
ARTICLE OPEN

Physics-embedded graph network for accelerating phase-field
simulation of microstructure evolution in additive
manufacturing
Tianju Xue 1, Zhengtao Gan 1, Shuheng Liao1 and Jian Cao 1✉

The phase-field (PF) method is a physics-based computational approach for simulating interfacial morphology. It has been used to
model powder melting, rapid solidification, and grain structure evolution in metal additive manufacturing (AM). However,
traditional direct numerical simulation (DNS) of the PF method is computationally expensive due to sufficiently small mesh size.
Here, a physics-embedded graph network (PEGN) is proposed to leverage an elegant graph representation of the grain structure
and embed the classic PF theory into the graph network. By reformulating the classic PF problem as an unsupervised machine
learning task on a graph network, PEGN efficiently solves temperature field, liquid/solid phase fraction, and grain orientation
variables to minimize a physics-based loss/energy function. The approach is at least 50 times faster than DNS in both CPU and GPU
implementation while still capturing key physical features. Hence, PEGN allows to simulate large-scale multi-layer and multi-track
AM build effectively.

npj Computational Materials           (2022) 8:201 ; https://doi.org/10.1038/s41524-022-00890-9

INTRODUCTION
Metal additive manufacturing (AM) processes fabricate geome-
trically complex parts by melting metal powders layer-by-layer
with a focused laser or electron beam1,2. Breaking the design
constraints of traditional manufacturing routes, metal AM has
gained increased popularity in the past years3. Metal AM usually
results in irregular and complex polycrystalline microstructures
due to various processing conditions such as the heat source
power, scanning speed and strategy, etc4–6. These microstructures
are often featured with long, curved columnar grains7 and having
various orientations4,8. The microstructure significantly affects the
functions and properties of the AM as-built parts in a variety of
ways, such as mechanical properties (e.g., tensile strength9, fatigue
properties3, fracture modes10), thermal conductivity11, electroche-
mical/corrosion properties12,13, electrical conductivity14, etc.
Therefore, it is of critical importance to understand and predict
microstructure evolution during metal AM processes.
Being cost-effective compared with experimentation, numerical

simulation techniques have made remarkable progress as a
powerful tool to help understand metal AM processes, in
particular microstructure evolution. There are three commonly
adopted approaches for simulating microstructure evolution in
AM processes: the cellular automata (CA) method15,16, Kinetic
Monte Carlo (KMC)17,18, and the phase-field (PF) method19–21.
Among them, the PF method is regarded as a relatively accurate
method due to its detailed modeling of relevant physics and
thermodynamically-consistent foundations21,22. The PF method is
used to solve interfacial problems and has wide applications in
crystalline structure modelling23, cell biology24,25, fracture
mechanics26,27, etc. However, the high-fidelity PF method is
plagued by being extremely expensive in computation because it
usually requires to solve a system of coupled partial differential
equations for a set of continuous field variables and the spatial
discretization must be fine enough to resolve microstructure
features like grain boundaries. The majority of existing PF

simulations for microstructure evolution during metal AM
processes are in two dimensions19,28,29. Chadwick and Voorhees20

proposed a 3D PF modeling framework that tracks solidification
316L stainless steel in AM processes, but the simulation only
considers a single-layer and single-track process in a
192 μm× 76.8 μm× 38.4 μm domain. Yang et al.21 developed a
3D PF model that simulates a three-layer three-track powder bed
fusion process, where notably the simulation had 17.88 million
finite difference cells and took about 13 days to finish. In this work,
we propose a graph-network-based modeling approach that
significantly accelerates the phase-field simulation (about
50 × faster in our numerical experiments) while achieving an
accuracy level that is comparable to the direct numerical
simulation (DNS) approach. Our main contribution is to break
the curse of scalability of the PF method. We are able to simulate a
typical millimeter-scale AM build with 10+ layers and multiple
scan tracks within only several hours.
Our method reformulates the classic PF problem using a

framework we refer to as physics-embedded graph network
(PEGN). By leveraging machine learning (ML) algorithms such as
message-passing on graph30, we are able to solve the problem in
a computationally efficient way. Broadly speaking, graph networks
are a class of machine learning methods that operate on graph-
like data structures. As noted in31, graph networks carry strong
relational inductive biases that facilitate the description of graph
nodal entities and their relations. Graph networks have been
widely applied in many scientific and engineering problems, such
as visual scene understanding32, predicting lattice structure
dynamics33, predicting chemical properties of molecules34, etc.
Of particular relevance to this work, graph networks have recently
been used to describe material microstructures and have been
demonstrated as distinguished representations of polycrystal
structures. Xie et al.35 proposed a crystal graph convolutional
neural network framework to learn material properties from the
connection of atoms in the crystal. Graph data structures were
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employed to study anisotropic constitutive relations of hyper-
elastic polycrystals in36. Dai et al.37 developed a graph neural
network model to accurately predict the magnetostriction of
polycrystalline alloys.
Although the term ‘graph neural networks’ may be better

known than ‘graph networks’, the functions that graph networks
employ do not need to be neural networks31. In fact, our PEGN
approach does not contain any neural networks. The core of the
proposed PEGN is to formulate the discretization of PF equations
as a machine learning problem on a graph, inspired by recent
findings38 where it was shown that deep graph neural networks
can be viewed as the discretization of an underlying diffusive
partial differential equation. PEGN offers a perspective of
efficiently solving the PF problem in metal AM. We use powder
bed fusion (PBF) of 316L stainless steel as a testing bed for
demonstrating the effectiveness of the proposed PEGN. Further-
more, we compare the PEGN with the classic DNS approach with
the finite difference method in several key aspects such as
temperature field, melt pool development and grain evolution,
which demonstrates the proposed approach can speed up the PF
method by orders of magnitude while preserving significantly
high accuracy.

RESULTS
The section is structured as follows. We first introduce the key
ingredients of the PEGN in Section hysics-embedded graph
network. Then in Section Single-layer single-track simulation we
present a detailed comparison between DNS and PEGN using a
single-layer single-track example as a benchmark. In the
comparison, we focus on both qualitative and quantitative
evaluations of temperature field, melt pool development and
grain evolution. Finally in Section Multi-layer multi-track simula-
tion, we present several multi-layer multi-track AM simulation
examples to demonstrate the scalability of the PEGN.

Physics-embedded graph network
An overview of the proposed method is presented in Fig. 1. We
view the microstructure evolution problem as a machine learning
task defined on a graph network. The process of dynamic
microstructure evolution is treated analogous to the message-
passing30 procedure of a graph network. In a typical machine
learning task, loss function is defined and learnable parameters
are trained to minimize the loss value. In our problem, a physics-
based free energy F(θ) is defined and those dynamic features θ are
solved to minimize the free energy. As shown in Fig. 1, by taking
the gradient of the free energy we obtain the set of governing
differential equations dθ

dt ¼ �L ∂F
∂θ, where L are the pre-coefficients

and will be discussed in Section PEGN approach. Note that this
can be viewed as a gradient flow problem39. A time integration
scheme like explicit Euler gives θnþ1 ¼ θn � ΔtL ∂F

∂θ jθn , which
recovers the predominant gradient descent algorithm in machine
learning. While F(θ) may depend on θ in a complicated way (see
details in Equations 11 to 14), we use backpropagation, i.e.,
reverse-mode automatic differentiation40 for an automated
computation of the derivative ∂F

∂θ. In the context of training a
neural network, backpropagation refers to find out the derivative
of the loss function with respect to weights. In our work, it means
to find out the derivative of the energy function F(θ) with respect
to θ. Compared to grid-based spatial discretization method used
in DNS, PEGN essentially perform spatial discretization with a
graph that respects the initial grain structure. The phase-field
physics is mapped into the framework of the graph network by
considering each individual grain and adjacent grain interactions.
We leave the detailed description of the PEGN method to Section
PEGN approach.

Single-layer single-track simulation
As a first example, we consider a single-layer single-track PBF
process. As shown in the upper left part of Fig. 1a, the simulation
domain (1000 × 400 × 100 μm3) consists of equiaxed grains with

Fig. 1 An overview of the PEGN approach using single-layer single-track PBF as an example. In (a), the polycrystalline structure is
interpreted as an undirected graph, with associated node features and edge features. In (b), PEGN updates dynamic node features θ such as
temperature and grain orientation variables in iterations. The computational iterations can be viewed as solving a machine learning problem
on graph using gradient descent method.
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different orientations colored by the IPF (inverse pole figure) color
with respect to the build direction (z-axis). For memory efficiency,
20 randomly generated orientations are used and each grain is
randomly assigned with one of these orientations at the initial
step. Those random orientations are shown in Supplementary Fig.
2. A total number of 40,000 grains are generated using the open
source software package Neper41 for polycrystal generation. The
laser beam scanning starts at position (200, 200, 100) μm and ends
at position (800, 200, 100) μm using 1200 μs with a uniform scan
speed of 0.5 m ⋅ s−1. After scanning, we simulate an additional
1800 μs time period for cooling down the sample. Material
parameters are shared between DNS and PEGN, and can be found
in Supplementary Table 1.
Besides the proposed PEGN-based simulation, we have also

implemented a classic finite difference method as a direct
numerical simulation (DNS) approach serving as the ground truth,
and its implementation generally follows the previous work21. In
the following sections, we will compare the simulation results of
DNS and PEGN in three aspects: temperature field, melt pool
morphology, and grain evolution. In all these comparisons, PEGN
shows consistent outcomes with DNS.

Temperature field. The full-field tempo-spatial temperature evo-
lution is solved on the fly with other variables like grain
orientations. We treat the laser heat source used in the PBF
process as a time-dependent heat flux boundary condition on the
top surface of the domain, while convection and radiation
boundary conditions are considered with an ambient tempera-
ture. Figure 2a, b show the temperature profile at t= 1200 μs, at
which time the laser finishes scanning. Note that PEGN inherently
uses a graph network representation of the temperature field, and
Fig. 2b shows a reconstructed profile using a polyhedron mesh for
clearer visualization.
Quantitatively, we select the center point (position= (500, 200,

100) μm) on the top surface and show its temperature history in
Fig. 2(c). As seen, the temperature history by DNS and PEGN
match almost exactly for the center point. The temperature field is
in an one-way coupling with the liquid/solid fraction variable and
grain orientation field, and we have made a truncation to 2000 K
for the coupling to avoid spuriously high temperature values. As
another example, we fix the time frame (t= 1200 μs) and check

the temperature profile along the center line of the top surface,
and show the result in Fig. 2(d). It is observed that DNS and PEGN
produce similar temperature profiles.

Melt pool morphology. Melt pool dynamics is an important
subject to study since it reflects the interactions between PBF
process parameters and materials solidification. The solid/liquid
fraction field ζ is part of the DNS or PEGN solutions and is used to
represent melt pool development. The variable ζ continuously
varies from 0 to 1, indicating a transition from liquid state to solid
state. The melt pool is identified for regions with ζ < 0.5. We select
five consecutive time frames and show the melt pool morphology
in Fig. 3. The melt pool marches towards the positive x-axis
direction, transforms into a long and shallow shape, and shrinks
after the laser is turned off at t= 1200 μs. As shown, PEGN is
capable of producing a qualitatively similar morphology as
compared with DNS.
For quantitative comparison, we evaluate the length, width,

height, and volume of the melt pool. These quantities evolve with
time and are shown in Fig. 4. In general, we observe good
agreements between DNS and PEGN results. For the melt pool
height, there is a discrepancy of around 0.01 mm, which is roughly
at the scale of one grain.

Grain evolution. A central task in this work is to predict
microstructure evolution in PBF process. The variables to solve are
grain orientations η using one-hot encoding42 to indicate which
orientation a certain grain takes. The DNS approach is implemented
under the framework of the classic phase-field method43,44. In
contrast, the proposed PEGN method solves the phase-field problem
defined on a graph39. Here, we select five consecutive time frames
and show grain evolution in Fig. 5, where the IPF color with respect
to the z-axis indicates grain orientations. In Fig. 5, the melt pool
regions have been removed, and only the solid parts are shown. The
phenomenon of epitaxial grain growth is reproduced such that
grains continuously grow from previously solidified regions into the
newly solidifying area. Near the melt pool boundary, it is also
observed that grain coarsening in heat-affected zones occurs so that
smaller grains merge into larger grains.
We perform quantitative comparisons of grain size and grain

morphology between DNS and PEGN. First, we inspect the total

Fig. 2 Comparison of temperature profiles between DNS and PEGN. In (a) and (b), the color map ranges from ambient temperature 300 K to
melt point 1700 K. In (c), the temperature history of the center point on the top surface is shown. In (d), the temperature profile along the
center line on the top surface is shown.
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Fig. 4 Quantitative comparison of melt pool shape evolution between DNS and PEGN. In (a), (b), and (c), melt pool length, width, and
height are shown with respect to time. In (d), melt pool volume is shown.

Fig. 3 Comparison between DNS and PEGN. A sequence of melt pool development is illustrated for different time steps.
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number of grains in all solidified areas of the scanning track, and
show the result in Fig. 6a. It is observed that both curves of DNS and
PEGN first peak around 1400 μs, then decrease due to grain
coarsening, and finally approach a stable value during the cool
down process. In Fig. 6b, the trend of average grain volume is shown
to be increasing with time for both DNS and PEGN. To study grain
morphology, we compute the aspect ratio Φ= 2a/(b+ c) defined to
be the ratio between the longer axis and shorter axes of the ellipsoid
equivalent to the grain shape. The definition of aspect ratio is made
clear in the diagram of Fig. 6c, where the histogram plot of aspect
ratio at the final time step for both DNS and PEGN are shown. It is
observed that the the aspect ratios of DNS and PEGN follow a similar
distribution. The distribution exhibits a long-tailed feature, demon-
strating the existence of long columnar grain structures. The median
of aspect ratio for DNS is 1.71 and that of PEGN is 1.62, showing that
columnar grains are predominant over equiaxed grains. The
observation can also be made from Fig. 5, where the slanted inward
columnar grains eventually lead to anisotropic mechanical properties
of the as-built components7. Nevertheless, the results above show
that PEGN is capable of generating grains with size and morphology
comparable with that from DNS.
To study how the quantitative comparison results in Fig. 6 are

affected by several key factors including the number of initial grains
and grain orientations, the initial size distribution of the grains, as
well as the laser parameter, we perform additional numerical
experiments and report the results and discussion in Supplementary
Note 5. In most cases, PEGN agrees well with DNS.
Since PEGN models grain growth by combining adjacent grains

with the same orientation, it is worthwhile tracking the growth
kinetics of a given individual grain so that the discrepancy between

PEGN and DNS is understood better. In Fig. 7, we first filter out a
group of grains with the same orientation, and then focus on the
growth of a single grain for both DNS and PEGN. We show the
morphology of these two selected grains and their growing history
from t= 1500 μs to t= 3000 μs. The two selected grains from DNS
and PEGN both grow into irregular shapes. The morphology
difference between DNS and PEGN is caused partly by their different
underlying spatial discretization schemes (structured grid for DNS
and graph for PEGN). Quantitatively, we compute the evolving
history of volume and surface area of these two grains, and show the
comparison in the bottom part of Fig. 7, whose trends are similar.

Computational efficiency. In previous sections, we have made
detailed comparisons between DNS and PEGN in terms of
temperature field, melt pool development and grain evolution. It
has been shown that the proposed PEGN is able to produce
consistent outcomes with DNS results. The key advantage of
PEGN, however, lies in that it is computationally more efficient
than the DNS.
In this single-layer single-track example, the DNS domain is

discretized into 3,969,984 finite difference cells and the cells are
connected with 11,793,748 edges. Each cell stores a total number
of 22 degrees of freedom (1 for temperature, 1 for solid/liquid
fraction, 20 for grain orientation). The number of explicit time
integration steps is 15,000. In constrast, the PEGN uses a graph
network for discretization, and the total number of nodes is only
40,000 (each node represents a single grain) and the number of
edges is 289,986. Each node stores a total number of 22 degrees
of freedom, and the number of time integration steps is 15,000.
The wall time measurement of DNS is 1298 seconds, while it is

Fig. 5 Comparison of grain evolution between DNS and PEGN at various time steps. The size is (1000 × 200 × 100 μm3), which is half of the
entire simulation domain.
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25 seconds for PEGN, both performed on an NVIDIA Quadro RTX
8000 GPU with 48 GB Graphics memory. The proposed PEGN is
therefore 52× faster than the classic PF DNS method. When
performing wall time measurement, we have disabled all I/O
processing and only focused on the simulation itself. In fact, DNS
requires much more time for I/O processing, which gives PEGN
extra advantage in computational savings. Note that the number
of total degrees of freedom for DNS is around 100× of PEGN, while
the acceleration is only around 50×. The acceleration ratio is due
to another limiting factor that the number of edges in DNS is only
40× of PEGN. To further study the effect of the initial number of
grains and grain orientations on the computational performance,
we perform additional numerical experiments and analyze the
results in Supplementary Note 4.
In terms of space, PEGN consumes less memory than DNS, and

is promising for larger scale simulations that requires a large
amount of memory. For completeness, the same program also
runs on a CPU (2.4 GHz 8-Core Intel Core i9) with 32 GB memory.
The wall time for DNS is about 29 hours, while it is 2018 seconds
for PEGN. The simulation on CPU for PEGN is also around 52 times
faster than DNS, a result consistent with our findings on GPU.

Multi-layer multi-track simulation
Adaptive computational scheme. The scalability of PEGN in both
computational time and space allows for simulation of larger size
problems that are practically difficult for DNS method. Here, we
employ PEGN to perform a multi-layer multi-track simulation of
the PBF process. Figure 8(a) shows the layered computational
domain with size (2 × 2 × 1mm3). For each layer, the graph
contains 200,000 nodes so that the entire domain has 4,000,000
nodes, with 22 degrees of freedom attached to each node. Since
most critical physical processes like grain evolution only happen in
the top few layers (the other layers is fully cooled solid structure),

our strategy is to limit the simulation domain to only the current
top two layers so that computational resources can be saved. The
description of this strategy is illustrated in Fig. 8(a), where in each
iteration, we take the current top layer from last iteration as the
initial condition (the green layer), combine it with the newly
added layer (blue layer), and perform the simulation using the
domain that consists of these two layers. The procedure is then
repeated for all of the 20 layers, and the entire simulation takes
around 6.5 hours on GPU.
The scanning path is shown in Fig. 8b that resembles the

acronym ‘NU’, and is kept the same for a total number of 20 layers,
each having a thickness of 0.05 mm. In Fig. 8c, we show the grain
structure of the entire simulated domain. The grain structure of
the as-built sample is shown in Fig. 8d, with one representative y-z
plane cross sectional view shown in Fig. 8e. The simulation is able
to take account of re-melting and re-solidifying of grains and that
columnar grains across several layers are formed (see Fig. 8e). Due
to the repeated directional scanning of multiple layers, a number
of grains show an angle of inclination of around 60∘, which is
aligned with the inclination angle of the melt pool during the
scanning process. This pattern is also found in previous works
both with simulation16 and experiment5. In Fig. 8d, we observe a
clearly layered surface of the as-built sample, which can be
explained due to melt pool shape along the scanning path. Note
that in this case we are not just building the ‘NU’ pattern in 3D
while the other part of a layer is vacant. The additive
manufacturing process is assumed to be a laser-based powder
bed fusion, so the black region in Fig. 8b also contains randomly
generated grains representing unmelted powder. In the case
where the black region is vacant, the grain structure near the
boundaries will not be affected by surrounding grains, and we
anticipate the grain structures will respect their initial orientations
better.

Fig. 6 Quantitative comparison of grain size and morphology between DNS and PEGN. In (a), the total number of grains along the
scanning track is shown with respect to time. In (b), the average grain volume with respect to time is shown. In (c), the empirical distribution of
aspect ratio at the final time step is plotted. The number of grains is 40,000 and the number of unique grain orientations is 20.
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Effect of scan strategies. Laser scan strategies have critical effects
on the development of microstructure and texture during PBF
process45,46. With PEGN, we can now study the effect of scan
strategies by considering a 10-layer building process with a
computational domain of size (2 × 2 × 0.5 mm3), as shown in Fig. 9.
We consider two different scan strategies and compare the
generated grain structures. As in Fig. 9a, the first scan strategy is
unidirectional for all scanning tracks within each layer, and the
same pattern repeats for all layers. In Fig. 9b, the second scan
strategy has a bidirectional pattern within each layer, and the
pattern successively rotates for 90∘ across layers. Figure 9c, d show
the entire computational domains at the final step. Due to the
different scan strategies, the top surfaces of these two parts show
distinct grain structure patterns that seem to be orthogonal to
each other. The x-z plane cross sectional views are plotted in Fig.
9e, f. For the first scan strategy, we observe the characteristic
V-shaped grains. These V-shaped grains are stacked vertically, and
the vertical boundaries of these repeated stacks are aligned with
laser scanning paths. For the second scan strategy, the generated
grains are arranged more arbitrarily and do not show such an
organized pattern like the first scan strategy. These observations
indicate that unidirectional scan strategies can lead to grain
structures with high anisotropy, whereas alternating scan patterns
between layers introduce certain randomness in grain structures
and may alleviate the strong anisotropy. Furthermore, we hide the

regions that are never melt during the entire PBF process and
show the results in Fig. 9g, h. In addition to distinct boundary/
surface features for the two scanning strategies, we also observe
certain regions due to lack of fusion. We show grain volume
distributions in Fig. 9i. The mean grain size are 49162 μm3 and
56332 μm3 for the two scan strategies, and the total number
generated grains are 22,438 and 19,593, respectively Therefore,
the second scan strategy generates 12.6% fewer grains, and with
an increase of 14.6% in averaged grain size.

DISCUSSION
Graph networks as a general machine learning framework have
gained rapidly increasing attention in the past few years31,47. We
strongly believe that the interdisciplinary studies of graph
networks in applied sciences and engineering will create many
opportunities, and we are just at the beginning of this exciting
field. We have shown in this work that by leveraging techniques
from graph networks, PEGN greatly reduces the computational
burden of the classic PF method. In the single-layer single-track
example, we have compared PEGN with DNS in temperature field,
melt pool development and grain evolution, and the results of
PEGN agree well with DNS.
The scalability of PEGN is demonstrated with multi-layer and

multi-track examples, and this is the first work that uses a PF-

Fig. 7 Comparison of individual grain growth kinetics between DNS and PEGN. We select a set grains with the same orientation and show
the grain volume and surface area of a typical grain for both DNS and PEGN.
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based approach to conduct a millimeter-scale AM simulation. As
shown, our PEGN method provides an effective means to study
the impact of scan strategies on grain structure generation. The
analysis indicates that in order to avoid strong anisotropic grain
structures, more complex and alternating scan patterns should be
adopted. Furthermore, this scan strategy generates fewer regions
that are in lack of fusion and is considered more advantageous
than the simple unidirectional scan strategy. In fact, the
alternating scan strategy and its variants have been practiced in
industry based on practical knowledge. The PEGN method also
uncovers grain morphologies observed in experiments, such as
grains with an inclined angle and re-melted long grains across
layers. Since PEGN is implemented with automatic differentiation
technique, it is promising to use gradient-based optimization for
optimal grain structure control.
In this work, we have introduced an efficient reduced-order

computational tool. As graph networks are a flexible framework,
more features can be integrated to incorporate complex physics-
based mechanisms, such as dendritic growth48,49, or randomness
in grain nucleation50,51. To introduce new grains, PEGN can adopt
an adaptive graph strategy similar to mesh adaptivity52 in classic

numerical algorithms so that more nodes (new grains) are
introduced. The adaptive graph strategy can be flexible such that
one grain is partitioned with several nodes and that the solution
has higher resolution in certain regions of interest. By expanding
the set of pre-defined grain orientations, PEGN can consider more
grain orientations like DNS. The abilities to introduce new grains
and grain orientations are beneficial for microstructure evolution
problems such as columnar-to-equiaxed transition and recrystalli-
zation. Other possible future work includes more realistic
modelling that considers gas phase/voids, which can be modelled
by expanding the node features to include the void phase and
modifying the physics-based loss function accordingly. In addition,
the classic PF DNS can adopt the ‘active parameter tracking’
method53 to improve efficiency, and this method also applies to
PEGN by limiting the number of active order parameters defined
on the nodes to a limited active set.

METHODS
Figure 1 shows an overview of the method. We formulate the
problem of microstructure evolution using a physics-embedded

Fig. 8 A multi-layer multi-track example that builds within a 2 × 2 × 1mm3 domain. In (a), a local computational strategy that focuses on
only two layers in each iteration is presented. In (b), the laser scanning path for each layer is shown. In (c), the full domain is shown. In (d) and
(e), the 3D as-built sample and a representative cross-sectional view of the microstructure are visualized. The IPF color is along the z-axis. Scale
bar in (e) is 0.2 mm.
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Fig. 9 A multi-layer multi-track example that compares two laser scan strategies. In (a) and (b), the two scanning patterns are described. In
(c) and (d), the entire simulation domains are shown, where the size of the domain is 2 × 2 × 0.5 mm3. In (e) and (f), we show the x-z plane
cross sectional views that correspond to the windows indicated by the black solid lines in (d) and (d). In (g) and (h), we only show those
regions that are at least melt once. In (i), we plot the grain size distribution for the two scan strategies. Scale bar in (f) is 0.2 mm.
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graph network. The graph network represents the microstructure
such that each node in the graph represents a grain, and if two
grains share a common face, they are considered as connected in
the graph, i.e., there exists an edge between the two correspond-
ing nodes (see Fig. 1a). As shown in Fig. 1b, each node has an
associated feature vector as a descriptor of the current grain
status. The feature vector is composed of both static and dynamic
entries. For example, the volume or the centroid position of a
grain is considered as a static feature that does not change with
respect to time. In contrast, dynamic features (denoted as θ)
consist of temperature T, solid/liquid fraction ζ, and grain
orientation η, all of which evolve with time and are variables
remaining to be solved. Similarly, we define edge features, such as
contact face areas or thermal conductivity coefficients, to reflect
communication between grains. Edges are assumed to be non-
directional (or bidirectional), which is consistent with physical
principles. For example, heat can flow from one grain to another,
and vice versa. Edge features in this work are all assumed to be
static. The information that is passed through edges for η and ζ is
implicitly embedded with the Ginzburg–Landau free energy, while
the information passed for T is the heat flux between grains.
Nodes are affected directly by their neighbors. They are indirectly
affected by their ‘farther neighbors’, e.g., neighbors of neighbors
due to message-passing on the graph. For the three dynamic
features, η and ζ depend on T in a one-way coupled manner. In
our explicit iteration framework, we update the three features
monolithically as a whole, rather than separately analyze them
with a staggered scheme.
All static node and edge features are considered as part of the

inputs to the PEGN algorithm. We also need to specify the initial
values for the dynamic node features, such as initial temperature
and initial grain orientations. The outputs of the PEGN algorithm
are the solved dynamic node features with respect to time.
During the simulation, adjacent grains may have the same
orientation, and this is regarded as they merge into a larger grain
so that grain growth can be modeled. In other words, it is
important to correctly identify each individual grain, especially in
the post-processing procedures (e.g., computing grain sizes or
aspect ratios). Since the computational domain is treated as a
graph, we solve the problem with the classic breadth-first search
algorithm54 so that the entire graph is partitioned into (self-
connected) subgraphs where each subgraph represents exactly
one grain (see Supplementary Fig. 1). For example, the grains
calculation for PEGN in Fig. 6 involves a total number of 355
grains, i.e., 355 subgraphs. On average, each subgraph has 11.7
nodes and 40.7 edges.

DNS formulation
We first briefly introduce the DNS approach. The coupled
governing equations for the full-field tempo-spatial temperature
evolution and the phase-field model are given by
∂ðρcpTÞ

∂t ¼ ∇�ðκT∇TÞ;
∂ζ
∂t ¼ �LpðTÞδFδζ;
∂ηi
∂t ¼ �LgðTÞ δFδηi:

(1)

In Equation 1, T(x, t) is the temperature field, ρ is the density, cp
is the specific heat, and κT is the thermal conductivity. Latent heat
effect is neglected in the current formulation. The initial condition
is set to be ambient temperature Ta. For boundary conditions, we
consider heat flux at the part surface that includes both
convection and radiation heat transfer so that

κT∇T � n ¼ hðTa � TÞ þ εRσRðT4a � T4Þ; (2)

where n is the boundary normal vector, h is the heat convection
coefficient, εR is the emissivity, and σR is the Stefan-Boltzmann
constant. The laser heat source q is treated as a time-dependent

heat flux boundary condition on the top surface, defined by:

q ¼ 2Qη
πr2b

exp
�2 x � vstð Þ2 þ y2
� �

r2b

0
@

1
A; (3)

where Q is the laser power, η is the absorbed fraction of the laser
energy, rb is the radius of the laser spot, and vs is the laser scan
speed. The definition in Equation 3 is for single-track scanning
only, but it generalizes to multi-track scanning easily.
In Equation 1, ζ(x, t) is an indicator variable that continuously

varies from liquid phase (ζ= 0) to solid phase (ζ= 1). In Equation
(1), ηi(x, t) (i= 1, 2,…, No, where No is the number of orientations)
are non-conservative phase-field parameters. If a certain grain
takes the ith orientation, then ηi= 1 and ηj= 0 (j ≠ i). The second
and third equations in Equation (1) are known as the
Ginzburg–Landau equations55, and the specific formulation in
this work generally follows21. Here, Lp and Lg are the kinetic
coefficients related to interfacial mobility of the liquid/solid
interface and grain boundary, and we assume

LgðTÞ ¼ L0 exp �Qg

RT

� �
; LpðTÞ ¼ L0 exp � Qg

RTm

� �
(4)

where L0 is the pre-exponential coefficient, Qg is the activation
energy, R is the gas constant, and Tm is the melting temperature.
The total free energy F is given by

F ¼
Z

V
ðf phase þ f grain þ f gradÞdV ; (5)

where fphase and fgrain are the free energy densities from liquid/
solid phases and grains, respectively, and fgrain is the gradient
energy density. Specifically, we have

f phase ¼ mp 1� ζð Þ2φðτÞ þ ζ2ð1� φðτÞÞ
� �

; (6)

where mp is the phase energy pre-coefficient and
φðτÞ ¼ 1

2 ð1� tanhðτ � 1ÞÞ, τ= T/Tm. Here, φ(τ) approaches 1 for
τ > 1, and approaches 0 for τ < 1. Therefore, the role of
temperature field on liquid/solid transformation is reflected. Note
that fphase achieves a local minimum at ζ= 0 and ζ= 1. As for the
grain energy density, we have

f grain ¼ mg
PNo

i¼1

ηið Þ4
4 � ηið Þ2

2

� �
þ γ

PNo

i¼1

P
j≠i

ηið Þ2 ηj
� �2

 

þ 1
4 þ 1� ζð Þ2P

No

i¼1
ηið Þ2
�
;

(7)

where mg is the grain energy pre-coefficient, and γ is a model
parameter. Here, fgrain takes the local minimum at
½η1; η2; ¼ ; ηNo

� ¼ ½1; 0; ¼ ; 0�; ½0; 1; ¼ ; 0�; ¼ ; ½0; 0; ¼ ; 1�. The
gradient energy density is given by

f grad ¼ κp
2

∇ζð Þ2 þ
XNo

i¼1

κg
2

∇ηið Þ2; (8)

where κp and κg are the gradient term coefficients for liquid/solid
interface and grain boundary, respectively. Grain boundary
anisotropy is also included in the current DNS model. We
encourage the interested readers to check21 for details.
The set of governing Equation 1 are discretized spatially with

the centered finite difference method, and temporally discretized
with the explicit Euler method.

PEGN approach
We describe the detailed formulation of the PEGN approach.
Consider an undirected graph G ¼ ðV; EÞ, where V ¼
f1; 2; ¼ ;Nng are a set of nodes and E � V ´V are a set of
edges. As a reminder (see Fig. 1), each node in PEGN represents an
individual grain, while each edge represents the connection
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between two grains if they share a common face. Nodes have
associated features, e.g., grain volume or temperature. There are
two kinds such node features: static features that do not change
with time, and dynamic features that evolve with time. A static
node feature can be formally described with a static node function
f static : V ! R, while a dynamic node feature can be defined with
a dynamic node function f dynamic : V ´ ½ti; tf � ! R, where ti and tf
defines the time window. Static features such as grain volume or
grain centroid location are fixed once and for all. Dynamic features
are denoted by θ ¼ fðT ; ζ; η0; η1; ¼ ; ηN0

ÞðkÞgNn

k¼1 2 Rð2þNoÞ ´Nn ,
that represent the collection of temperature, liquid/solid fraction,
and grain orientation at all grains. Dynamic features θ are
unknown variables that must be solved by the algorithms of
PEGN. Similarly, PEGN also contains edge features. Only static
edge features are used, and they can be formally described by a
static edge function gstatic : E ! R. Typical static edge features
include thermal conductivity coefficients, contact face areas, etc.
As an analogy, a graph version of Ginzburg–Landau energy

functional39 F(θ) can therefore be constructed. The corresponding
graph Allen-Cahn equation therefore reads as

dθ
dt

¼ �L
∂F
∂θ

; (9)

where L 2 Rð2þNoÞ ´Nn are the pre-coefficients that make Equation 9
physically consistent. The pre-coefficients L are set such that

LðkÞT ¼ 1=ðρcpV ðkÞÞ; LðkÞζ ¼ LpðT ðkÞÞ=V ðkÞ; LðkÞηi
¼ LgðT ðkÞÞ=V ðkÞ;

(10)

where LðkÞT , LðkÞζ , and LðkÞηi are the coefficients for T, ζ, and ηi at node
k, respectively, and V(k) is the grain volume at node k.
Equation 9 are a system ODEs that can be solved with

discretization method like the explicit Euler method. It is
important to note that this time integration procedure resembles
message-passing30 process on graph, and F(θ) is simply the loss
function in the language of machine learning with θ being the
learnable parameters. Our implementation is built upon JAX56, a
Python library designed for high-performance numerical comput-
ing and machine learning research. Specially, JAX has shown
potential for scientific computing such as molecular dynamics
simulation57 or computational fluid dynamics58. The graph
networks are constructed using Jraph59, a lightweight library
for working with graph networks in JAX. While F depends on θ in
a complex way, we use jax.grad, the automatic differentiation
feature provided by JAX, to compute the gradient ∂F

∂θ efficiently.
Since the loss/energy function F(θ) is defined with physical
intuition, the ‘learning’ process of PEGN is essentially performed in
an unsupervised fashion, a similar concept also found in recent
works of the so-called physics-informed neural networks
method60.
The energy function F(θ) is decomposed into several parts:

FðθÞ ¼ Fphase þ Fgrain þ Fgrad; (11)

where Fphase and Fgrain are free energy associated with liquid/solid
transformation and grain evolution, and Fgrad represents the
diffusive part of the energy. The phase energy Fphase is
constructed by an aggregation over all nodes in the graph:

Fphase ¼
X
k2V

mpðð1� ζðkÞÞ2φðτðkÞÞ þ ðζðkÞÞ2ð1� φðτðkÞÞÞÞ; (12)

where τ(k)= T(k)/Tm. Here, ζ(k) represents the liquid/solid fraction
variable at the kth node. Similarly, the grain energy Fgrain consists
of the sum over all the nodes and the interaction between phases
and grain orientations is reflected with the last term in the
expression:

Fgrain ¼ P
k2V

mg
PNo

i¼1

ðηðkÞi Þ4
4 � ðηðkÞi Þ2

2

� �
þP

No

i¼1

P
j≠i

ðηðkÞi Þ2ðηðkÞj Þ2
 

þ 1
4 þ ð1� ζðkÞÞ2P

No

i¼1
ðηðkÞi Þ2

�
;

(13)

where η
ðkÞ
i represents the ith grain orientation variable at the kth

node. Finally, the diffusive energy Fgrad represents the commu-
nication between nodes, so that it consists of a summation over all
the edges:

Fgrad ¼ P
ðk;mÞ2E

κT lc
2 ðT ðkÞ � T ðmÞÞ2 þP

No

i¼1

κglc
2 ðηðkÞi � η

ðmÞ
i Þ2

�

þ κplc
2 ðζðkÞ � ζðmÞÞ2

�
;

(14)

where for instance T(k) and T(m) are temperature variables at two
connected nodes k and m. In Equation 14, lc is the characteristic
length that quantifies the effective distance between two
connected grains. The parameter lc is edge dependent, and the
value is defined to be the division of contact face area divided by
grain center-to-center distance. This particular definition of lc is
consistent in the sense that if the graph represents a regular
lattice-like structure, then PEGN exactly degenerates to the
centered finite difference algorithm. An interesting fact is that
when implementing the DNS approach, we did not follow the
traditional way of discretizing the Laplace operator directly.
Rather, we employed a graph network that is similar to PEGN.
As for the energy input from laser scanning process, it is
straightforward to modify Equation 9 so that a source term can
be added. We omit the details here, but the heat transfer process
in PEGN is treated in consistency with DNS, e.g., see Equation 2
and Equation 3. Also, grain boundary anisotropy is included for
PEGN in a consistent way with DNS. Interested readers may
consult our code for further details.

Summary of DNS and PEGN
To illustrate the differences between DNS and PEGN more clearly,
we use Table 1 to conclude several key aspects of the two
methods.

Table 1. Summary of DNS and PEGN.

DNS PEGN

Free energy formulation Minimizing energy defined in space
(Equation 5)

Minimizing energy defined on graph (Equation 11)

Evolution equation Solving Allen-Cahn equation (Equation 1) Solving graph Allen-Cahn equation (Equation 9)

Advantage Fine resolution (e.g., grain growth/shrinkage) Fast and accurate in global measurements

Disadvantage Computationally expensive Resolution limit in the current setup but can adopt an adaptive graph
strategy to overcome this limit

Applicable range Detailed modeling (e.g., single-layer single-
track)

Larger scale (e.g., multi-layer multi-track)
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