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Predicting glass structure by physics-informed machine
learning
Mikkel L. Bødker1, Mathieu Bauchy 2, Tao Du1, John C. Mauro 3 and Morten M. Smedskjaer 1✉

Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models
with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of
composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein
statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This
combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning
individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of
Na2O–SiO2 glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact
that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.
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INTRODUCTION
Oxide glasses are a family of materials mostly known for their
applications as windows due to their high transparency and
durability1,2. During the last few decades, however, oxide glasses
have found more and more high-tech applications, such as optical
fibers for telecommunication and data transmission, bioactive
glass for bone and tissue regeneration, and nuclear waste
immobilization materials3–7. For each of these applications, the
physical properties of the glass have been tuned by changing the
composition to meet the requirements according to the applica-
tion, such as low but controllable chemical durability in window
glasses, controlled release of ions in bioactive glasses, and high
chemical durability for nuclear waste immobilization.
An accelerated design of glass compositions and processing

techniques is thus urgently needed8,9, especially since oxide
glasses can be made from more than half of the elements in the
periodic table with anywhere from two to over twenty individual
elements. The number of possible compositional combinations
thus exceeds by several orders of magnitudes what can be
prepared and examined in any laboratory10. As such, predictive
composition-property models have been highly valuable in
guiding materials development11, especially those based on
machine learning12–16. The previous machine learning models
within this field have been trained based on composition input
and property output data. However, while successful in property
prediction within the compositional range used for training, these
models largely fail to extrapolate outside the compositional region
of the training set17,18. This is due to the fact that, unlike models
rooted in physics, machine learning models are solely based on
data and, hence, can violate the laws of physics or chemistry19,20.
This paper seeks to address this gap.
It is well known that the relationship between the short-range

order (SRO) structure of oxide glasses and their properties is more
direct and informative than that between composition and
properties21–24. This is partly due to the fact that glass properties
often exhibit a non-linear dependence on composition8, which

makes it challenging for models to capture such non-linearity and
yield robust extrapolations. In contrast, the relationships between
local structure (e.g., as captured from the glass connectivity) and
properties are often fairly linear25. The linear nature of structure-
property relationships makes it significantly easier for models to
generalize well outside their training sets, when extrapolated
toward unexplored compositional spaces19,26,27. However, a key
challenge is to obtain sufficient and reliable structure data for
model training due to the time-consuming nature of experimental
structure characterization. The typical method to determine the
local structure of the atoms in a glass is solid-state nuclear
magnetic resonance (NMR) spectroscopy28,29, the accuracy of
which worsens as more elements are present in the glass
composition since the interpretation of the data becomes
increasingly complex30.
Recently, statistical mechanical modeling has shown great

promise in predicting the SRO structure of multicomponent oxide
glasses based on knowledge of binary and ternary glasses31,32. The
main idea of this approach is to consider the possible reactions
that can occur between all the species in the glass (e.g., the
formation of non-bridging oxygen atoms or the charge compen-
sation of the network former) and determine their probabilities
based on their respective enthalpies and temperature. The
drawback of the statistical mechanical model is that the enthalpy
interactions considered are kept to a minimum to reduce the
required number of model parameters, but this can lead to some
level of oversimplification and has been found to systematically
over- or underestimate the fractions of some structural units33.
While these errors could be corrected on a per-system basis,
machine learning should be able to learn and correct for these
systematic errors. Informing a machine learning model with the
thermodynamics of cationic interactions (as done in the statistical
mechanical model) is thus expected to offer a model that
combines the extrapolation ability of statistical mechanics with
the accuracy of machine learning. The aim of such combined
models is to predict the compositional evolution of structural units
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in large compositional regions even when trained on a relatively
small dataset, hence allowing for large-scale composition-
structure-property modeling.
In this study, we present three different approaches to large-

scale structure prediction in oxide glasses as depicted in Fig. 1.
Firstly, we demonstrate the results obtained by a purely statistical
mechanical model trained only on experimental data for binary
glasses. Secondly, we use a multilayer perceptron neural net-
work34 (MLP-NN) model to calculate the glass structure using only
the composition as input. Thirdly, we use an MLP-NN model
trained on both composition and the statistical mechanical results.
We use all three models to predict structural data and make
comparisons against the experimental data. Specifically, we then
apply the three different modeling approaches to the Na2O–SiO2

binary glass system to illustrate the differences in predictions as a
function of glass composition. Finally, all three models are used to
predict the structure of a Na2O–P2O5–SiO2 glass system, which
none of the models have been trained on, so as to quantify the
ability of each model in offering robust extrapolations toward
unknown glass compositions.

RESULTS
Statistical mechanical structure prediction in multicomponent
systems
Before comparing the three different approaches for predicting
the composition-structure relation (see Fig. 1), we first address
shortcomings of the statistical mechanical model. As previously
mentioned, the parameters needed in the statistical mechanical
modeling procedure are obtained by training the model on binary
oxide glasses. The parameters are then directly used to calculate
structures in more complex systems (i.e., with more than two
different oxides). Figure 2 shows model predictions obtained by
the statistical mechanical model described in the Methods section,
which are compared to measured structure data for different glass
families. In all the subfigures, the black symbols represent model
prediction for the simple two-component glasses used for the
model training, while the red symbols represent data for glasses
with three or more components. It is thus the comparison of
model prediction and experimentally measured data for the red
symbols that reflects the prediction quality of the model.
Specifically, in Fig. 2a, the red symbols represent data for the
M2O–SiO2–B2O3 glass system, where M is either Li, Na or Cs. Here,
the model prediction accuracy for the test data is within the same
range as for the training data, showing the potential extrapolative
power of the model. In Fig. 2b (for Na2O–Al2O3–SiO2 system) and
Fig. 2c (for Na2O/CaO–P2O5–SiO2 system), however, the model
predictions differ significantly from the training data to the test
data. This illustrates how the direct transfer of the parameters
from one system to another can be insufficient to capture all
interactions occurring in multicomponent glasses. In the case of

the systems in both Fig. 2b, c, the model prediction accuracy can
be improved with a single parameter for the additional interaction
occurring in the mixed glasses. As such, the error by the model is
very systematic and it should be possible to correct it by machine
learning.

Structure prediction by statistical mechanics, machine
learning and combined model
The composition-structure MLP-NN model only has the glass
composition as input, while the combined model has both the
glass composition and the initial results from the statistical
mechanical model as inputs. While this may appear to be an
advantage for the combined model, the results from the statistical
mechanical modeling are obtained by knowing only the
compositions as well. As shown in Eq. (2) in the Methods section,
a fictive temperature is required when applying the statistical
mechanical model. In this study, however, to ensure a fair
comparison between the physics-informed and physics-blind NN
models, that value has been fixed to 700 K, which is an
approximate average value for oxide glasses13. While Tf has an
effect on the structure distribution, it has previously been shown
to have only a minor effect within the temperature range of
experimentally obtained glasses35. Additionally, excluding Tf is
required for the model to be applied to predict the structural
fractions (i.e., the relative numbers of bridging and non-bridging
oxygens associated with the different network formers) in
previously unexplored compositions as Tf must be obtained
experimentally. However, we note that an additional model could
be applied to estimate Tf values for the glass compositions before
modeling the structure, but this would both introduce additional
uncertainty from the Tf prediction and add compositional
restriction from the additional model. As such, the pure
composition-structure MLP-NN model and the combined model
both rely on only compositions as input data. Here, the inclusion
of statistical mechanics should allow the neural network to learn a
baseline for the non-linear relation between composition and
structure captured by the thermodynamic parameters used in
statistical mechanics.
Before investigating the model results, the MLP-NN training

method and results are addressed. When considering the neural
network architecture, the number of hidden layers and the
number of neurons per layer highly influence the outcome of the
model. An overly simple architecture (too few layers and neurons)
will result in underfitting, where the neural network has too few
nodes to find a good path between input and output, while a too
complex model will result in unnecessarily high computational
costs as well as the potential of overfitting, where a perfect path is
found between input and output but also capturing the data
uncertainty as model features. Previous work by Hinton et al.36 has
found that one hidden layer NN can approximate a continuous
mapping from one finite space to another, while two hidden

Fig. 1 Flow diagram illustrating the different modeling procedure investigated in this study. The three models, namely statistical
mechanics, multilayer perceptron neural networks (MLP-NN), and a combination of the two, are highlighted in red. All three models are
trained on the glass composition vs. structure experimental data, while the combined model is trained on both the glass experimental data
and the statistical mechanics results.
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layers NN can approximate any smooth mapping to any accuracy.
Additional layers can learn complex representations but is
deemed excessive for the relatively small dataset used in
this study.
To this end, we have used grid search cross-validation to find

that two hidden layers is indeed most suitable for the data in this
study. Next, to find the optimal number of neurons in each of the
two hidden layers, we performed parameter optimization as
described in the Methods section. Figure 3 shows a two-
dimensional illustration of the optimization of the number of
neurons in the hidden layers, where the optimal model complexity

with the lowest root-mean-square errors (RMSE) is for 13 and 16
neurons for the first and second layer, respectively. Figure 3a
illustrates the transition from underfitting with too few neurons to
overfitting with too many neurons and how the optimization
algorithm finds the optimal number of neurons. Furthermore, we
have checked the predictive ability of the combined model based on
a smaller dataset by using a partial dataset for training and testing
(from 50 to 100%) with the same train/test split ratio of 0.9/0.1. As
shown in Fig. 3b, the RMSE decreases initially and then reaches a
plateau value when using more than 80% of the dataset. This
suggests that the MLP-NN model learns from the thermodynamic

Fig. 2 Ability of statistical mechanics model to predict the fractions of structural species in different glasses. Experimentally measured
structural values are plotted against the model predictions using statistical mechanics model (Approach 1) for both the training and test sets.
These structural values refer to the relative numbers of bridging and non-bridging oxygens associated with the different network formers
(e.g., concentration of Qn units in the case of silicon). All black symbols (training set) are obtained in two-component glasses, while the red
symbols (test set) are obtained in a Na2O/Li2O/Cs2O–SiO2–B2O3, b Na2O–Al2O3–SiO2, and c Na2O/CaO–P2O5–SiO2 glasses. All experimentally
obtained data from literature are provided and referenced in Supplementary Table 1.

Fig. 3 Optimization of machine learning models. RMSE values are plotted for a different NN architectures and b fraction of dataset for the
combined model. a The number of neurons in the hidden layers increases from left to right on the horizontal axis and the numbers in
parenthesis represent the number of neurons in the first and second hidden layers, respectively. b RMSE values for the combined model when
using a partial dataset.
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information indirectly supplied by the statistical mechanical
approach, without needing more training data.
Figure 4a–c show the prediction results from statistical

mechanics, MLP-NN, and the combined model, respectively. When
examining the RMSE, the statistical mechanics model (approach 1)
performs slightly better than the composition-structure MLP-NN
model (approach 2) (RMSE of 6.6% and 6.8% for statistical
mechanics and MLP-NN, respectively). Additionally, we note that
the statistical mechanical model is trained on a smaller dataset
relative to the test set and the training sets consist of data for only
binary glasses while the test sets include data for multicomponent
glasses. This is unlike the machine learning models, where the test
set is a random subset of the total composition-structure dataset.
In summary, the statistical mechanical model predicts, at a higher
accuracy, a larger test set with a smaller training set and with
higher extrapolation than the MLP-NN model. When combining
the statistical mechanics model with MLP-NN (approach 3), the
RMSE drops significantly (35–40% reduction of the RMSE). This
also supports the findings from Fig. 3b, i.e., the MLP-NN model
learns from the thermodynamic information indirectly supplied by
the statistical mechanical approach.

Applications of the structure prediction models
To further investigate the accuracy of the predictions generated
by the three different models, Fig. 5a, b show the model
predictions of the fractions of structural units in the Na2O–SiO2

glass system37. The statistical mechanical model prediction is
shown with the solid lines, while the MLP-NN and the combined
model are shown with dashed lines in Fig. 5a, b, respectively.
Statistical mechanics predicts the most likely composition-
structure relation as it captures the reaction mechanisms specific

to the system and is trained on all the data for this system alone.
On the other hand, the machine learning models are trained on
data for all systems simultaneously and the results in the
Na2O–SiO2 system reflect the predictive power of the models.
The most noteworthy difference between the two different
machine learning approaches is the degree of linearity in their
prediction. While the pure composition-structure MLP-NN model
predicts a highly linear transition from one composition-structure
data point to another in Fig. 5a, the predictions of the combined
model are much more non-linear and capture the structural
transitions in Fig. 5b. Both machine learning models seem to have
prediction accuracy in the high-modifier region when extrapolat-
ing outside the dataset used for training (symbols in Fig. 5a, b), but
not in the low-modifier region which is also an extrapolation. The
inaccuracy in the high-modifier region may be caused by input
data from multicomponent glass systems. The inaccuracy is
acceptable as it arises in a compositional area where glass
formation is unlikely. Based on the generated MLP-NN model, we
have also checked the prediction ability based on part of the input
information by purely using chemical composition or statistical
mechanical. This is achieved by varying either the chemical
composition or the statistical mechanics information while
keeping the other fixed to check the Q3 fraction as a function of
Na2O content in the Na2O–SiO2 system. Note that the changes are
made based on the input information of the Na2O–SiO2 glass that
exhibits the highest Q3 fraction. As shown in Fig. 5c, the combined
model can well predict the Q3 distribution as a function of Na2O
composition. When solely using the statistical mechanical model,
most of the non-linear features of the structural transition can be
well captured, whereas the prediction based only on input from

Fig. 4 Comparison of composition-structure predictions by the three different modeling approaches. a–c Experimentally measured
structural values plotted against the model predictions for both the training and test sets. These structural values refer to the relative numbers
of bridging and non-bridging oxygens associated with the different network formers (e.g., concentration of Qn units in the case of silicon).
Black symbols present the training data, while red symbols present the test data. Model predictions are obtained using a statistical mechanics
(Approach 1), b MLP-NN (Approach 2), and c a combination of statistical mechanics and MLP-NN (Approach 3). All experimentally obtained
data from literature are provided and referenced in Supplementary Table 1.
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composition does not capture the non-linear composition vs.
structure relation.
To further test the ability of the different models to extrapolate,

we have used them to predict structures in a set of glasses from a
single study38, which was not included in the training set (Fig. 5d).
Specifically, we consider Na2O–P2O5–SiO2 glasses, which is a glass
family for which the statistical mechanical model has been unable
to make structural predictions without additional input besides
composition. Interestingly, the statistical mechanics model offers
the worst predictions, while the pure composition-structure MLP-
NN model offers some improvement, and the combined model
has a very high prediction accuracy. Remarkably, our machine
learning model outperforms the physics-based statistical
mechanics model for an extrapolation task. In future work, this
approach will be applied to predict the structure distribution of
glass series with additional oxide components, but this requires
experimental work outside the scope of this study.

DISCUSSION
Machine learning is one of the most promising tools for large-
scale glass property predictions12. While current models are
trained on a composition-property relation, previous work has
indicated that structure-property relations are more systematic
and would offer improved ability of the property models to
extrapolate39,40. It could be argued that the machine learning
models learn the composition-structure relations with enough
data, but this study has shown that the composition-structure
relation is too non-linear for pure MLP-NN to learn the complex
relations with a limited dataset. We have allowed the neural

network to learn the thermodynamic contribution to the structure
formation by supplying the statistical mechanical structure results
as an additional layer of input data. In other words, the statistical
mechanics model provides a baseline so that the neural network
model only has to learn how to correct the deficiencies of the
former–an easier task than having to correct the structure from
scratch. This is referred to as a multi-fidelity approach since our
model is learning from both low-fidelity data (provided by the
statistical mechanics model) and high-fidelity data (experimental
composition-structure data)41.
As a result, the modeling approach in this study could improve

the predictive and extrapolative power of composition-property
models by offering the structural component and allowing for
composition-structure-property modeling. That is, while purely
physics-based models can provide insights into glass structure
and offer accurate extrapolations in simple systems, they tend to
oversimplify the problem in more complex systems, where
multiple interactions occur between the different glass compo-
nents. On the other hand, data-driven models, such as those
based on machine learning, can accurately predict glass structure
within the compositional space used for the model training.
However, since these models typically do not embed any physics
knowledge, they struggle to predict properties accurately outside
of the compositional range used for training. The combined model
in this work addresses this challenge by relying on experimental
composition-structure data as well as a statistical mechanical
model. By enforcing the physical laws of interactions between the
oxide components in the glassy networks, the present model
successfully integrates (noisy) data and mathematical models
through a multilayer perceptron neural network. Therefore, this

Fig. 5 Model predictions of Qn fractions in sodium silicate glasses. a, b Qn fractions as a function of Na2O concentration in the Na2O–SiO2
glass system. The symbols represent experimentally obtained data from the literature37, solid lines represent modeling results obtained by
statistical mechanics (Approach 1), and the dashed lines represent modeling results obtained with (a) MLP-NN (Approach 2) and b statistical
mechanics informed MLP-NN model (Approach 3). c Q3 fractions as a function of Na2O concentration in the Na2O–SiO2 glass system predicted
by the statistical mechanics informed MLP-NN model (Approach 3) when using either the chemical composition (COMP input), statistical
mechanics (SM input) or a combination thereof as input (COMP and SM inputs). d Blind model prediction plotted against experimentally
obtained data from literature38 for each of the three modeling approaches.
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combined model offers an improved prediction of non-linear
composition-structure relations in oxide glasses compared to
models relying solely on statistical physics or machine learning
individually. To this end, we note that our approach is different
from the physics-informed ML approaches that rely on adding
some physical constraints in the cost function of the ML model
before conducting the training. Here, the physical information is
provided by a frozen, independent statistical model that is not
trained like a conventional ML model.

METHODS
Oxide glass structure
The basic SRO structure of oxide glasses comprises network-
forming cations such as Si, P, or B, forming a three-dimensional
network by bridging to one another through oxygen atoms42.
Electropositive cations such as Li, Na, and Ca form ionic bonds
with oxygen and weaken the network by breaking the bridging
oxygens (BOs) and forming non-bridging oxygen (NBOs) in the
process43. The reaction of modifier ions with the glassy network is
typically both entropically and enthalpically favorable as the
inclusion of ionic bonds and NBOs increases the system’s entropy,
and energy is released when modifier-former bonds obtain a
lower potential energy than the combination of former-former
and modifier-modifier bonds44,45. The SRO structures formed in
oxide glasses are summarized by the coordination number of the
network-forming cations and the ratios of BOs to NBOs associated
with that network forming cation. Modeling examples are given in
the following section.

Statistical mechanical model
Based on the knowledge of the enthalpy associated with modifier
reaction with each possible structural unit and the entropy
released, the probability of all possible reactions can be calculated
as a function of composition and temperature using statistical
mechanics46. The entropy is given by the fractions of all structural
units before the reaction occurs and scales with the temperature
at which the reaction occurred during glass formation. Here, the
temperature is assumed to be the fictive temperature (Tf), where
the glass relaxation time becomes too high as compared to the
observation time for the atoms in the glass-forming liquid to
rearrange. Thus, by knowing the fictive temperatures of a glass-
forming system, only the enthalpy values for each modifier-
structure unit pair are unknown and required to model the
composition-structure relation for a given system. If the structure
distributions are known for the glass system, e.g., as obtained by
NMR spectroscopy, the enthalpy values can be obtained by fitting
the model (see below) to the structure data47. Then, simple glass
systems can be used to obtain the enthalpy values, which, in turn,
can be used to compute the structure of more complex
compositions. For example, enthalpy values obtained by fitting
the model to experimental data of Na2O–SiO2 and Na2O–B2O3

glasses, respectively, can be used directly to predict the structures
in Na2O–SiO2–B2O3 glasses31. As such, the model offers high
extrapolation ability by capturing both the enthalpic and entropic
contributions to the formations of SRO structural units—since the
physics governing the structure of the ternary system is essentially
the same as that governing the binary systems. With this
approach, the number of glasses within the prediction range of
the model expands exponentially as the training data expands
linearly; however, the assumption of direct correlations between
reactions in binary and ternary glasses has been found to be
insufficient in some systems. That is, the model can show a
systematic error when calculating the structures of ternary glasses
from the inputs obtained from their binary counterparts25.
The statistical mechanical model used to predict the SRO

structures in oxide glasses was first proposed by Mauro45 and later

implemented and validated on binary oxide glasses by Bødker
et al.47. Considering again Na2O–B2O3–SiO2 as an example, we can
calculate the probability for sodium to interact with boron over
silicon using a non-central (weighted) distribution function. We do
so by assuming that the energy associated with a given network
modifier-former interaction is independent of the glass composi-
tion. The statistical entropy associated with each type of
interaction does, however, change depending on the glass
composition, since the composition dictates the number of each
element available for an interaction. Moreover, a species is not
replaced after the interaction occurs. This results in a hypergeo-
metric distribution that describes the evolution of network former
species as a function of the modifier concentration. As the entropy
of the system changes with composition, so does the probability
for the modifier-former interaction, thereby requiring a numerical
solution to predict the structural evolution of network former
species.
The probability for a given modifier-structure unit interaction

(pi) is calculated using a Wallenius type non-central hypergeo-
metric distribution function48,

pi;ω ¼ gi � ni;ω�1
� �

wi
PJ

j¼1

Pω�1
ω0¼0 gj � nj;ω0�1

� �
wj

; (1)

where

wi ¼ e�
Hi
kTf : (2)

In Eq. (1), ω is the modifier concentration, wi is the weighting
factor (ranging from 0 to 1) associated with structure unit i, gi is
the degeneracy of species i and ni,ω is the total fraction of species i
that has already interacted at modifier concentration ω. The
double summation in the denominator is over all species J and
each modifier concentration ω up to, but not including the current
concentration ω. In Eq. (2), k is the Boltzmann constant and Hi is
the energy barrier associated with species i49. As shown else-
where, the weighting factor given by Eq. (2) is derived from the
Boltzmann distribution function31. In summary, Eqs. (1) and (2)
show that the probability for a modifier to interact with structure
unit i is calculated by the fraction of that unit at modifier
concentration ω weighted by the Boltzmann factor (scaling with Hi

and Tf) relative to the sum of all species weighted by their
individual Boltzmann factors. For each concentration step, the
fraction ni,ω of network former species i interacting with the
modifier ion can be calculated from the probability of the
interaction and its fraction at the previous concentration step ω –
1. Then, that fraction is subtracted from the remaining amount of
network forming species i at the next concentration, which is used
to calculate the new probability, and so on. The application of Eqs.
(1) and (2) to predict the structure of binary and ternary oxide
glasses has been described in detail elsewhere31,47.
Next, we will explain the numerical procedure of calculating the

structure distribution as a function of composition, using the
M2O–B2O3–SiO2 system, where M is an alkali metal, as an example.
The structural units of interest in the silicate part of the
borosilicate network are the Qn units, where n is the number of
BO per tetrahedron (n= 0, 1, 2, 3, or 4), while those of interest in
the borate part are the Bn units, again with n= 0, 1, 2, 3, or 4. Note
that Q in the silicate network is an abbreviation for quaternary,
since all silicate structural units are four-fold coordinated, while in
the borate network, B4 is four-fold coordinated and the remaining
units are three-fold coordinated.
First, we consider the reaction mechanisms for B3 and B4

structural groups when interacting with an alkali modifier oxide
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M2O as previously described31,

2B3 þM2O ! 2B4; (3)

2B3 þM2O ! 2B2: (4)

That is, a B3 unit can either form a B4 or a B2 when reacting with
a modifier ion, following the well-known boron anomaly50,51. Here,
the modifier ion is charge balanced by either a negative NBO for
the B2 unit or by a negatively charged boron atom for the B4 unit
due to the extra covalent bond formed in the 4-fold coordinated
state. Previous studies50,52 have shown that the reaction in Eq. (3)
dominates at low-modifier concentration, while the reaction in Eq.
(4) dominates at higher modifier concentration. To capture this
behavior, a critical concentration parameter was introduced (αB4/
B2), that changes from 1 to 0, allowing only one of the two
reactions to occur at any point. This is a structural simplification
but it has been shown to capture the structural evolution in borate
containing glasses accurately31.
The following reactions occur for all silicate structural units

when interacting with a modifier ion (and for the B2 and B1

structural units),

2Qn þM2O ! 2Qn�1: (5)

With all the possible modifier interactions established, the
fractions of the structural units at concentration step ω are
calculated as,

B3ω ¼ B3ω�1 � pB3;ω � pB4;ω � pB3;ω; (6)

Q3
ω ¼ Q3

ω�1 þ pQ4;ω þ pB4;ω � pQ4;ω � pQ3;ω � pB4;ω � pQ3;ω: (7)

That is, the fraction of B3 at modifier concentration step ω (B3ω)
equals the fraction of B3 at the previous concentration step (B3ω-1)
but subtracting the fraction that reacts at ω pB3;ω

� �
. In Eq. (7), the

concentration of Q3 at step ω (Q3
ω) is found by the addition of Q4

reacting pQ4;ω

� �
and subtraction of Q3 reacting pQ3;ω

� �
. The

additional pB4;ω � pB3;ω and pB4;ω � pQ3;ω terms in Eqs. (6) and (7),
respectively, arise due to the boron anomaly. Further explanation
of the modeling procedure is given elsewhere31. Typically, the
fitting parameters of the model would be the set of Hi values for
all structure units, but the relative Hi values are first established in
binary sodium borate and sodium silicate glasses. The Hi values
from binary glasses are then transferred to predict the structural
evolution in the ternary sodium borosilicate glasses with only one
free parameter, namely the conversion factor (wSi,B). This
parameter is needed, since all enthalpy values are calculated
relatively within each system, i.e., the HQ3 in the sodium silicate
system is relative to the HQ4 parameter, while the HB2 in the
sodium borate system is relative to the HB3 parameter. That is, the
model only needs to be fitted on composition-structure data for
binary glasses and a few ternary glass systems to be able to
calculate the structural distributions in any combinations of the
elements that have been used for the training.
The enthalpy values used for this study were obtained using the

StatMechGlass pip package in the object-oriented programming
language, Python53. The StatMechGlass package was also used to
compute the following statistical mechanics results in multi-
component glasses without any fitting.

Multilayer perceptron neural network
Machine learning models, and artificial neural networks in
particular, have been successfully applied to glass systems to
capture composition-property relations for properties such as
glass-forming ability54 and thermal conductivity55. The
composition-property relation in oxide glasses is often highly
non-linear and complex, while the structure-property relation has
been shown to be more directly correlated56. The aim of this study

is to combine the statistical mechanics model with machine
learning to calculate the fractions of SRO structures of the
compositions. Such model could be used as input to property
models, hence allowing for training on both composition and
structure.
MLP-NN is a commonly used artificial neural network, which has

been successfully used in learning the relationship between inputs
and outputs within both linear and non-linear datasets57,58. MLP-
NN has previously been successfully used for glass property
prediction and we have therefore chosen it also for this
work12,13,59. The structure of MLP-NN consists of a series of
sequential layers: an input layer, an output layer, and one or more
hidden layers in between. The input layer distributes the input
information to the hidden layer. The hidden layer processes and
transmits the information from the input layer to the output layer
processed by certain sets of adjustable network parameters such
as weights and biases. To achieve an accurate prediction model,
the network structure of MLP-NN needs to be carefully tuned.
MLP-NN with excessive neurons is likely to cause overfitting, while
a network with insufficient neurons will have difficulty learning
the datasets (i.e., it will tend to exhibit underfitting). The
hyperparameters considered herein are the number of neurons
per layer and the number of layers—that is, the non-trainable
parameters that must be set before training the model. During the
training of the MLP-NN, the weights and biases of the neural
network will be continuously adjusted until network optimization
is achieved by minimizing the error between the output value and
the actual value. We used 10-fold cross validation to find the
optimal architecture during hyperparameter optimization. First,
however, a random 10% subset of the data was withdrawn from
the dataset to be used as a test set after finishing the
hyperparameter optimization. The average mean squared error
(MSE) of the cross validation was used as the cost function during
hyperparameter optimization. The hyperparameters were then
optimized (by determining the set of hyperparameters minimizing
the validation set error) using SciPy’s basin-hopping optimization
algorithm60, which is well-suited for finding the global minimum
in the parameter space after which the model was retrained on
randomly sampled 90 % of the input data.

Data layout
The input (composition) vs. output (fraction of SRO structural
units) data for the three different modeling procedures were
gathered from published work in the literature on ~400 different
glass compositions. To ensure a low uncertainty of the
experimental composition-structure data, we only used data
with measured glass compositions. All data and references are
found in Supplementary Table 1. This includes data for the most
commonly used network formers (SiO2, P2O5, B2O3, and Al2O3) in
oxide glasses and a combination of six different network
modifier oxides (Na2O, Li2O, K2O, Cs2O, CaO, and MgO). The
glass compositions used as input in all three model procedures
are the molar concentrations in the percentage of the different
oxides shown in Supplementary Table 1. The output of the data
is the measured structure distributions of the glasses. For the
combined model, the results obtained by statistical mechanical
modeling and the glass compositions were concatenated as
input data. The statistical mechanical model is trained on
structure data in binary oxide glasses only, while the MLP-NN
model is trained on a random subset of all glass structures. As
such, the testing results of the statistical mechanical model
represent structure prediction extrapolation, while the MLP-NN
interpolates.
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