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Robust combined modeling of crystalline and amorphous
silicon grain boundary conductance by machine learning
Chayaphol Lortaraprasert1 and Junichiro Shiomi 1,2

Knowledge in thermal and electric transport through grain boundary (GB) is crucial for designing nanostructured thermoelectric
materials, where the transport greatly depends on GB atomistic structure. In this work, we employ machine learning (ML)
techniques to study the relationship between silicon GB structure and its thermal and electric boundary conductance (TBC and EBC)
calculated by Green’s function methods. We present a robust ML prediction model of TBC covering crystalline–crystalline and
crystalline–amorphous interfaces, using disorder descriptors and atomic density. We also construct high-accuracy ML models for
predicting both TBC and EBC and their ratio, using only small data of crystalline GBs. We found that the variations of interatomic
angles and distance at GB are the most predictive descriptors for TBC and EBC, respectively. These results demonstrate the
robustness of the black-box model and open the way to decouple thermal and electrical conductance, which is a key physical
problem with engineering needs.
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INTRODUCTION
Thermoelectric generators (TEGs)1–3 are capable of directly
converting heat into electricity. With low-maintenance and silent
operation, TEGs are highly anticipated to reuse waste heat and
power sensors and transmitters necessary to gather countless data
in Internet of Things (IoT) for future society. The thermoelectric
conversion efficiency is mainly determined by the figure of merit
zT= S2Tσ/κ, where S, T, σ, and κ are Seebeck coefficient, absolute
temperature, electrical and thermal conductivity, respectively.
While there are materials such as Bi2Te34, PbTe1, and SnTe5 that
exhibit high zTs, the commercialization remains challenging owing
to limited abundance and toxicity of these materials. On the other
hand, highly abundant and mass-producible silicon6–10 still has a
low zT at around room temperature (where most IoT sensors
operate) due to its high thermal conductivity10. Improvement in
thermoelectric performance of silicon-based materials would help
larger spread of the TEG technology.
Nanocrystallization, a process of populating materials with grain

boundaries (GBs), has been employed as one of the approaches to
improve the zT10–20. The promising effect of GBs on thermo-
electrics is generally attributed to phonons, primary heat carriers,
being selectively scattered10,11,14–17,19,20, carrier mobility enhance-
ment13,18, and energy selection of electrons12,17. This shows that
GBs can significantly influence the thermoelectric performance of
materials, and many experiments have also indicated that the
thermoelectric characteristics of a single GB greatly depend on its
atomistic structure21–24. Therefore, knowing the quantitative
relationship between GB structure and its thermoelectric proper-
ties becomes advantageous when designing thermoelectric
nanomaterials.
To investigate the relationship between GB structure and its

physical properties, many computational efforts have been
made25–31. For instance, excess volume of MgO at GB has been
shown to correlate well with thermal conductivity obtained from
molecular dynamics (MD) calculations31. However, the excess
volume alone could not fully account for the structure–property

relationships in general due to the high-dimensional nature
of GB-related problems31. There, structural descriptors containing
sufficient information to characterize different atomic structures
have recently been shown to be effective in handling the
intimidating dimensionality of GBs32–36. Several recent studies
have employed these structural descriptors along with machine
learning (ML) to gain more insights into the GB structure–property
relationship37–45. For example, Fujii et al.44 discovered promising
descriptors based on suitable smooth overlap of atomic positions
(SOAP)46 that were highly correlated with MD-calculated thermal
conductivity of MgO GB. They then constructed an accurate
prediction model of thermal conductivity using multiple linear
regression with predictors based on hierarchical clustering of
these descriptors and identified the structure–property relation-
ship from the regression model44.
In this work, we employ the ML-descriptor approach to study

the relationship between silicon GB and its thermoelectric
properties, obtained by high-throughput calculations based on
Green’s function methods47,48. We present a robust ML prediction
model of thermal boundary conductance (TBC) covering both
crystalline–crystalline and crystalline–amorphous interfaces from
input disorder descriptors and atomic density. We also construct
high-accuracy ML models for predicting TBC, electrical boundary
conductance (EBC), and their ratio (EBC/TBC) of crystalline GBs.
Our TBC prediction model exhibits a significantly higher
coefficient of determination than earlier studies40,44. In addition,
the models reveal insights into the guiding principles to improve
the thermoelectric performance that the angular and distance
variation at GB are the most predictive descriptors for TBC and
EBC, respectively. This suggests that populating materials with GBs
that have large angular variation and small distance variation can
improve the figure of merit. Moreover, the EBC/TBC prediction
model also indicates that priority should be given to angular over
distance variation when attempting to decouple TBC from EBC in
order to increase the figure of merit.

1Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan. 2Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan.
✉email: shiomi@photon.t.u-tokyo.ac.jp

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00898-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00898-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00898-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00898-1&domain=pdf
http://orcid.org/0000-0002-3552-4555
http://orcid.org/0000-0002-3552-4555
http://orcid.org/0000-0002-3552-4555
http://orcid.org/0000-0002-3552-4555
http://orcid.org/0000-0002-3552-4555
https://doi.org/10.1038/s41524-022-00898-1
mailto:shiomi@photon.t.u-tokyo.ac.jp
www.nature.com/npjcompumats


RESULTS AND DISCUSSION
Crystalline and amorphous GBs
We obtained 1228 silicon GB structures at various annealing
temperatures and pressures. The resulting GB structures
depended on the final temperature and pressure of the annealing
process. In general, for low final temperatures, the disordered
structure in the device region crystallized from both ends and
formed a sharp crystalline–crystalline interface as shown in
Fig. 1(a, c, d), and for high final temperatures, the structure in the
device region remains being disordered resulting in amorphous
slab as shown in Fig. 1(b, e, f).
In the case of amorphous slab, there are two

crystalline–amorphous interfaces on the left and right side of the
slab, therefore the total resistance (Rtotal) consists of the internal
resistance of the slab (Rl) and the thermal boundary resistance at
the interfaces (R0). To understand their relative contribution, we
performed conductance calculation with varying lengths (l) of the
amorphous device region as shown in Fig. 2. The result shows that
Rtotal grows linearly with l, confirming that the thermal con-
ductivity can be approximated to be constant in the range of
variation in l. This then allows us to extract 2R0 by extrapolating
the linear profile to l= 0. The analysis finds that, for the range of l,
2R0 is significantly larger than Rl and thus the primary contributor
to Rtotal. Therefore, half of the transmission through the
amorphous slab case can be seen to represent transmission
through a single crystalline–amorphous GB.
Consequently, we now have two types of GBs in this work,

crystalline–crystalline GBs and crystalline–amorphous GBs. It
becomes necessary, therefore, to classify our structures into
crystalline–crystalline and crystalline–amorphous structures based
on structural disorder. We employed the k-means algorithm49

using the four disorder descriptors, i.e., σθ, Hϕ, σl, and ARDF to
cluster our structures into two groups. As a result, we obtained
426 structures with crystalline–crystalline GBs and 802 structures
with crystalline–amorphous GBs.

Combined predictions of TBC
Ten different supervised ML models implemented in the scikit-learn
Python library50 were examined: linear regression, k-nearest
neighbors (KNN), RandomForest51, ExtraTrees52, GradientBoosting53,
CatBoost54, AdaBoost55, XGBoost56, HistGB57, and LightGBM58. The
first two are classical models, while the remainings are tree-based

models. Five structural descriptors, namely, the standard deviation
of bond angles θ and bond lengths l (σθ and σl), the entropy of
dihedral angles ϕ (Hϕ), the RDF area (ARDF), and the atomic density
(ρ) were used as input predictors, and the calculated conductances
of single GBs were used as prediction targets for ML models.
All data were divided into 85% training set and 15% test set. Six-

fold cross-validation (CV) on the training set was employed to fine-
tune and compare the ML predictive performance. Hyperpara-
meters of each ML model were fine-tuned based on CV results
using Tree-structured Parzen Estimator (TPE) algorithm59–61

implemented in the Optuna Python library62. Root mean squared
error (RMSE) was selected to evaluate the ML models since large
errors are undesirable. Moreover, mean absolute percentage error
(MAPE) was also calculated to assist the interpretation of results.
The model with the lowest RMSE in CV was then refitted to the
entire training set and finally evaluated against the test set to
assess a generalization capability.
It can be seen from the CV results shown in Table 1 that linear

regression had the worst performance of all the ten ML models.
This indicates that the relationship between the structural

Fig. 1 Examples of grain boundaries used in this work. a, c, and d contain crystalline–crystalline boundaries, while b, e, and f contain two
crystalline–amorphous boundaries.

Fig. 2 Length dependence of total thermal resistance (Rtotal) of a
disorderly structure. Fourier's law gives: Rtotal= 2R0+ Rl= 2R0+ r ×
l, where R0 is the crystalline–amorphous resistance, and Rl and r is
the resistance and resistivity of the amorphous (device) region,
respectively.
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descriptors in this work and thermal boundary conductance (TBC)
cannot be explained by a simple linear relationship. Notably,
LightGBM also performed poorly, with average error more than
20%. The other ML models performed fairly well, with average
errors between 10% and 20%, indicating the robustness of tree-
based models in general. On the other hand, KNN, despite being a
traditional ML model, showed the second best performance, only
inferior to ExtraTrees model.
Moreover, by combining the individual predictions from the five

best models (ExtraTrees, KNN, GradientBoosting, CatBoost and
AdaBoost), we were able to realize a powerful ensemble model
with better predictions. This is attributable to the fact that
combining a set of equally well performing models could balance
out the individual weaknesses of each model63.
Finally, the ensemble model was refitted to the entire training

set and evaluated against the test set. As shown in Fig. 3 and
Table 2, the ensemble model was able to predict TBC of both GB
types with exceptional accuracy on both training and test set.
Moreover, the close errors on the training and test set indicate
that the ensemble model did not overfit, which commonly

occurs when a ML model captures unnecessary noise and detail
in the training set. The prediction results on the test set also
show robustness of the ensemble model when predicting data it
has never encountered before.
Furthermore, it becomes apparent that the model performed

slightly better on CV than on the test set. This is expected since we
fine-tuned the hyperparameters of the models based on CV
results, thus the ensemble model was adjusted to give an optimal
performance on CV. Consequently, the test set in fact evaluates
the generalization ability of the ensemble model. Moreover, as the
performance on the test set was comparable to that in cross-
validation, which is the average result from different splits, it can
be said that it is not by chance that the randomly selected test set
in this work yielded remarkable prediction results.
In addition, it can be observed that, while the ensemble model

approximately had an equivalent performance on both GB types
for the training set, it performed better on crystalline–crystalline
GBs than on crystalline–amorphous GBs for the test set. As
shown in Table 2, the ensemble model had smaller RMSE on
crystalline–crystalline GBs than crystalline–amorphous GBs
despite the former type having higher overall TBCs for both
training and test set.
The somewhat superior performance of the ensemble model on

crystalline–crystalline GBs may be attributed to the fact that the
calculated inverse of Rtotal in the crystalline–amorphous case is not
exactly the TBC at the interface with minor contribution from the
thin amorphous slab (Fig. 2). Another possible explanation is
the origin of the disorder features (σθ, Hϕ, σl, and ARDF). While the
disorder features were obtained from the entire structure in the
simulation domain, for crystalline–crystalline GBs, they reflect
the disorder of the atoms near the GB, i.e., the local interface
disorder since there is virtually no disorder in the internal crystal
region away from the interface. On the other hand, in the case of
crystalline–amorphous GB, the disorder features reflect that
of the amorphous slab in addition to the interface. Therefore,
the act of approximating the resistance and features at the
crystalline–amorphous interface could potentially have confused
the prediction model, hence the inferior performance. Never-
theless, the interesting point here is that despite the approxima-
tion, the prediction of conductance was quite successful even for
crystalline–amorphous interfaces.
Figure 5 shows the feature importances of the ensemble model,

which are the average relative importances of features over the
five best models (except KNN) fitted on the entire training set. In
general, tree-based models attempt to minimize loss, which is the

Fig. 3 Parity plot between calculated and predicted thermal boundary conductance (TBC) from the ensemble model. Parity plots of
a training set and b test set. For the test set, the model performed better on crystalline–crystalline GBs than on crystalline–amorphous GBs.

Table 1. Six-fold cross-validation results for thermal boundary
conductance prediction of all training structures, ordered by root
mean squared error (RMSE).

Model RMSE (GWm−2K−1) MAPE

Ensemble 0.064 9.9%

ExtraTrees 0.078 11.3%

KNN 0.081 12.4%

GradientBoosting 0.087 15.6%

CatBoost 0.091 14.4%

AdaBoost 0.094 17.5%

XGBoost 0.098 19.8%

RandomForest 0.100 18.6%

HistGB 0.107 19.3%

LightGBM 0.108 23.0%

Linear regression 0.187 28.8%

Mean absolute percentage error (MAPE) was calculated for interpretation
purpose. The ensemble model was constructed by averaging individual
predictions from the five best models.
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variance of a target variable within each leaf node in case of
regression, as illustrated in Fig. 4. Feature importance of tree-
based models is the total reduction in loss resulting from splitting
each node within each tree by that feature, averaged over all
trees. The values of feature importances are normalized so that
the total importance of all features is unity, i.e., the relative
importances are computed. In essence, the importance of a
feature represents the contribution of that feature to accurately
predicting the target variable, which is the calculated conductance
in this work.
It is obvious from Fig. 5 that all of the disorder features

(descriptors), i.e., σθ, Hϕ, σl, and ARDF are important to predict TBC.
Particularly, the angles-related features (σθ and Hϕ) were the
strongest predictors of TBC, i.e., they yielded the highest reduction
in TBC variance in a tree node. These two features accounted for
more than 50% of the total importance for TBC prediction. The
distance-related features (σl and ARDF) are also crucial for the
prediction, with 36% total importance. While atomic density (ρ)
was the weakest predictor, it is still a relevant feature since
excluding it from the input features greatly exacerbated the
predictive performance of the ensemble model. The fact that this
feature is still important is attributed to its accounting for varying
pressure during the annealing process of GB structure.
As above, the ML-descriptor approach employed in this work is

capable of capturing the complex relationship between the
atomistic details of GB structure and TBC. The obtained insight
cannot be discovered by the traditional methods such as acoustic
mismatch model (AMM)64 and diffusive mismatch model (DMM)65

as these models do not account for the atomic structure at GB.

Thermoelectric properties predictions of
crystalline–crystalline GBs
Regarding electrical boundary conductance (EBC), we discov-
ered that a large number of GBs had zero or extremely small
values of maximum EBCs within a realistic range of chemical
potential (−1 eV ≤ μ ≤ 1 eV). Excluding these GBs left us with 75
crystalline–crystalline and 211 crystalline–amorphous GBs that
are electronically realistic.

We repeated the ML-training process on all 286 electronically
realistic GBs and the prediction results were mediocre (30.9% and
37.7% average error for TBC and EBC cross-validation, respec-
tively). These inferior results indicate that a large amount of data is
necessary in order to predict the conductances of both GB types
simultaneously. However, using only 75 crystalline–crystalline GBs
(with 20% randomly selected test data) yielded extremely accurate
prediction results, as shown in Fig. 6 and Table 3. Six-fold cross-
validation (CV) on the training set was also employed to fine-tune
ten ML models based on RMSE. An ensemble model, however, was
constructed by averaging the individual predictions from the
three best models of each property instead of five since this
delivered better results.
In addition to TBC and EBC, we also trained the models to

directly predict EBC/TBC, which is proportional to the thermo-
electric figure of merit (zT). By directly predicting EBC/TBC, we can
identify the important descriptors that need to be prioritized
when attempting to decouple one conductance from the other in
order to increase zT of silicon materials. The Seebeck coefficient
was excluded in this work since it is a bulk property in general, in
contrast to the boundary conductance which is always an
interfacial property (see Supplementary Discussion).
It can be observed from Table 3 that TBC was predicted with

merely around 2% average error. Moreover, the training and test
results were extremely close, indicating that the ensemble model
barely overfitted the training data, thus should have correctly
captured the underlying structure–property relationship. In
addition, our model also has a significantly higher coefficient of
determination (R2= 0.99) on the test set than previous works
predicting the thermal transport property of grain boundary40,44

despite using less data.
As is the case with combined predictions of both GB types, the

angles-related structural descriptors, particularly the entropy of
dihedral angles (Hϕ), were the strongest predictors for TBCs of
crystalline–crystalline GBs, as illustrated in Fig. 6b. This result

Fig. 4 Demonstration of computing loss reduction resulting from
one split in a decision tree. This reduction value for a given feature
is summed all over a single tree, then gets averaged over all trees. y,
ŷ, and x1 denote the target variable, predicted value, and selected
feature for splitting, respectively.

Fig. 5 Feature importances for TBC prediction. Angles-related
features are the most predictive. Atomic density is the weakest
predictor but still relevant.

Table 2. Summary of thermal boundary conductance (TBC) prediction results on training and test set.

Training set Test set

RMSE (GWm−2K−1) MAPE RMSE (GWm−2K−1) MAPE

Crystalline–crystalline (426 GBs) 0.044 5.8% 0.056 6.2%

Crystalline–amorphous (802 GBs) 0.047 8.1% 0.073 12.5%

Total (1228 GBs) 0.046 7.3% 0.068 10.4%

Root mean squared error (RMSE) and mean absolute percentage error (MAPE) were calculated as evaluation metrics.
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further reinforces the previous insight that the angles variation at
GB is highly predictive of TBC.
For EBC, although the errors were higher than those of TBC, the

ensemble model still enabled good predictions with approxi-
mately 9% average error on the test set. In contrast to TBC,
distance-related features, i.e., σl and ARDF were the most predictive
for EBC, as shown in Fig. 6d. This shows potential decoupling of
EBC from TBC by decoupling distance-related features from
angles-related features. Notably, atomic density was also a strong
predictor of EBC.

Finally, predicting EBC/TBC directly was the most difficult task,
with ~10% average error on the test set. This result is somewhat
intuitive since the ML models should be able to predict each
individual property more easily. However, by directly predicting
EBC/TBC, we were able to discover the most important features to
prioritize when attempting to decouple TBC from EBC, which are
the angles-related features, as shown in Fig. 6f.
Furthermore, more data than 75 crystalline–crystalline GBs did

not significantly improve the ML predictive performance (see
Supplementary Fig. 1). This indicates that, given predictive input

Fig. 6 Prediction results of 75 crystalline–crystalline grain boundaries that are electroincally realistic. Panels a, c, and e demonstrate
parity plots between calculated and ensemble-predicted values with error bars indicating standard deviations of the ensemble
predictions, while b, d, and f show feature importance of thermal boundary conductance (TBC), electrical boundary conductance (EBC),
and EBC/TBC respectively.
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descriptors and high-quality data, even a small amount of data
can be sufficient for a ML model to capture the structure–property
relationship and thus accurately predict the property. On the other
hand, a large amount of data was necessary for predicting the
conductances of crystalline–amorphous GBs. This suggests that
while the quantity of data is important for a large search space,
the quality of data is more important for a small search space.
Moreover, since both TBC and EBC had negative correlations

with the degree of structural disorder represented by four
descriptors in this work, one possible solution for thermoelectrics
is to increase the population of GBs with large angular variation
and small distance variation.
In summary, we employed the ML-descriptor approach identify

the relationship between silicon GB structure and its thermo-
electric properties. Using structural descriptors representing
angular and radial variation as well as atomic density, together
with high-throughput conductance calculations based on Green’s
function method, we were able to build a robust ML prediction
model of thermal conductance covering both crystalline and
amorphous GBs. Moreover, we presented high-accuracy ML
models for predicting EBC and TBC and their ratio which is
directly proportionate to thermoelectric figure of merit, using only
small data of 75 crystalline GBs. We also discovered that the
variations of interatomic angles and distance at GB are the most
predictive descriptors of TBC and EBC respectively, and that
angular variation is more important to EBC/TBC prediction than
distance variation. This suggests that constructing GBs with large
angular and small distance variation in materials can improve
thermoelectric performance of silicon. The insights from this work
also open the way to reveal the underlying mechanisms
governing GB physical properties. In addition, the extreme
robustness of the ML model predicting a large range of interfaces
expands the applicability of ML methodology to explore wider
search space of material structures and phenomena.

METHODS
Grain boundary (GB) structure construction
Firstly, fifteen Si GBs were generated by tilting or twisting two
crystals about their [001], [110], [310], [212] and [100] axes for
various misorientation angles, implemented in a Python library
called Aimsgb66. These structures were relaxed by an annealing
method using molecular dynamics (MD) simulation performed in
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software67. The two tilted or twisted Si crystals were placed as the
contact regions in Fig. 7 and a melt slab of Si, obtained by heating a
single-crystal Si up to 7000 K, was inserted into the device region in
between to form an initial structure for further annealing.
Annealing of the initial structure started at 4000 K with a

stepwise temperature decrease to 25 K over 1275 ps. The pressure
during the process was set to 1 bar. The GB structure was finally
optimized with a conjugate gradient algorithm. The optimized

Stillinger-Weber interatomic potential68 was used and one unit
layer on each side was fixed throughout the whole process. We
repeated the process 10 times for each GB using different initial
velocities and selected the most energetically stable structure.
To obtain more structures for training ML models, we varied the

values of the final temperature and pressure of the annealing
process. Particularly, in addition to the standard condition of 25 K
and 1 bar, the annealing calculations with the final temperature of
3000, 2000, and 1000 K, and the constant pressure from 0.1 to
0.6 Mbar with an increment of 0.1 Mbar were performed69. All
structures were also energetically optimized after the annealing.
Furthermore, we took four additional structures with different
initial velocity distributions for each amorphous condition (2000
and 3000 K), giving us the total of 84 structures for each of 15 base
GBs obtained initially. After excluding 32 unstable structures, we
overall obtained 1228 stable or metastable GB structures.

Green’s function methods
Green’s function methods47,48 were selected as a means to
calculate boundary conductance since they account for the
quantum distribution. Moreover, these deterministic methods
are also significantly faster than other common alternatives such
as non-equilibrium classical molecular dynamics (NEMD) which
requires the ensemble averaging of statistical computation. Thus,
Green’s function methods are exceptional for the ML tasks in this
work where a large amount of data is advantageous.
The transmission function of phonons Ξ(ω) across a GB plane

can be calculated as follows48:

ΞphðωÞ ¼ Tr½ΓLðωÞGphðωÞΓRðωÞGy
phðωÞ� (1)

where ω is the phonon frequency, Gph is the retarded Green’s
function of the device region, ΓL ¼ iðΣL � ΣyLÞ and ΓR ¼ iðΣR �
ΣyRÞ represent the flow rate from the left contact into the device
and from the device into the right contact, and ΣL and ΣR are the
self-energy matrices of the left and right contact. Using the
Landauer formula, we can obtain the following thermal boundary
conductance (TBC)70:

TBC ¼ 1
2πA

Z 1

0
ΞphðωÞ_ω ∂f BE

∂T

� �
dω (2)

where ℏ is the reduced Planck constant, fBE is the Bose-Einstein
distribution, T is the temperature, and A is the GB cross-
sectional area.
The transmission function of el ectrons Ξ(E) at energy E can be

calculated similarly47:

ΞelðEÞ ¼ Tr½ΓLðEÞGelðEÞΓRðEÞGy
elðEÞ� (3)

Electrical boundary conductance (EBC) can also be derived in
the same manner as TBC:

EBC ¼ 2e2

hA

Z 1

�1
ΞelðEÞ � ∂f FD

∂E

� �
dE (4)

where h is the Planck constant and fFD is the Fermi-Dirac
distribution. Since the value of EBC varies with the chemical

Table 3. Summary of prediction results for thermal and electrical
boundary conductance (TBC and EBC) of 75 electronically realistic
crystalline–crystalline grain boundaries.

Training set Test set

Property RMSE MAPE RMSE MAPE

TBC (GWm−2K−1) 0.018 1.9% 0.026 2.3%

EBC (PSm−2) 0.066 5.4% 0.095 8.8%

EBC/TBC (MSKW−1) 0.114 6.7% 0.164 10.1%

Root mean squared error (RMSE) and mean absolute percentage error
(MAPE) were calculated as evaluation metrics.

Fig. 7 The model set up in Green’s function calculations. The
contact regions are the unit layers fixed during the annealing
process.
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potential (μ), we calculated the maximum EBC over a realistic
range of chemical potential, −1 eV ≤ μ ≤ 1 eV. All conductance
calculations in this work were implemented in an Atomistix
ToolKit package71 with the optimized Stillinger-Weber intera-
tomic potential68 and the pbc-0-3 Slater Koster file72 for phonon
and electron calculation, respectively. The temperature was set
to 300 K in all cases.

Structural descriptors
To represent GB quantitatively, we computed five global
structural descriptors. Here, the descriptors were calculated
for the entire region of a structure. The first two are the
standard deviation of bond angles θ and bond lengths l, i.e., σθ
and σl. Next is the entropy of dihedral angles ϕ, which is
calculated as follows:

Hϕ ¼
X
ϕ

pϕ log
1
pϕ

 !
(5)

We also computed a descriptor based on radial distribution
function (RDF) g(r), which is a measure of the probability of finding
an atom at a distance r away from a given reference atom.
Motivated by the fact that the value of g(r) converges to unity at
smaller r as a structure becomes more disordered73, we calculated
the area between g(r) and g(r)= 1 as a descriptor:

ARDF ¼
Z rcutoff

0
jgðrÞ � 1j dr (6)

where the cutoff radius rcutoff was set to 10 Å in this work. These
four descriptors (σθ, Hϕ, σl, and ARDF) quantify the degree of global
disorder in a structure. σθ and Hϕ represent angular variation,
while σl and ARDF represent radial variation. Finally, the global
atomic density or number density ρ, which is total number of
atoms divided by total volume, was computed as the last
structural descriptor. All of the descriptors were calculated using
the Atomic Simulation Environment (ASE) python library74.
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