polymers. The

Table 1. Summary statistics of the calculated properties, including the mean, standard deviation (SD), minimum, and maximum.

Properties Number of polymers Mean SD Minimum Maximum

Thermal conductivity (W∙m–1∙K–1) 1070 0.240 6.562 × 10−2 8.220 × 10−2 0.619

Thermal diffusivity (m2∙s−1) 1069 7.100 × 10−8 2.014 × 10−8 2.957 × 10−8 2.273 × 10−7

Density (g∙cm−3) 1077 1.133 0.180 0.742 1.914

Radius of gyration (Å) 1077 20.59 8.149 10.37 85.68

Self-diffusion coefficient (m2∙s−1) 1076 6.747 × 10−13 8.693 × 10−13 8.939 × 10−15 1.098 × 10−11

CP (J∙kg−1∙K−1) 1076 3086 691.6 1345 4955

CV (J∙kg−1∙K−1) 1076 2993 644.3 1331 4579

Compressibility (GPa−1) 1076 0.360 0.107 0.129 1.299

Isentropic compressibility (GPa−1) 1076 0.349 0.102 0.128 1.255

Bulk modulus (GPa) 1076 3.062 0.835 0.921 7.766

Isentropic bulk modulus (GPa) 1076 3.144 0.842 0.935 7.862

Linear expansion coefficient (K−1) 1076 1.048 × 10−4 4.611 × 10−5 −2.598 × 10−5 3.115 × 10−4

Volume expansion coefficient (K−1) 1076 3.144 × 10−4 1.383 × 10−4 −7.794 × 10−5 9.345 × 10−4

Static dielectric constant 1075 4.866 10.535 1.674 130.8

Refractive index 1075 1.550 8.857 × 10−2 1.274 1.839

Properties of a repeating unit

HOMO (eV) 1077 −9.205 0.918 −7.458 −12.647

LUMO (eV) 1077 1.016 1.416 −5.997 3.188

Dipole moment (Debye) 1077 2.426 1.948 6.175 × 10−7 12.14

Dipole polarizability (Å3) 1077 35.45 25.73 3.842 139.6
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Fig. 5 Repeating units of identified polymers exhibiting a high thermal conductivity in amorphous states. The compound identifier
corresponds to the polymer ID in the calculated dataset.
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observed Pareto frontier of the specific heat capacity and thermal
conductivity suggests the difficultly of achieving both high
specific heat capacity and low thermal conductivity in amorphous
polymers. Polymers distributed around the Pareto frontier
included mainly polystyrenes, polyacrylates, and hydrocarbon
polymers. On the other hand, no Pareto frontier was observed in
the region of higher thermal conductivity. The joint distribution of
the thermal conductivity and refractive index shows that there are
still unexplored regions of amorphous polymers reaching lower
thermal conductivity with higher refractive index and higher
thermal conductivity with a lower refractive index. The thermal
conductivity was approximately proportional to the scaled Rg. The
scaled Rg was defined as Rg scaled by 1/M0.6 to remove molecular
weight (M) dependency based on the following scaling rule34.

Rg / M0:6 (1)

Another study confirmed computationally that thermal con-
ductivity is positively correlated with Rg for amorphous poly-
ethylene35. Our study demonstrated that this dependency holds
for a wide variety of amorphous polymers. The specific heat
capacity was inversely proportional to the density. This observa-
tion can be explained by the Dulong–Petit law36. The specific heat
capacity is inversely proportional to the mean atomic weights
(Supplementary Fig. 4) because the heat capacity of a mole is
typically almost a constant in materials. On the other hand, the
density is proportional to the mean atomic weights (Supplemen-
tary Fig. 5). In the joint distribution of the density and refractive
index, their correlation was unclear. According to the
Lorentz–Lorenz equation (Eq. 17 in the Methods section), the
refractive index is described as a function of the density and
polarizability. The observed distribution implies that, for polymers
in amorphous states, the polarizability is dominant in determining
the refractive index.

Decomposition analysis of thermal conductivity
The decomposition analysis was performed to understand the
mechanism of the eight polymers (Fig. 5) that exhibited a high

thermal conductivity (see “NEMD simulation for thermal con-
ductivity calculation” in the Methods section). As shown in Fig. 6,
for each calculated thermal conductivity, the decomposition
analysis quantified the contribution of the six components
corresponding to convection, bond, angle, dihedral, improper,
and nonbonded, where the nonbonded contribution represents
the sum of the pairwise and K-space contributions described in
Eq. 4 in Methods section. Since the contribution of the improper
term was negligible, it is shown as a dihedral term in Fig. 6.
Notably, the AMBER-type force field describes the dihedral
potential as the sum of the dihedral term and nonbonded 1–4
interactions; thus, a part of the nonbonded contribution is
essentially attributed to the dihedral contribution37.
The calculated thermal conductivity of PI1 (polyethylene) was

0.456W ∙m–1 ∙ K–1. The high thermal conductivity of PI1 was due
to the significant contribution of bond bending.
The high thermal conductivities of PI241 (polyvinyl alcohol) and

PI305 (poly(vinylene) carbonate) were largely due to the
contributions of nonbonded interactions. The polymer chains of
PI241 and PI305 contain highly condensed hydroxyl groups. This
indicates that a high density of hydrogen bonding units provides
large intermolecular interactions via the creation of hydrogen
bonds and dipole–dipole interactions, resulting in a significant
contribution of nonbonded interactions. Thus, the thermal
conductivities of PI241 and PI305 are enhanced by the heat
transfer via hydrogen bonds and dipole–dipole interactions.
In the aromatic polyamide PI626 (poly-p-phenyleneterephtha-

lamide a.k.a. Kevlar), the bond, angle, dihedral, and nonbonded
interactions showed moderately large contributions. The results
can be explained as follows: the backbone of PI626 is relatively
rigid, resulting in a significant contribution to the thermal
conductivity through covalent bonds, and PI626 can create the
interaction of hydrogen bonds and dipole–dipole interactions
with its amide groups, resulting in moderately high contributions
through nonbonded interactions.
Thermally conductive behaviors in the aromatic polyimides

PI687, PI711, PI715, and PI1093 were largely due to the
contributions of bond stretching. The PI687 had a significantly
large contribution of bond stretching. Aromatic polyimides have
rigid backbones, particularly PI687, which has high rigidity and
linearity. The results show that the rigid and linear characteristics
of a polymer backbone can help enhance the thermal conductivity
through the contribution of bond stretching. The PI1093 is an
aromatic polyimide containing an amide group. The contribution
of nonbonded interactions of PI1093 was the largest in the four
identified aromatic polyimides. This suggests that polymers
containing hydrogen bonding units and having rigid and linear
backbones can help further increase the thermal conductivity in
amorphous states.
Figure 7 shows the joint distribution of the total thermal

conductivity with each quantified contribution. The correlations
with the total thermal conductivity can be clearly observed in the
bond, angle, dihedral, and nonbonded terms. On the other hand,
the convection term did not correlate significantly with the
thermal conductivity. In summary, thermally conductive amor-
phous polymers can be designed, in principle, by increasing the
contributions of the bond, angle, dihedral, and nonbonded terms.

Transfer learning from MD values to experimental values
As described above, several properties showed significant
discrepancies, including systematic bias, between the experimen-
tal and the MD-calculated values. The dependence of the MD
simulations on initial conditions resulted in large fluctuations in
the calculated properties, especially in the linear expansion and
volume expansion coefficients. The experimental values of these
two properties also fluctuated considerably, making them
insufficiently reliable as a validation set. We believe that the

Fig. 6 Contributions of convection and different types of
interactions to the calculated high thermal conductivities of the
eight polymers. The colors in the bar chart mean convection (red),
bond stretching (purple), bond angle bending (violet), dihedral
(blue), and nonbonded (green) terms.
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application of machine learning can contribute to the reduction of
these biases and variances. Hereafter, we demonstrate an example
of calibrating the discrepancy of MD simulations by using transfer
learning.
The target properties to be predicted were the specific heat

capacity, linear expansion coefficient, and volume expansion
coefficient. As discussed previously, the specific heat capacity
exhibited a large bias between the experimental and MD-
calculated values, which would originate from the presence or
absence of quantum effects, and the latter two had significantly
large variations even within the same polymer in both experi-
mental and calculated properties. For each property, the source
task of the transfer learning was to predict the MD-calculated
properties, and the target task was to predict the experimental
properties in PoLyInfo. A predictive model defines a mapping from
a fingerprinted chemical structure of a given polymer repeating
unit to the experimental or MD-calculated property. The workflow
of the shotgun transfer learning18 is outlined as follows (see the
Supplementary Methods in the Supplementary Information for
more details):

1. All samples in the MD properties dataset with their polymers
included in the PoLyInfo experimental dataset were
removed to obtain the dataset for the source task.

2. Using the source dataset, we trained 100 neural networks
with randomly generated network structures.

3. We randomly selected 80%, 10%, and 10% of the experi-
mental dataset for the training, validation, and test datasets,
respectively, for the target task.

4. Each pretrained neural network was fine-tuned using the
training set of the target task, in order to obtain a
transferred calibration model.

5. The root mean squared error (RMSE) of each transferred
model with respect to the validation set was calculated, and
the prediction performance on the test set was examined
using the model exhibiting the best transferability that
achieved the smallest validation RMSE.

As shown in Fig. 8, for all the three properties, the transferred
models showed significant improvements in predicting the
experimental data, compared to the direct predictions from the
MD calculations. The systematic bias in the specific heat capacity
almost disappeared. Interestingly, for the linear expansion

Fig. 7 Distribution of the thermal conductivity (W∙m−1∙K−1) and categorization in terms of its contributions from convection, bond,
angle, dihedral, and nonbonded terms. Diagonal panels represent the histograms of individual quantities. In the upper off-diagonal panels,
the scatter plots of the six quantities are displayed. The lower off-diagonal panels represent their kernel density estimation, which is displayed
with contours.
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coefficient and volume expansion coefficient, the transferred
model not only corrected for the systematic bias of the MD
properties, but also significantly reduced the variability of the
experimental values. The improvement in MAE for these property
predictions reached 69% and 87%, respectively (Table 2),
compared to that in the MD-based predictions.
It is inevitable that any dataset mass-produced from a fully

automated MD simulation will be subject to various kinds of
biases and variances, because there are no calculation conditions
universally applicable to a wide variety of polymer systems. The
results shown here imply that machine learning techniques have
the great potential to bridge the gap between real systems and
inherently incomplete computational models.

Summary and outlook
We presented RadonPy, which is the first open-source Python
library to fully automate polymer property calculations using all-
atom classical MD simulations. The high-throughput calculation
using RadonPy was successfully performed for more than 1000
unique amorphous polymers with a wide variety of thermo-
physical properties, such as the thermal conductivity, refractive

index, density, and specific heat capacity CP. For systems other
than amorphous homopolymers, such as copolymers, blend
polymers, and uniaxially oriented systems, as well as for other
properties, automated calculation capabilities have already been

Fig. 8 Comparison of the predictive performance of MD simulation and transfer learning. The parity plots of (a) MD simulation and (b)
transfer learning for experimental values of specific heat capacity (CP), linear expansion coefficient, and volume expansion coefficient. The
experimental and predicted values are shown on the horizontal and vertical axes, color-coded by red (blue: fits to the training data for transfer
learning).

Table 2. Comparison of prediction performance on the PoLyInfo
experimental dataset between the MD simulations and the machine
learning model based on transfer learning (TL).

Properties Metrics MD TL

CP [J∙kg−1∙K−1] R2 0.602 0.501

MAE 1916 196.1

RMSE 1972 279.3

Linear expansion coefficient [K−1] R2 0.178 0.491

MAE 3.89 × 10−5 2.68 × 10−5

RMSE 6.06 × 10−5 4.50 × 10−5

Volume expansion coefficient [K−1] R2 0.217 0.184

MAE 1.49 × 10−4 1.30 × 10−4

RMSE 2.27 × 10−4 2.23 × 10−4

The bold values indicate the best result for prediction performance.

Y. Hayashi et al.

10

npj Computational Materials (2022)   222 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



implemented; however, no calculation protocols based on
experimental data have been established. In RadonPy, automatic
calculation protocols for various polymer properties can be
implemented as an add-on feature. We will continue to promote
the development of RadonPy.
In this study, the agreement between a total of six properties

obtained from the high-throughput MD calculation and experi-
mental values was comprehensively verified. As a result, the
refractive index, density, and thermal conductivity successfully
reproduced the experimental values quantitatively. The calculated
values of the specific heat capacity were also highly correlated
with the experimental values, although the classical MD calcula-
tion had a systematic bias due to its inability to represent
quantum effects. For the linear and volume expansion coefficients,
the correlation between the calculated and experimental values
was weak due to large variations and uncertainties in both the
calculations and experiments. There has been no previous work
on a comprehensive validation of high-throughput MD simula-
tions of polymer properties on such a scale. More rigorous
comprehensive validation with experimental values, including
other properties not discussed in this study, should be conducted
to determine appropriate calculation conditions and protocols.
This study also revealed various issues related to the creation of

a polymer properties database using high-throughput MD
calculations. Properties, such as glass transition temperature,
dielectric loss tangent, and cohesive energy density, are expected
to be predictable under the same or nearly the same setting as the
current calculation conditions. On the other hand, mechanical and
viscoelastic properties, which are largely affected by polymer
chain entanglement, would be difficult to predict with the current
settings for molecular weight, timescale, generation of initial
structure, high-order structure, etc. It is necessary to determine
appropriate conditions for automated calculations according to
individual properties. It is also important to produce temperature-
dependent and molecular weight-dependent physical property
profiles. We will then be faced with the problem of lacking a
comprehensive set of experimental data necessary to determine
appropriate calculation conditions. In this study, PoLyInfo was
employed as the benchmark dataset, but as indicated by the
observed large fluctuations of linear expansion coefficients and
volume expansion coefficients, the quality and reliability of the
current data are far from satisfactory. Data cleansing, which
involves an enormous amount of work to trace back to the original
paper for each record, will need to be performed. Alternatively, we
will eventually be faced with the need to construct an
experimental dataset for benchmarking, acquired in a controlled
environment.
In addition, several issues related to data storage need to be

further considered when building a large database. Currently,
RadonPy stores and outputs all intermediate trajectory data,
including atomic coordinates and velocities, in LAMMPS dump
files. However, in the future database development, intermediate
trajectory files may be discarded, except for the final states and
the last several nanoseconds in the equilibration and the NEMD
because of the enormous data size (~20 GB per polymer on
average). The issue of data storage when building a large database
is unavoidable. In addition, the issue of data formatting will be an
obstacle. In the first stage, we focused only on linear polymers, so
their representation could be handled with the SMILES notation.
However, in the future, block or alternating copolymers and
branched polymers will also be included in the automated
calculation pipeline. Then, it will be necessary to introduce an
advanced notation for polymers such as BigSMILES38.
Compared with other material systems, polymer research has

lagged in terms of constructing open databases available for data-
driven research. The primary objective in the development of
RadonPy was to use it to create a systematically designed polymer
property database. In the early days of MI in inorganic chemistry,

the development of an open database was strategically promoted.
In particular, huge computational property databases constructed
using high-throughput first-principles calculations drove the
evolution and widespread applications of MI. Large-scale compu-
tational property data have historically proven to be an important
resource in MI, and RadonPy was designed for the rapid
production of large amounts of polymer property data using
highly parallel computers such as supercomputers. In this study,
more than 1000 unique amorphous polymers were computed in
~2months mainly using the supercomputer, Fugaku. In the future,
our growing data will significantly facilitate the evolution of
polymer informatics, just like the first-principles computational
database for inorganic crystals.

METHODS
Conformation search of a repeating unit
For a given SMILES string of a polymer repeating unit, 3D atomic
coordinates of up to 1000 different molecular conformations were
generated using the ETKDG version 2 method39–41 implemented
in the Python library RDKit26. The SMILES string has two asterisk
symbols for representing two attachment points of the repeating
unit. These symbols were capped with hydrogen atoms. The
potential energy of each conformation of a repeating unit was
evaluated using the molecular mechanics calculation with the
general Amber force field version 2 (GAFF2)37,42 after the
geometry optimization. Subsequently, the optimized conformers
were clustered by performing the Butina clustering43 based on the
torsion fingerprint deviation44. The most stable four conforma-
tions were further optimized by performing DFT calculations with
the ωB97M-D3BJ functional45,46 combined with the
6–31 G(d,p)47,48 basis set. The most stable conformation was
determined based on the DFT total energies.

Calculation of electronic property of a repeating unit
The atomic charges of a repeating unit were calculated using the
restrained electrostatic potential (RESP) charge model49 with a
single-point calculation of the Hartree–Fock method50 combined
with the 6–31 G(d) basis set on the optimized geometry of the
most stable conformation. The total energy, the highest occupied
molecular orbital (HOMO) energy level, the lowest unoccupied
molecular orbital (LUMO) level, and the dipole moment were
calculated with the single-point calculation using the ωB97M-D3BJ
functional combined with the 6–311 G(d,p) basis set45,46,51–53 for
H, C, N, O, F, P, S, Cl, and Br atoms and with the LanL2DZ basis
set54 for I atom. In addition, the dipole polarizability tensor was
obtained by applying the finite field method under an electric
field of 1.0 × 10−4 a.u. using the ωB97M-D3BJ functional combined
with the 6–311+ G(2d,p) basis set45,46,51–53,55,56 for H, C, N, O, F, P,
S, and Cl atoms, with the 6–311 G(d,p) for Br atom, and with the
LanL2DZ basis set for I atom. The reason for using the
6–311+ G(2d,p) basis set is that a basis set, including double
polarization and diffuse functions, is required for appropriate
polarizability calculations57. The isotropic dipole polarizability was
defined as the mean of the diagonal values of the dipole
polarizability tensor.

Generation of polymer chains
A polymer chain was constructed by connecting a repeating unit
with the self-avoiding random walk algorithm. To prevent
unintended chiral inversions and cis/trans conversions due to a
large strain structure in the polymer chain growth, the bond
between the head and capped atoms in a growing polymer chain
and the bond of the tail and capped atoms in the next repeating
unit were arranged to be coaxial and anti-parallel, the two capped
atoms were deleted, and a new bond between the head and tail
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atoms was created. The length of the new bond was 1.5 Å, and the
dihedral angle around the new bond was randomized in the range
of −180° to +180° during the self-avoiding step. Charge neutrality
was ensured by summing the charges of capped H atoms to the
atoms to which they are bonded. In this study, polymer chains
were created to include ~1000 atoms; thus, the degree of
polymerization varies across polymers. By taking the number of
atoms at the same level for different polymers, the molecular
weights were controlled to be almost the same. Thus, all
calculated properties were obtained under conditions where the
molecular weights were set to be approximately the same. In
addition, we investigated the sensitivity of the calculated proper-
ties to the change in the number of atoms. As a result, we
confirmed that the number of atoms in the simulation cell has a
trivial effect on the calculated properties, which is detailed in
“Validation of the calculated physical properties” in the Results
and Discussion section and in the Supplementary Discussion in
the Supplementary Information. The tacticity of a polymer chain
could also be controlled in this process using RadonPy. In this
study, all the polymers were generated as atactic polymers.

Assignment of force field parameters
The GAFF2 force field is expressed as follows37:

EMM ¼ P
bonds

Kb r � r0ð Þ2 þ P
angles

Ka θ� θ0ð Þ2 þ P
dihedrals

Kd 1þ cos ndφ� δð Þ½ �

þ P
impropers

Ki χ � χ0ð Þ2 þP
i;j

qiqj
4πε0rij

þP
i;j
4εij

σij
rij

� �12
� σij

rij

� �6
� �

(2)

where r, θ, φ, χ, and rij are the bond length, bond angle, dihedral
angle, improper angle, and distance between atoms i and j,
respectively; Kb, Ka, Kd, and Ki denote the force constants of the
bond, bond angle, dihedral angle, and improper angle, respec-
tively; r0, θ0, and χ0 are the equilibration structural parameters of
the bond, bond angle, and improper angle, respectively; nd is the
multiplicity, and δ is the phase angle for the torsional angle
parameters; and qi and qj are the atomic charges of atoms i and j,
and ε0 is the dielectric constant of vacuum; εij and σij are the
Lennard–Jones parameters determining the depth of the energy
potential and equilibrium distance, respectively. Compared to
those by GAFF, GAFF2 has improved the parameter values of Kb,
r0, Ka, and θ0 to reproduce molecular geometries, vibrational
spectra, and potential energy surfaces from higher level quantum
mechanics calculations and improved the non-bonded para-
meters to better reproduce ab initio interaction energies and
experimental neat liquid properties42. The parameter set was
suitable for thermal conductivity calculations because the
reproducibility of the vibrational properties was considered. The
modified parameters for fluorocarbon developed by Träg and
Zahn33 were used for fluorocarbon polymers. The GAFF2
parameters were automatically assigned to each polymer chain
in RadonPy. If the pre-defined parameter set lacked the bond
angle parameters of Ka and θ0 for a certain atom group, these
parameter values were empirically estimated in the same manner
as GAFF2.

Generation of a simulation cell
A simulation cell containing amorphous polymers was constructed
by randomly arranging and rotating 10 polymer chains such that
they did not overlap with each other, resulting in an amorphous
cell having ~10,000 atoms. Initially, the density of the amorphous
cell was set to 0.05 g∙cm–3 and was then increased by conducting
a packing simulation as described below.

Packing simulation
The initial structure of the generated amorphous cell had a very
low density. A packing simulation was performed to increase the
density of the amorphous polymers to an appropriate value for
subsequent calculations. A 1 ns NVT simulation with a Nose ́−Ho-
over thermostat was performed while the temperature was
increased from 300 K to 700 K; in the next 1 ns NVT simulation,
the calculation cell was isotropically reduced to a density of
0.8 g∙cm−3 at 700 K. In this packing simulation, to prevent the self-
aggregation of a polymer chain by intramolecular interactions
leading to a globule-like structure, the Coulomb interaction was
turned off, and the cutoff of the Lennard–Jones potential was set
to 3.0 Å. Under this condition, the polymer chains remain random
coil structures and could not pass through each other. Thus, the
polymer chains were entangled in the final structure of the
packing simulation. The time step was set to 1 fs, the periodic
boundary condition (PBC) was applied, and all the bonds and
angles, including those of the hydrogen atoms, were constrained
by the SHAKE algorithm58 in this packing simulation.

Equilibration simulation
The amorphous polymers after the packing simulation were
equilibrated by the 21-steps compression/decompression equilibra-
tion protocol59 proposed by Larsen and co-workers. In this protocol, a
temperature rise to 600 K and a drop to 300 K were repeated for
~1.5 ns while the system was compressed to 50,000 atm and then
decompressed to 1 atm by combining the NVT and NpT simulations
with a Nosé−Hoover thermostat and a barostat. After the 21-steps
equilibration, NpT simulations were run for more than 5 ns at 300 K
and 1 atm until equilibrium was achieved. The achievement of the
equilibrium was checked each 5 ns after the 21-steps equilibration. In
this study, the equilibrium state was defined as being reached when
the following conditions were met: the relative standard deviations
(RSD) of the total, kinetic, bonding, bond angle, dihedral, van der
Waals (vdW), and long-range coulomb energy fluctuations were less
than 0.05, 0.05, 0.1, 0.1, 0.2, 0.2, and 0.1%, respectively, and the RSDs
of the density and radius of gyration fluctuations were less than 0.1
and 1%, respectively. In this study, calculations that did not achieve
equilibrium after 50 ns of equilibration calculations were treated as
failures. The time step was set to 1 fs, the PBC was applied, and the
SHAKE constraint58 was applied to all the bonds and angles,
including those of the hydrogen atoms in this equilibration
simulation. The twin-range cutoff method60 was used for nonbonded
interactions with a short cutoff of 8 Å and a long cutoff of 12 Å. The
long-range Coulomb interaction was treated using the particle-
particle particle-mesh (PPPM) method61. When the nematic order
parameter decreased below 0.1, it was judged that the amorphous
structure was appropriately generated; otherwise, it was treated as a
failed calculation and removed from the data.

NEMD simulation for thermal conductivity calculation
To calculate the thermal conductivity, we performed the reverse
NEMD simulation62 proposed by Müller-Plathe. The simulation box of
the reverse NEMD was constructed by triplication of an equilibrated
amorphous cell in the x-axis direction under the PBC. The reverse
NEMD simulation involved dividing the simulation box into N slabs
along the direction of the heat flux, which was generated in the
system with temperature gradients induced by exchanging the
velocity between the coldest atom in slab N/2 and the hottest atom
in slab 0, as shown in Fig. 9. As a result, slab N/2 becomes the hottest
in the cell, and the temperature gradually decreases towards slab 0
and slab N because of using the PBC. To prevent the occurrence of
temperature shifts due to cell replication, the preheating step with
NVT ensemble was run for 2 ps at 300 K. Subsequently, the reverse
NEMD with NVE ensemble was run for 1 ns. The number of slabs was
set to 20, and the frequency of velocity swapping was set to 200 fs.
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The time step was set to 0.2 fs, and the SHAKE constraint was not
applied in the reverse NEMD simulation. The twin-range cutoff
method was used for nonbonded interactions with a short cutoff of
8 Å and a long cutoff of 12 Å. The long-range Coulomb interaction
was treated using the PPPM method. As a validation of the adequacy
of the reverse NEMD calculation, RadonPy confirmed a linearity in the
temperature gradient. A calculation result with a poor linearity in the
temperature gradient (R2 < 0.95) was treated as a failure and
removed from the data.
A thermal conductivity decomposition analysis was performed

for 100 ps. For the Irving-Kirkwood equation63 modified by Torii
and co-workers64, the energy flux can be expressed as follows:

Ju ¼ 1
V

X
i2V

eivi;u þ
X
i2V

Sivið Þu
( )

(3)

where Ju is the energy flux along the direction of unit vectors u, V
is the volume, ei is the per-atom potential and kinetic energy, vi,u is
the velocity of the atom, Si is the per-atom stress tensor, and i is
the index of atoms. The first and second terms represent the
contribution to the energy flux via convection and interatomic
interactions, respectively. The second term can be further divided
into each component of the interactions. The component (a, b) of
the stress tensor can be written as65–67

Sab ¼
XNp

n¼1

ri0;aFi;b þ
XNb

n¼1

ri0;aFi;b þ
XNa

n¼1

ri0;aFi;b þ
XNd

n¼1

ri0;aFi;b

þ
XNi

n¼1

ri0;aFi;b þ Kspaceðri;a; Fi;bÞ
(4)

The first to fifth terms denote the pairwise, bond, angle,
dihedral, and improper contributions, respectively, where Fi
denotes the force acting on atom i due to the interaction, ri0
denotes the relative position of atom i to the geometric center of
its interacting atoms, and Np, Nb, Na, Nd, and Ni are the numbers of
non-bonding atom pairs, bonds, bond angles, dihedral angles, and
improper angles, respectively. The sixth term is the K-space
contribution from the long-range Coulombic interactions. The
partial thermal conductivity λpartial is given by

λpartial ¼ Jpartial
Jtotal

λtotal (5)

where Jtotal is the total heat flux calculated by Eq. 3, Jpartial is the
partial heat flux subdivided by each term of Eqs. 3 and 4, and λtotal
is the total thermal conductivity calculated by the reverse NEMD.

Calculation of physical properties
The density in a NpT simulation was computed using the mass m
and volume V of the system as follows:

ρ ¼ m
Vh i (6)

where the angular brackets �h i represent time averaging.

The radius of gyration Rg was calculated using the following
equation:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

rk � rmeanð Þ2
vuut (7)

where rk is the position of a repeating unit k, and rmean denotes
the mean position of the repeating units in a polymer chain.
The specific heat capacity at constant pressure Cp was

calculated from the fluctuations in the enthalpy H68:

CP ¼ δH2h i
kBT2m

(8)

where kB is the Boltzmann constant, and T is the temperature.
The enthalpy was calculated using the constant pressure of
1 atm because the calculated pressure value in the NpT
simulations has a significant fluctuation, leading to inaccurate
CP calculation.
The isothermal compressibility βT and isothermal bulk modulus

KT were calculated from the fluctuations in the volume V68:

βT ¼
δV2h i

kBT Vh i (9)

KT ¼ 1
βT

(10)

The volume expansion coefficient αP was calculated from the
covariance of the volume V and enthalpy H68:

αP ¼ δVδHh i
kBT2 Vh i (11)

Here, the enthalpy was calculated at a constant pressure of 1 atm.
The linear expansion coefficient αP,l in the isotropic systems was
calculated using the following equation68:

αP;l ¼ αP
3

(12)

The specific heat capacity at constant volume CV was calculated
from the following equation, associated with CP, αP, and βT

68:

CV ¼ CP � α2PT Vh i
βTm

(13)

The isentropic compressibility βS and isentropic bulk modulus
KS were calculated using the following equations:

βS ¼ βT
CV
CP

(14)

KS ¼ 1
βS

(15)

The self-diffusion coefficient was calculated using the Einstein
equation68:

D ¼ lim
t!1

1
6t

r t þ t0ð Þ � r t0ð Þj j2
D E

(16)

where t is the time, and r denotes the atomic position at the time.
The refractive index n was obtained from the Lorentz–Lorenz

equation:

n2 � 1
n2 þ 2

¼ 4π
3

ρ

M
αpolar (17)

where αpolar is the isotropic dipole polarizability of a repeating unit
computed from the DFT calculation, and M is the molecular
weight of a repeating unit.

Fig. 9 Schematic representation of the simulation box for reverse
nonequilibrium molecular dynamics. The red and blue slabs are
the hottest and coldest region, respectively, in the simulation box.
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The static dielectric constant ε(0) was calculated using the
equation69:

ε 0ð Þ ¼ μ2h i � μh i2
3ε0kBT Vh i þ εel (18)

where μ is the dipole moment of the system, ε0 is the dielectric
constant of vacuum, and εel is the contribution of the electronic
polarization in the dielectric constant, which is evaluated as the
square of the refractive index n2.
The nematic order parameter was calculated as the highest

eigenvalue of the second rank ordering tensor68 Qαβ, following
equation:

Qαβ ¼ 1
N

XN
i¼1

1
2

3uiαuiβ � δαβ

� �
(19)

where uiα and uiβ (α, β = x, y, or z) are the unit vectors of the
molecular axis of a repeating unit i, δαβ is the Kronecker delta, and
N is the number of repeating units. The molecular axis of each
repeating unit is defined as the long axis found from the inertia
tensor. The nematic order parameter takes on a value between 0
for an isotropic structure and 1 for a completely ordered structure.
The thermal conductivity λ was calculated according to Fourier’s

law:

λ ¼ JQ
ð∂T=∂xÞ ¼

ΔE
2AΔtð∂T=∂xÞ (20)

where JQ is the heat flux, and ∂T/∂x is the temperature gradient of
the NEMD simulation. The heat flux JQ can be calculated from the
exchanged energy obtained using the Müller-Plathe algorithm ΔE,
the cross-sectional area in the heat flux direction A, and the
simulation time Δt. The thermal diffusivity κ was obtained from
the calculated thermal conductivity λ, density ρ, and heat capacity
CP:

κ ¼ λ

ρCP
(21)
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