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Degradation mechanism analysis of LiNi0.5Co0.2Mn0.3O2

single crystal cathode materials through machine learning
Wuxin Sha1,2,6, Yaqing Guo2,3,6, Danpeng Cheng2, Qigao Han3, Ping Lou4, Minyuan Guan 4, Shun Tang2, Xinfang Zhang1,
Songfeng Lu5, Shijie Cheng2 and Yuan-Cheng Cao 2✉

LiNi0.5Co0.2Mn0.3O2 (NCM523) has become one of the most popular cathode materials for current lithium-ion batteries due to its
high-energy density and cost performance. However, the rapid capacity fading of NCM severely hinders its development and
applications. Here, the single crystal NCM523 materials under different degradation states are characterized using scanning
transmission electron microscopy (STEM). Then we developed a neural network model with a two-sequential attention block to
recognize the crystal structure and locate defects in STEM images. The number of point defects in NCM523 is observed to
experience a trend of increasing first and then decreasing in the degradation process. The space between the transition metal
columns shrinks obviously, inducing dramatic capacity decay. This analysis sheds light on the defect evolution and chemical
transformation correlated with layered material degradation. It also provides interesting hints for researchers to regenerate the
electrochemical capacity and design better battery materials with longer life.
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INTRODUCTION
LiNixCoyMn1-x-yO2 (NCM) has become one of the most popular
cathode materials for current lithium-ion batteries due to its high
capacity and cost-effectiveness. However, the rapid capacity fade
over cycles of NCM severely hinders its development and
applications. The advanced electron microscopy investigations
on the degradation mechanisms of NCM play indispensable roles
in the design of high-energy-density lithium-ion battery materials.
Current electron microscopy allows the direct visual recognition of
atom-level configuration information from the host crystal
structure, lattice plane distortion to even single point defect,
providing rich information of battery material processes and
properties. Consequently, many researchers have investigated the
origin of the degradation mechanism in NCM through advanced
electron microscopy. Structural defects such as Li/transition metal
atom mixing or oxygen vacancies will cause further phase
transitions, surface reconfiguration, and accompanied by the
evolution of oxygen1,2. In addition, the electrolyte solvent with a
narrow electrochemical stability window will react with Ni4+,
leading to the oxidative decomposition of the electrolyte3.
Furthermore, interfacial side reactions and dissolution of transition
metals lead to the degradation of performance. Meanwhile,
volume changes during cycling and the generation of microcracks
during cycling, and the generation of thicker cathode electrolyte
interface (CEI) films on the surface are the main causes of cathode
material degradation4,5. These common degradation phenomena
of NCM cathodes are summarized in Fig. 1.
Although the amount of high spatial/temporal resolution

cathode material data is increasing, the degradation dynamic
information inferred from advanced characterization methods is
very limited. Because the interpretation of microscopy data
heavily relies on the ‘intuition’ of experienced researchers and

many profound degradation features often remain unexploited.
The inherent limitations of manual analysis in volume and speed
hinder the deep utilization of advanced characterizations6. There-
fore, it is urgent to develop an automatic framework for material
characterization image processing, which can efficiently locate
and track atom defects, or other microstructure configurations,
and quantitatively study the property evolutions in materials.
Artificial intelligence (AI) is good at big data processing and
knowledge mining because of its flexible algorithm framework
and powerful hardware foundation, which brings more opportu-
nities for the development of material science.
Fortunately, some tentative studies have made admirable

progress in the field of AI-assisted electron microscopy. Lee
et al. proposed a genetic algorithm (GA) image processing
technique that enables the analysis of over 150,000 nanoparticles
with a high precision of 99.75%. This technique provides an
example for further data mining in the field of transmission
electron microscopy (TEM)7. Han et al. built an encoder-decoder
semantic segmentation network called 2D material optical
identification neural network (2DMOINet)8. This architecture is
configured for pixel-wise material identification of microscopy
images in real-time and for finding correlations between the
microscopy images and material physical properties. Similar
advances are also achieved in locating morphology features from
scanning electron microscopy (SEM) data, tracking phase evolu-
tion in scanning transmission electron microscopy (STEM) data,
and quantifying the protein dynamics in atomic force microscopy
(AFM) data9–11.
Nevertheless, there are still few AI frameworks designed for

battery material analysis. In this paper, a deep learning u-net
network, one of the common AI algorithm frameworks, is
improved to study the capacity degradation mechanism of
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ternary cathode materials. Firstly, a neural network model is
established to process the STEM images to identify the host crystal
structure and locate the defects in a few seconds. Meanwhile,
these defects are classified by a two-sequential attention module,
and three main defects are found: transition metal vacancies,
lithium vacancies, and interstitial atoms. These point defects in
single crystal NCM523 are researched under different degradation
states, including the layered, spinel, and rock-salt structures. It is
concluded that the number of overall point defects in NCM523
experiences a trend of increasing first and then decreasing in the
whole degradation process. Combined with the analysis of
electron energy loss spectroscopy (EELS) and electrochemistry
characterization, it is found that defect evolution is correlated with
the increase of battery impedance and capacity fading. Finally, the
major lattice parameters in NCM523 materials are analyzed
quantitatively. The space between the transition metal dense
layers shrinks from 4.86 Å to 1.96 Å, which means the decreasing
number of crystal sites to accommodate lithium ions, inducing
capacity decay. These machine-learning statistic results provide
effective insights for battery material design.
This research consists of sample preparation of ternary

materials, electrochemical and electron microscopy characteriza-
tion, and machine learning. The complete machine learning
paradigm includes three modules: algorithm structure building,
dataset generation, and model training. The experimental details
are described in the following parts.

RESULTS AND DISCUSSION
Neural network architecture
We keep the basic architecture of skip connections between
completely symmetrical encoder-decoder structures in U-net12,
due to its essential fusion with the fine and coarse-grained
information, as shown in Fig. 2. Compared with the original one,
the contributions of this network are summarized in three
operations. Firstly, for each encoder and decoder, a two-
sequential attention block is introduced to give an eye to salient
parts of images. More details about attention are discussed in the
next paragraph. Secondly, simple concatenation skip links are
replaced by residual connections to get rid of redundant
information. Because shallow layer information may not con-
catenate well with deep-layer information, which will lead to
redundancy or even worse result. Residual connections could
decrease the channel number of the feature map by adding

operations, thus reducing computational complexity. Hence the
deeper network could also have satisfying training and detecting
performance even when the shallow layer feature map has a bad
influence on the deeper one. Thirdly, batch normalization
operation converts the inputs into a normal distribution with a
mean of 0 and a standard deviation of 1 for training acceleration.
To help the model select focus on salient parts from

tremendous pixels in an electron micrograph, we proposed a
two-sequential attention block inserting network with a residual
connection as presented in Fig. 3. The overall operation is
summarized as:

F ¼ Fc Fð Þ � F (1)

Fout ¼ Fs Fð Þ � F (2)

Where F is the input feature map, Fc infers channel attention, Fs
denotes spatial attention, and ⊗ represents element-wise multi-
plication. Channel attention multiplies different weights to each
channel of a feature map, thus focusing on meaningful features
given an input image. Inspired by Wang et al.‘s work13, we use an
Efficient Channel Attention model as consideration of interaction
among every channel and its k neighbors. An average pooling is
first applied to the feature map, and 1D convolution of size K is
followed, where K is calculated in the following Equation. Besides,
the output of convolution is fed to a sigmoid function.

K ¼ log2 Cð Þ
γ

þ b
γ

����

����odd (3)

Where C is channel dimension, γ and b are parameters of mapping
function (γ= 2 and b= 1 are used in the experiment).
Spatial Attention cares locations of target objects. We

concatenation both max pooling and average pooling of feature
maps to capture attention along the channel axis. To aggregate
information, the result is then forwarded to a standard convolu-
tion layer, forming a final attention map.

Generation of training data
Generating training data for neural networks is an important
challenge in this study. It is unpractical to collect real STEM
experimental images as training data. On the one hand, the
electron microscopy experiment is expensive, and the crystal
structure and defect types that can be collected by a single
laboratory are extremely limited. On the other hand, it is time-
consuming and inaccurate to label all atom positions manually.

Fig. 1 Schematic diagrams describing degradation phenomena of NCM cathodes. The whole picture background is based on the
microscopic profile of cathode particles on the current collector. The five magnified cycles represent some common cathode material
degradation mechanisms, such as the evolution of oxygen, the dissolution of transition metals (TM), the rupture of CEI films, the cation mixing
and the generation of particle cracks.
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Therefore, simulated methods are applied to build the training
datasets as shown in Fig. 4. Firstly, the atomic simulation
environment, a Python library for working with atoms, is
employed to generate a large number of atomic cluster models,
including layered, spinel, and rock-salt structures. The space
groups for layered, spinel and rock-salt structures are R3m
(a= 2.877 Å, b= 14.228 Å), Fd3m (a= 8.219 Å) and Fm3m
(a= 4.177 Å), respectively14.
Considering the serious loss of lithium and transition metal Mn

and Co and the existence of rock-salt phase structure during NCM
degradation, it is reasonable to replace degraded NCM with NiO
which is also rock-salt structure15. Similarly, in order to simplify the
atomic configuration, lithium cobalt oxide (LiCoO2, LCO) and
lithium manganate (LiMn2O4, LMO) are used to generate layered
structure models and spinel structure models, respectively16–18.
The STEM images of LCO, LMO, and NiO are basically consistent
with the crystal structure evolution of NCM523 during aging.
Transition metal vacancies, lithium vacancies, interstitial atoms,

and other point defects are introduced into the primary crystals of
these atomic models. After introducing defects, the necessary
geometry optimization of atom clusters is carried out by using the
BFGS optimization method and GPAW potential calculator built in
ASE (atomic simulation environment, a Python library)19. The
convergence conditions such as maximum forces are set to a
larger value to reduce the calculation time and maintain the
salient lattice distortion caused by defects. Because neural
networks need the visual effect of lattice distortion, rather than
precisely calculating the total system energy by the atom
positions. The model diagrams before and after local geometry
optimization are shown in Fig. 4a. The trace of geometry

optimization is clearly visible for the 3~5 atoms near the point
defect center location.
Then the simulated electron microscope images for different

atomic clusters are generated using a multislice algorithm20,21. In
this method, the electron beam is assumed to be a plane wave,
and the incident wave function of the electron beam is determined
according to the preset electron microscope parameters, such as
spherical aberration coefficient, electron dose, annular incident
angle, etc., and then incident on the surface of the atomic cluster.
The state of the exit wave function at different positions is changed
according to the interaction of the electronic structures of each
atom. Then the plane projection of the exit wave function is
calculated. The intensity value of the projection is used as the pixel
value to generate a simulated image according to the contrast
transfer function. The simulated STEM images are shown in Fig. 4b.
The real defect coordinates used in atomic cluster models are used
as the training label. Such a labeling method is more accurate and
efficient than ‘by hand’ manually. The full dataset is available at
Zenodo22. Three images from this dataset were previously
analyzed by some of the authors in the context of Regeneration23.

Training process
The whole process for machine learning-based image analysis is
shown in Fig. 5. As the first step of this analysis, the designed
attention neural network is encapsulated into a python file for the
later main program call to realize the end-to-end semantic
segmentation of STEM images. The input of the network is the
simulated STEM images of different atom models. The output of
the network is the location of the point defect in the atomic
cluster.

Fig. 3 The flowchart of a two-sequential attention block with a residual connection. Conv means convolution operation. 1DConv and K
mean 1D convolution with kernel size K. σ means sigmoid activation function. A straight line or curve with an arrow represents the data
transfer. ⊗ represents element-wise multiplication. ⊕ represents residual connection.

Fig. 2 The architecture of attention U-net. The symbol ‘res_conv’ means residual connections and convolution operation. BN means batch
normalization operation.
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After the above data generation step, the simulated STEM
images and the corresponding labels have formed a paired
dataset. Then images and labels with different crystal structures
are cut to a uniform size (pixel value 400 * 400). Three different
crystal structures are randomly mixed to form an effective dataset
containing 3000 pairs of input and output. The pixel values of
input images are normalized to increase the training efficiency.
The labels are converted to Booleans to facilitate the employment
of loss function in the later stage. The batch size is designed as 5
and the epoch number is set as 20. The network python file is
called to start the training process. During this period, the network

parameters are continuously adjusted by random gradient
descent algorithm. Finally, the model parameters at the end of
training are retained for defect detection of real STEM images.

Loss function design
The U-net is trained using mean-squared error and L2 regulariza-
tion technique as loss function. The formulation is

L ¼
X

n

Pn � pnk k2þ 1
2
λ
X

i

W2
i (4)

Preprocessing

Noise adding

Image crop

Normalization

Boolean 

Input Simulation Dataset

Input: STEM Image

Experimental Inference 

Model Training

Model Parameters

Output: Segmentation and Classification

Attention-Unet

Attention-Unet

Fig. 5 The whole framework of model training and STEM image inference. During the model training stage, the simulation STEM images
and the corresponding labels compose a paired dataset. After dataset preprocessing and training, the designed attention neural network
realizes semantic segmentation. During the experimental image inference stage, the model parameters at the end of training are retained in
the model for defect detection of real STEM images.

Fig. 4 Procedure for generating training data. a The original and geometry-optimized atom models for layered, spinel, and rock-salt
structures. b The simulated STEM images for layered, spinel, and rock-salt structures.

W. Sha et al.

4

npj Computational Materials (2022)   223 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



where L represents the loss value that needs to be minimized
during the training process. P is the output and P is the ground
truth. The size of the weights is regularized with a penalty term λ.
The generalization ability of the model is guaranteed by the large
variability of the training datasets. However, the model para-
meters fall into a local optimal state in the training process. The
number of point defects in STEM pictures is far less than the
number of atoms, the picture labels are sparse. If only MSE and L2
regularization are used as the loss function, the parameter
distribution of the whole model is easy to fall into local
optimization. Because when all the output values of the model
approach 0, the values of MSE and L2 regularization are very small,
almost in the state of gradient disappearance. In order to solve
this problem, we enlarged the label pixel size of point defects in

the early training stages. Through comparative tests and ablation
experiments, it was found that the effect of this loss function was
improved. As can be seen from Fig. 6, training loss first drops
sharply and then tends to converge, which is a typical result of
successful neural network training. Finally, loss remained with
small fluctuations between different batches during the training of
epoch 20. Therefore, the training is stopped after 20 epochs. The
model parameters are saved and applied for real STEM defect
detection.

Electrochemical and microscopic characterizations
We carried out a series of electrochemical and microscopic
characterizations to explore the aging mechanism in NCM single-
crystal particles. As shown in Fig. 7a, there remains a pair of
inconspicuous redox peaks in the cyclic voltammetry (CV) curve,
and the CV curve with lower currents and larger peak shifts
compared to Fig. 7b (the CV curve of commercial NCM523). It
indicates that the degraded material has poorer redox perfor-
mance and lower capacity than that of commercial NCM523. This
can be confirmed by the rate performance of degraded NCM and
commercial NCM523 (Fig. 7c). The commercial NCM523 exhibits a
high rate performance of 170.8 mAh g−1 at 1 C and 121.1 mAh g−1

at 5 C, while the degraded NCM523 shows only 4.6 mAh g−1 at
0.1 C.
Cathode failure is mainly related to the crystal structure of the

material, while a thick CEI film on the surface of the degraded
material hinders ion diffusion, and phase transformations near the
surface of the material as well as inside the material lead to the
degradation of the material properties. Hence, the high-resolution
X-ray photoelectron spectroscopy (XPS) measurement was applied
to finely characterize the composition of the CEI film. As shown in
Fig. 8, the peak at 284.8 eV is associated with C-C/C-H, the peaks at
286.9 eV (C–O) and 288.0 eV (C=O) mainly come from the Li2CO3

phase in the CEI, and the peak at 290.4 eV peak corresponds to
polyvinyl difluoride (PVDF) or the ROCO2Li salt24. In addition,

Fig. 6 The decreasing process of loss value on simulated STEM
images during the training stage. Epoch defines the number of
times the learning algorithm works in the entire training dataset.
Here it is set to 20. The loss value measures the difference between
the network output images and the labeled images.

Fig. 7 Electrochemical characterizations of NCM523. a The CV curves of degraded NCM523 with the scan rate of 0.1 mV s−1. b The CV curves
of commercial NCM523 with the same scan rate. c The rate performance of degraded NCM523 and commercial NCM523. d High-resolution
HAADF STEM image. e The comparison of EELS low-loss spectra between the surface and the interior.
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the F 1 s spectra of degraded NCM523 can be divided into four
peaks corresponding to LiPF6 (688.1 eV), PVDF (687.3 eV), LixPFyOz

(686.4 eV), and LiF (684.8 eV), indicating the existence of LiF and
organic components in the CEI. Furthermore, in the O 1 s core
region, the Osurface mostly comes from the organic components,
Li2CO3 and adsorbed components. While the Olattice corresponds
to the NMC lattice oxygen peak, which is always distinguished in
the NCM materials23.
Furthermore, EELS was used to further investigate the chemical

valence information of atoms in cathode particles. The EELS signal
is scanned from the area indicated by the arrow (Fig. 7d),
corresponding to the thin surface and thick center area of NCM
particles. In addition, the overall signal variation of the EELS with a
slight signal shift from the surface to the inner ~130 nm is shown
at the bottom of Fig. 7. The EELS lines with 10 nm acquisition of
one signal spectrum scheme scan are shown in Fig. 7e. The K-edge
of O originates from O 1 s excitation to unoccupied 2p orbitals
above the Fermi level. The O K-edge is related to the hybridization
between the O 2p and C 2p states, which is mainly influenced by
the CEI composition of the material surface. While the interior is
associated with the hybridization of 3d and 4sp orbitals of
transition metal atoms, leading to the splitting of the peaks25. In

addition, the low-loss spectrum of Ni L-edge, Co L-edge, and Mn
L-edge show a blue shift of absolute energy from the surface thin
region to the central thick region, indicating that the oxidation
state of transition metal atoms on the surface is low due to the
surface oxygen loss during the cycle.
These characterization data contain rich degradation features.

However, it is inefficient to mine millions of atoms’ structural
information by researchers’ experience alone. Hence, we have
developed a deep learning framework to efficiently locate and
track atom clusters, single atoms, or lattice defects, and
quantitatively study the phase reactions in materials. The
following parts are the research details.

Deep learning-based characterization data mining
The proposed u-net model is employed to locate the atomic
defects in the NCM STEM experimental images. All inference
results for experimental STEM images were evaluated using the
naked eye as an external judgment. Although our model only uses
simulated STEM images for training, it can accurately identify the
point defects in experimental STEM images as shown in Fig. 9.

Fig. 8 XPS spectra characterization for NCM523 powders. a–c Show the high-resolution XPS spectra of the C 1 s, F 1 s, and O 1 s for
degraded NCM523.

Fig. 9 Typical inference results of attention U-net. a Original STEM image for rock-salt phases in NMC523. The scale bar represents 2 nm.
b Positions of transition metal atoms located by Attention U-net. c An enlarged detail part of a as an input to the attention U-net. The scale bar
represents 1 nm. d The network output result corresponding to point defects in c. e The superposition of c and d showing the defect locating
effect of attention U-net. Error bars represent one standard deviation computed across different STEM images. The scale bar represents 1 nm.
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NCM523 mainly contains three kinds of elements: transition
metal (TM) elements, oxygen elements, and lithium elements.
Unfortunately, oxygen atoms are basically invisible in HAADF
images because of the atomic number contrast. Based on the
understanding of point defect distribution, transition metal
vacancy, Li vacancy, and interstitial atom are determined to be
labeled and quantitatively analyzed. Lithium vacancies are often
observed in the layered phase (Fig. 10a) and transition metal
vacancies and interstitial atoms often exist in the form of
composite defects together (Fig. 10c). Interstitial atoms refer to
individual atoms outside of the normal crystal sites.
After the training of several epochs, the network correctly

identifies the location of different point defects. A segmentation of
the background map into several distinct object classes corre-
sponding to vacancies or interstitial atoms. A classic transition
metal vacancy in rock-salt structure image is taken as an example.
As shown in Fig. 9c, the lack of transition metal atom in this specific
crystal site leads to the distortion of several adjacent atoms.
Therefore, the periodicity of pixel value distribution is destroyed
near the vacancy region. The network can basically judge the
defects by the degree of periodicity damage and the difference
between pixel values. The model probably learned that atoms with
darker gray values are likely to be vacancies. Hence, most atoms are
correctly assigned to their classes. The last layer of the network
applies the sigmoid activation function, so the output pixel values
range from 0 to 1. Higher output pixel values represent a larger
defect probability (Fig. 9d). It may be more intuitive to superimpose
the output probability value on the input image as shown in Fig. 9e.

We also performed the confusion matrix experiment using the
simulated dataset, as shown in Table 1. Three kinds of defects, Li
vacancy, TM vacancy, and TM interstitial, have been quantitatively
analyzed, and lattice atom and background are also counted in the
table. The number 0 in the lower right corner of the table indicates
that there are no atoms in the background of STEM images. It can
be seen from the table that there is no confusion between different
defects and atomic categories. Because each category will have a
separate channel for output in the network. The misclassification
error of the network mainly comes from the confusion between
background and atom defects, which is shown by the numbers in
the last row and the numbers in the last column.
Then, we calculate the overall performance of the network with

four different metrics: Precision, Recall, F1 score and IOU. Their
calculation formula is shown in Supplementary Note 3. F1 score is
the harmonic average of precision and recall. IOU is defined as the
intersection area ratio of the segmentation result and the label
image. The calculation results are summarized in Table 2. It can be
seen from Table 2 that our model has satisfying classification and
segmentation accuracy for defects. This provides high reliability
for subsequent defect and atom number calculation.
Compared with manual methods, the applications of machine

learning methods enable us to conduct statistical analysis of various
defect data on a relatively large scale. Therefore, the point defect
ratio and TM layer spacing are calculated to perform quantitative
analysis as shown in Fig. 10. The point defect ratio is the ratio of
defect numbers to all atoms in the STEM images. This ratio
qualitatively represents the phase stability of the electrode materials.

Fig. 10 The quantitative analysis results of NMC523 degradation. a–c are the point defect inference results for layered, spinel, and rock-salt
phases in NCM523, respectively. The embedded markups are LV (Lithium vacancy) and TMV (transition metal vacancy). The scale bars in a–c all
represent 1 nm. d TM layer spacings and point defect ratios in NCM523 STEM images with different SOC. Green bars represent layer spacing
and cyan bars represent point defect ratio. Error bars represent one standard deviation computed across different STEM images.
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TM layer spacing is defined as the interplanar spacing in [001]
direction. The distance between dense transition metal atomic layers
along the c axis has a great impact on the number of lithium storage
sites, which can roughly reflect the electrochemical capacity of NCM
materials18,26,27. Detailed discussions of these two quantitative
indicators will be carried out in the following parts.
NCM523 battery was cycled and aged to 5 different states. After

discharge, the batteries were disassembled to obtain the electrode
material for STEM analysis. The specific states of charge (SOC) are
100%, 90%, 70%, 30%, 10%, as shown in Fig. 10d. At the beginning
of the cycle, NCM523 is all in the layered structure. Then spinel phase
and rock-salt phase are gradually formed in turns. When the capacity
decays to about 10%, it completely becomes the rock-salt phase. The
point defect ratios in different SOC are 9, 24, 39, 73, and 48 per 1000
atoms, respectively. Traces of lithium vacancies occur first with little
damage to the crystal structure. A small amount of transition metal
vacancies come into existence later due to the strong oxidation of
transition metals, which is related to the decomposition of
electrolytes with a narrow electrochemical window2,3.
During the middle SOC, the spinel phase belongs to the

transition phase, so there are a large number of point defects
caused by phase transformation, and the defect ratio is the
highest. The initial layered structure and the final rock-salt phase
are relatively stable equilibrium phases, so the number of defects
is less. The energy of the rock-salt phase after complete
degradation is more stable and it has lost the ability to
accommodate lithium ions14,28. More STEM images from different
SOC are needed to determine the precise SOC value where the
point defect ratio reaches its maximum. However, the rule that the
number of point defects increases first and then decreases should
be generally consistent with this observation.
The proposed u-net network can also be used to locate TM

atoms through labeling the transition metal atom positions in the
dataset, as shown in Fig. 9b. The total number of atoms in the
picture can be quickly calculated by using border following
algorithm29. The TM atom locating and counting results facilitate
the statistical analysis of TM layer spacing. The layer spacing
values in different SOC are proposed to be different during the
aging process30. Hence, the TM layer spacing of MCM particles is
investigated as shown in Fig. 10d. In the STEM images, each atom
has two adjacent TM atoms along the c axis. The average of c axis
coordinate differences with the two adjacent atoms is considered
as the TM layer spacing label for this atom. Then over 45,000 TM
atoms are sampled to calculate the mean value as the final TM

layer spacing for current SOC. The TM layer spacing decreases
from 4.86 Å to 1.97 Å as capacity decays to 10% of the initial
capacity (Fig. 10d). This highlights the importance of robust
layered structure and appropriate layer spacing of single crystal
NCM materials for longer battery cycle life. This also implies that
expanding the layer spacing to restore more lithium storage sites
in failure NCM materials might be one of the effective methods for
battery capacity regeneration23,28.
Through the high-throughput deep learning of NCM electron

microscopy data, this research classifies and counts the states,
categories, and quantity of material crystal defects, explores the
corresponding relationship between cycle life and microscopic
crystal structures, and provides more profound insights into the
aging mechanism and physical and chemical reaction of ternary
layered cathode materials. Thus, the macro properties of battery
materials can be better understood and controlled. This analysis is
helpful to deeply understand the defect evolution and chemical
transformation related to the degradation of layer cathode
materials and to design battery materials with longer service life.
The general machine learning data analysis framework can also
greatly promote the theoretical development and technological
progress of other materials science fields.

METHODS
Preparation of degraded NCM powders
NCM523 (Sigma-Aldrich) powders as cathode materials and
graphite as anode materials were purchased to assemble pouch
cells. PVDF (Aladdin) and super-P (SP, Aladdin) were used as
binders and conductive additives, respectively. The graphite slurry
with a weight ratio of graphite:binder:SP= 8:1:1 were coated on
Cu foils as the anodes. The NCM slurry with a weight ratio of
NCM523:binder:SP= 7:2:1 were coated on Al foils to form the
cathodes.1 M LiPF6 solution was selected as the electrolyte, and
the solvent was a mixture of vinyl carbonate (EC), dimethyl
carbonate neutralization (DMC), and methyl ethyl carbonate (EMC)
in a volume ratio of 1:1:1. The pouch cells were cycled at 1 C rate
in the voltage range of 3.0 V to 4.2 V until the capacity retention
rate is less than 10% of the original capacity. The cathode films
were obtained by disassembling the pouch cells and wetting the
cathode surfaces with a few drops of DMC solvent. This step is
followed by drying the films in a vacuum oven at 70°C for 12 h to
remove the residual electrolyte and lithium salts. The cathode
materials were scraped from the aluminum foil and immersed in
N-methyl-2-pyrrolidone solvent to remove the residual PVDF
binders. Finally, the degraded NCM powders were obtained after
centrifuging, drying, and screening the mixed solution.

STEM experiment
Firstly, we grind the prepared NCM powder to below 500 nm,
disperse the sample in absolute ethanol by ultrasonic dispersion,
and finally pick it up with a support copper grid. Focused Ion
beam equipment was used to cut the NCM particles along the
dislocation jogs to expose the interest crystallographic plane.

Table 2. Defects and atoms recognition results with four metrics.

Class Precision (%) Recall (%) F1 score (%) IOU (%)

Li vacancy 89.17 88.05 88.61 80.83

TM vacancy 86.93 92.51 89.63 78.1

TM interstitial 88.67 90.00 89.33 70.65

Lattice atom 97.84 98.96 98.40 88.98

Table 1. A confusion matrix for the defect prediction in testing datasets.

Predicted

Li vacancy TM vacancy TM interstitial Lattice atom Background

Actual Li vacancy 420 0 0 0 57

TM vacancy 0 519 0 0 42

TM interstitial 0 0 540 0 60

Lattice atom 0 0 0 67536 708

Background 51 78 69 1488 0
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Atomic resolution STEM imaging was performed using JEM2100F/
Titan G2 60–300 transmission electron microscope, which is
equipped with a double spherical aberration corrector and
operated at 60–300 kV. A low-dose beam shower was performed
within 60 seconds before imaging to remove unstable organic
impurities on the sample surfaces. The high-angle annular dark-
field (HAADF) STEM images were acquired with a convergence
angle of 31 mrad and a HAADF detector inner and outer collection
angles of 86 and 200mrad, respectively. The STEM images were
introduced to the DL network without any post-processing.

DATA AVAILABILITY
The raw images of NCM523 in our analysis process are available at https://doi.org/
10.5281/zenodo.581020922.

CODE AVAILABILITY
All the relevant code is available from the authors upon request.
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