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Microstructure segmentation with deep learning encoders pre-
trained on a large microscopy dataset
Joshua Stuckner 1✉, Bryan Harder1 and Timothy M. Smith1

This study examined the improvement of microscopy segmentation intersection over union accuracy by transfer learning from a
large dataset of microscopy images called MicroNet. Many neural network encoder architectures were trained on over 100,000
labeled microscopy images from 54 material classes. These pre-trained encoders were then embedded into multiple segmentation
architectures including UNet and DeepLabV3+ to evaluate segmentation performance on created benchmark microscopy datasets.
Compared to ImageNet pre-training, models pre-trained on MicroNet generalized better to out-of-distribution micrographs taken
under different imaging and sample conditions and were more accurate with less training data. When training with only a single Ni-
superalloy image, pre-training on MicroNet produced a 72.2% reduction in relative intersection over union error. These results
suggest that transfer learning from large in-domain datasets generate models with learned feature representations that are more
useful for downstream tasks and will likely improve any microscopy image analysis technique that can leverage pre-trained
encoders.
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INTRODUCTION
Establishing processing-structure-property relationships is critical
to the design and improvement of materials. Microscopy image
segmentation is often the first and hardest step in quantifying
material structure, which is the central link in processing-structure-
property relationships. Traditional microstructure quantification
requires numerous manual measurements on a micrograph (e.g.,
refs. 1,2), is tedious, time-consuming, and prone to bias. Automatic
segmentation using classic computer vision techniques such as
image thresholding and morphology operations3,4 is much faster
and repeatable, but difficult to implement and often not robust to
slight changes in imaging or sample conditions. Recently,
convolutional neural networks (CNN) pre-trained on ImageNet5

have produced superior microscopy classification and segmenta-
tion results and are much easier to implement6–16. However,
segmentation CNNs require expensively labeled training data to
operate well and ImageNet pre-training does not adequately
alleviate this problem when transferred to microscopy segmenta-
tion tasks because many of the learned filters are not applicable
(e.g., those adapted to detect dogs). Therefore, we created
MicroNet, a large dataset containing over 100,000 labeled
microscopy images. Here, we report that leveraging transfer
learning from classification models pre-trained on MicroNet rather
than ImageNet produces segmentation models with higher
intersection over union (IoU) accuracy during one-shot and few-
shot learning and with higher accuracy on out-of-distribution test
images from different chemical composition, etching, and
imaging conditions than the training images.
Semantic segmentation with CNNs is performed with encoder-

decoder type architectures, which offer state-of-the-art perfor-
mance on benchmark datasets such as the cityscapes dataset17.
The encoder uses learned convolutional filters to extract semantic
information from the input image, transforming the image data
into a latent representation vector. The decoder then maps the
extracted information to each pixel location in the image to

generate a pixelwise classification prediction of the objects in
original image (i.e., semantic segmentation).
Training data for semantic segmentation is expensive and time

consuming to create. Transfer learning can be used to supplement
small training datasets by transferring learned filters from a model
trained on another similar task, such as image classification, which
is significantly easier to create training data for. Transfer learning is
successful when the filters that the model learns from training on
the first task are directly applicable to the target task. To leverage
transfer learning with encoder-decoder architectures, a CNN is first
trained to perform image classification on a large image dataset as
shown in the schematic in Fig. 1. Multi-class classification is a
common source of pre-training data because the data is relatively
cheap to obtain compared to other tasks and the filters learned
from this tasks are useful for other downstream tasks such as
semantic segmentation5. The classification model uses an encoder
with many convolutional layers to extract a feature representation
vector from the image and a classification head, which contains
several fully connected neural network layers, to make a
classification prediction based on the extracted feature represen-
tation. The convolutional layers learn to extract useful features for
classification during training by learning useful image filters. These
learned filters are likely to be useful for other image analysis tasks
such as segmentation. Transfer learning is applied when the
trained convolution layers from an image classification model are
copied directly to the encoder in an encoder-decoder segmenta-
tion model. ImageNet contains images of everyday life and is a
common source of pre-training image classification data. The
convolutional filters that are used to classify ImageNet images
have also been applied very successfully to microscopy segmen-
tation. However, recent work has shown that the first few layers of
VGG models (a powerful early CNN classification model that is still
widely used) are highly useful for transfer learning to microscopy
segmentation while the deeper layers are not18. This is because
the initial layers detect simple features like edges, corners, and
simple textures, which are likely to appear in microscopy images,
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while the deeper layers detect higher level features such as dog
ears and car tires, which do not appear in microscopy images.
The central hypothesis of the work presented here is that

because higher level feature detectors from models trained on
ImageNet do not transfer well to microscopy segmentation, the
full advantages of transfer learning are not realized. Therefore, we
trained classification models on a large dataset of microscopy
images called MircoNet so that the models could learn to detect
higher level microstructure features that do not appear in pictures
of everyday life such as grain boundaries, precipitates, and oxide
layers. We show that transfer learning from models trained on
MicroNet rather than ImageNet produces more accurate segmen-
tation results with less training data (in one experiment, improving
the IoU from 74.8% to 93% when training on a single image) and
is more robust to changing imaging and sample conditions
(improving the IoU accuracy from 72.5% to 78.5% on out-of-
distribution images in another experiment).

RESULTS
Pre-training classification models
Seventy-six models were trained to classify MicroNet images into
one of 54 classes. Forty models were initially pre-trained on
ImageNet before training on MicroNet and 36 were randomly
initialized. Pre-training on ImageNet allows useful filters learned
from classifying natural images to be reused and finetuned for
microscopy classification through transfer learning. Initial Ima-
geNet filters that are not useful may be replaced during training
on MicroNet but may still be beneficial by providing a better
initialization. On average, models initialized with ImageNet
weights converged about 20% faster than those initialized with
the random initialization. The classification accuracy of these
models on the MicroNet validation set are shown in Fig. 2. The
best classification model was EfficientNet-b4 pre-trained on
ImageNet, which achieved a classification accuracy of 94.5%.
SENet-154 achieved the highest accuracy of the models trained
from scratch with an accuracy of 94.0%. The EfficientNet, ResNet,
and VGG models showed a strong benefit from pre-training on
ImageNet. However, it is interesting to note that some

architectures, including the squeeze-and-excitation (SE) and
inception families of models, showed no benefit from initial pre-
training on ImageNet. For the DenseNet and MobileNet archi-
tectures, pre-training was detrimental. Besides architecture
quality, variability in performance could be partially explained
by the random batches given to the models during training. There
is no obvious trend between model size and the benefit of
ImageNet pre-training for classification accuracy.
An open question is whether progress in developing vision

models, which are optimized for natural images (images of
everyday life, often captured with consumer cameras), will transfer
well to microscopy images or if architecture design is overfit to
natural images. From the trendlines in Fig. 2b it can be seen that
in general, model architectures reported to perform better on
ImageNet classification tended to perform better when trained to
classify MicroNet data. However, a notable exception to the trend
is the EfficientNet model architectures, which are indicated by the
square markers in Fig. 2b. EfficientNet architectures that
performed better when trained to classify ImageNet did not
perform better when trained to classify MicroNet, whether pre-
trained on ImageNet or not. A significant amount of testing was
done during the development of EfficientNet to optimize the
depth, width, resolution scaling, and other hyperparameters to
develop an architecture that performed well on ImageNet19. A
microscopy dataset of comparable size to ImageNet would be
helpful to study the full extent to which progress on natural image
processing transfers to microscopy image processing. Such a
study could help determine whether it would be fruitful to design
architectures, scaling rules, and techniques specifically for micro-
scopy analysis instead of largely borrowing best practices from
large research efforts on natural images. From our results it seems
that there would be value in optimizing the scaling compound
coefficient used in EfficientNet for microscopy specific data.

Segmentation datasets
The real measure of the value of the trained classification models
(i.e., pre-trained encoders) is how well the image representations
learned by the encoders transfer to downstream tasks such as

Fig. 1 Schematic of pre-training CNN encoders on MicroNet and embedding into a segmentation model through transfer learning. First, a
classification model (top) with a convolutional encoder (blue box) and dense classifier head (gray box) is trained to predict the class of each
material by learning filters (Conv filters, orange) which extract relevant features into a feature vector. CNNs contain many layers of
convolutional filters, though only two are shown in the illustration. Through transfer learning (blue arrow) the learned filters are copied into an
encoder-decoder segmentation model (bottom) which then learns to segment microscopy images with less training data than without
transfer learning.
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segmentation. The pre-trained encoders were applied through
transfer learning to seven segmentation tasks which came from
two materials: nickel-based superalloys (hereinafter referred to as
Super) and environmental barrier coatings (EBC). The number of
images in each dataset split is shown in Table 1. Super-1 and EBC-
1 contain the full set of labeled data from their respective
materials. Super-2 and EBC-2 have only four images in the training
set to evaluate the models’ performance in few-shot learning,
where the model is trained on only a few training samples. Super-
3 and EBC-3 had only one image in the training set to evaluate
performance during one-shot learning. Super-4 had test images
that were taken under different imaging and sample conditions to
test how well the models would generalize to unseen out-of-
distribution data (e.g., images from different microscopes,
microscopists, microscope settings, sample preparation condi-
tions, or different research groups).

Ni-superalloy segmentation
Pre-training on MicroNet led to a significant increase in accuracy
for few-shot and one-shot learning on the Super datasets. The
training data splits and segmentation accuracy masks for these
datasets are shown in Fig. 3. The training, validation, and test splits
had similar looking images and an equal number of dark and light
contrast images in each split. The train split for Super-3 had only
one image which is outlined in red in Fig. 3a and did not contain

dark contrast images. The performance of the best models pre-
trained on MicroNet and ImageNet for each of the Super-1 to
Super-3 datasets are displayed above the segmentation accuracy
masks in Fig. 3. When training on Super-1 with ten training images
(Fig. 3b, first row), both the ImageNet and MicroNet models
performed well and accurately segmented the secondary and
tertiary precipitates. On Super-2 with only four training images
(Fig. 3b, second row), the MicroNet model had only a slight
reduction in accuracy (96.4% IoU to 94.2% IoU) while the
ImageNet model had a large reduction in accuracy from 96.5%
to 88.7%. With four training images the ImageNet model failed to
identify many of the tertiary precipitates in the dark contrast
images as indicated by the yellow triangles. The ImageNet model
also over-segmented and combined some of the secondary
precipitates (indicated by the red triangles). With four training
images, the segmentation output of the MicroNet model allowed
for much more accurate size and morphology measurements of
the precipitates. When training on Super-3 with only a single
training image (Fig. 3b, third row), the improvement of MicroNet
over ImageNet was even more striking. The ImageNet model was
reduced to 74.8% IoU and the segmentation was unusable for
measuring size statistics, morphology, or even the area fraction of
the precipitates. In the darker contrast image, the secondary
precipitates were over-segmented and incorrectly combined into
one as indicated by the red triangles. The tertiary precipitates
were not detected at all by the ImageNet model. Meanwhile, the
MicroNet model had a very high accuracy of 93.0% IoU during
one-shot learning, which was nearly equal to the accuracy
obtained from training on the full dataset. The tertiary precipitates
were identified, and the secondary precipitates were properly
separated in both the light and dark contrast test images. Even
when training on a single image, the MicroNet model produced
segmentation masks that could be used to calculate highly
accurate size, morphology, area fraction, and other quantitative
microstructure metrics. Trying to extract those metrics from the
ImageNet one-shot model would be highly misleading and
significantly overestimate the size of the secondary precipitates
while ignoring the tertiary precipitates. Figure 6 shows the error of
precipitate area measurements on the segmented test images
compared to measurements on the manually labeled test images.
The Super-3 MicroNet model trained on one image had only a
10% error on the secondary precipitates while the ImageNet
model had a 90% error (Fig. 6a). Similarly, when measuring the
tertiary precipitates, the MicroNet models had only a slight

Fig. 2 Accuracy of classification models. a The prediction accuracy of classification models on the MicroNet validation set. The models
indicated with dark blue were randomly initialized and trained from scratch while the “Im → Micro” models shown in light blue were pre-
trained on ImageNet and then finetuned on the MicroNet data. b Comparison of each architecture’s reported accuracy when trained to
classify ImageNet data versus each architecture’s the classification accuracy when trained to classify MicroNet data in this study. EfficientNet
models are indicated with square markers and all others with circular markers.

Table 1. Number of images in the train, validation, and test splits of
each experimental dataset.

Experiment # Train # Val # Test

Super-1 10 4 4

Super-2 4 4 4

Super-3 1 4 4

Super-4 4 4 5*

EBC-1 18 3 3

EBC-2 4 3 3

EBC-3 1 3 3

*The test images in Super-4 were taken under different imaging conditions
than the train and validation sets.
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increase in error (about 26% to 38%) when reducing the training
images from ten to one (Super-1 to Super-3) while the ImageNet
model went from 25% to over 175% error when reducing the
training images from ten to one (Fig. 6b). Percent error is higher
for tertiary than secondary precipitates for all models because
small segmentation errors produced larger percent size

differences in the smaller precipitates. It is interesting to note
that in the one-shot case, the MicroNet models produced only
slight systematic differences in segmentation predictions due to
image contrast compared to models pre-trained on ImageNet
despite the lack of darker contrast images in the training data. This
suggests that pre-training on MicroNet leads to models that are

Fig. 3 Segmentation results on Ni-superalloys. a shows images from the training and test data splits. Super-1 had ten training images.
Super-2 had four images. Super-3 had only one training image which is outlined in red. b show the segmentation accuracy masks for the
highest accuracy ImageNet and MicroNet models for the first three Super datasets. White pixels indicate true positive predictions, black is true
negative, cyan is false positive, and magenta is false negative. The left column shows the models pre-trained on ImageNet. As the number of
training images reduce, there is a dramatic reduction in segmentation IoU accuracy. The right column shows the models pre-trained on
MicroNet. Even with only 1 training image, the model accuracy is only slightly reduced when pre-training on MicroNet. Red and yellow
triangles are placed at the same location in each ground truth and segmentation accuracy mask for the left and right test image respectively.
The red triangles indicate an example where ImageNet models over-segment and combine secondary precipitates where the MicroNet
models accurately segment the precipitate edges and maintain precipitate separation. The yellow triangles indicate an example where
MicroNet models accurately identify tertiary precipitates that were not identified by ImageNet models in the few-shot and one-shot case.
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more robust to changes in imaging or sample conditions. Overall,
pre-training on MicroNet produced a 72.2% reduction in relative
IoU error in the one-shot case compared to ImageNet.
The average model performance across all encoder and

decoder combinations when initialized with different pre-
training weights are shown for each experiment in Table 2.
Although the error bars are large because a few models failed to
converge during training, it appears that on average when using
less training data in Super-2 and Super-3, pre-training with
ImageNet-then-MicroNet was slightly better than pre-training with
MicroNet or ImageNet alone. Pre-training with MicroNet showed
better performance than ImageNet. With no pre-training (ran-
domly initialized encoder weights), model performance was
significantly reduced. Table 3 shows that the UNet and UNet++
decoders were consistently more accurate than LinkNet decoders
for Super-1 to Super-3. From Table 4, none of the encoder
architectures demonstrated clearly superior performance on
Super-1 to Super-3, although some performed poorly on average.

Assessing the generalization to new image conditions
Segmentation accuracy on micrographs with different sample and
imaging conditions was greatly improved when pre-training on
MicroNet. Figure 4 shows the segmentation accuracy of the Super-
4 experiment where the test data was from a different distribution
than the training and validation data (shown in Fig. 3a). The test
images for Super-4 contained micrographs from a different alloy
(Fig. 4, top row), several different etching conditions (rows 2–4),
and poor imaging or sample preparation conditions (bottom row).
For this experiment, the top MicroNet model had an IoU of 78.5%
compared to 72.5% for the top ImageNet model. Although the
accuracy on this extremely out-of-distribution test set was less
than the in-distribution test sets, consider how useful the
MicroNet segmentation masks would be for extracting useful
morphology statistics such as size and shape compared to those
produced by ImageNet pre-training. The red triangles in Fig. 4

indicate several examples where the ImageNet model commonly
over-segmented and combined the secondary precipitates mak-
ing accurate size and shape analysis impossible. The MicroNet
model was significantly more accurate in identifying the separa-
tion between secondary precipitates allowing for accurate
precipitate size and shape analysis. A careful observer may notice
a couple rare instances of MicroNet over-segmentation in the
bottom row, but the separation accuracy is extraordinarily
improved over the ImageNet model. MicroNet’s performance on
segmenting the small tertiary precipitates is also vastly superior to
ImageNet with several examples indicated by the yellow triangles
in Fig. 4. In the first three rows, the ImageNet model did not
identify the vast majority of the tertiary precipitates while the
MicroNet model was able to successfully identify and segment
them allowing for downstream size and morphology analysis.
Automatic measurements on the secondary and tertiary pre-
cipitate sizes (Super-4, Fig. 6a, b, respectively) were significantly
more accurate with the MicroNet model. The higher accuracy of
pre-trained MicroNet encoders on out-of-distribution data indi-
cates that pre-trained MicroNet encoders are more general and
useful for comparing results between research groups, micro-
scopes, sample preparation conditions, and imaging conditions.
The MicroNet models have higher usability on a much wider range
of sample and imaging conditions without having to label
addition training data.
On average, the EfficientNet family of encoders had the highest

performance on the out-of-distribution data in the Super-4
experiment as shown in Table 4. Table 3 shows that UNet++
was the highest performing decoder on average and UNet was
nearly as good. Table 2 gives the average results of different pre-
training weights on Super-4. Pre-training on ImageNet-then-
MicroNet or MicroNet gave the best results on average (52.5%
and 52.3%, respectively) and was better than pre-training on
ImageNet (47.7%) and significantly better than without pre-
training (34.0%).

Table 2. Average performance of models initialized with different pre-training weights for each experiment.

Pre-training Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3

None 76.9% ± 22.8% 46.2% ± 7.1% 48.3% ± 6.2% 34.0% ± 7.5% 68.0% ± 31.4% 48.3% ± 27.7% 35.1% ± 10.3%

Imagenet 93.8%± 7.9% 62.1% ± 12.1% 59.7% ± 7.9% 47.7% ± 14.1% 87.9% ± 19.9% 82.9% ± 17.4% 43.9%± 7.0%

MicroNet 93.6% ± 8.7% 74.6% ± 14.3% 66.9% ± 13.2% 52.3% ± 10.5% 87.9% ± 18.2% 81.6% ± 17.1% 40.3% ± 6.2%

Im → Micro 85.8% ± 19.2% 74.6% ± 16.2% 70.0% ± 13.9% 52.5%± 16.2% 88.8%± 16.6% 81.7%± 14.7% 41.4% ± 8.2%

On average pre-training on ImageNet followed by pre-training on MicroNet often produced the best results. The highest accuracy score for each dataset is
shown in bold. In some cases, the overall best model was pre-trained on MicroNet or ImageNet. Models trained from scratch without any pre-training always
performed worse. Experimentation is often required to select the best model. The results from this table can help guide experimentation.

Table 3. Average performance of decoder architectures for each experiment.

Decoder Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3

DeepLabV3+20 – – – – 86.9% ± 15.3% 76.0% ± 22.4% –

FPN55 – – – – 75.6% ± 34.9% – –

LinkNet54 84.9% ± 20.1% 59.3% ± 15.5% 53.1% ± 11.9% 42.1% ± 12.8% 81.6% ± 25.8% 65.8% ± 26.2% –

PAN57 – – – – 85.9% ± 17.9% – –

PSPNet56 – – – – 72.4% ± 28.5% – –

Unet52 88.0% ± 15.1% 67.0%± 17.7% 62.3%± 12.3% 48.4% ± 14.9% 89.9% ± 13.1% 76.7% ± 22.1% 40.3% ± 8.4%

Unet++53 89.9% ± 16.3% 66.6% ± 17.8% 62.1% ± 11.9% 49.3% ± 14.9% 90.3% ± 15.2% 76.5% ± 25.5% 40.0% ± 8.9%

On average and in general, Unet and Unet++ performed the best on the experiments performed here. DeepLabV3+ is a newer segmentation architecture
that performs well on natural images and performed quite well on EBC-2. The highest accuracy score for each dataset is shown in bold. The results from this
table can help guide experimentation to select the best model for a particular segmentation task.
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Environmental barrier coating segmentation
When pre-training on MicroNet the top model showed significant
improvement for the one-shot learning case on the environmental
barrier coating datasets (EBC-3) compared to the top ImageNet
model. From Table 3, the best decoder architecture on average
appeared to be UNet or UNet++, although DeepLabV3+ was not
evaluated for all datasets and appeared to be promising. The top
models for each EBC dataset used the UNet++ decoder except
one which used UNet (Fig. 5). There was not a clearly best encoder
architecture for the EBC datasets as shown in Table 4, although
some architectures were clearly inferior. Table 2 shows that on
average across all encoders and decoders, ImageNet models
performed slightly better for EBC-2 and EBC-3 while pre-training
on ImageNet-then-MicroNet gave the best average performance
on EBC-1. Models that were not pre-trained had significantly
degraded performance. However, it is difficult to determine which

pre-training method was clearly superior from the average results
because of the wide error bars and the occasional poor
performance of a few models that randomly failed to converge.
A clearer picture of the best pre-training method is given by the
segmentation results of the best ImageNet and MicroNet model
for each EBC dataset as shown in Fig. 5. On EBC-1 and EBC-2 when
training with 18 and 4 images respectively, there was not a
significant difference between pre-training on MicroNet and
ImageNet, although ImageNet pre-training was slightly better for
the top models. For EBC-3, when training on the single image
outlined in red in Fig. 5a, the top MicroNet model saw a 14.3%
reduction in relative error compared to the top ImageNet model
(65.9% IoU vs. 60.2% IoU). The ImageNet model failed to
distinguish between the substrate and the thermally grown oxide
layer (indicated by the red triangles in Fig. 5) making it impossible
to accurately measure oxide thickness. Meanwhile the one-shot

Table 4. Average performance of encoder architectures for each experiment.

Encoder Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3

DenseNet12141 – – – – 89.1% ± 6.2% 80.9% ± 10.8% 38.3% ± 5.3%

DenseNet16141 – – – – 90.9% ± 4.8% 86.1% ± 5.5% 39.6% ± 2.9%

DenseNet16941 – – – – 90.8% ± 4.7% 81.5% ± 9.2% –

DenseNet20141 – – – – 90.3% ± 5.1% 86.5%± 4.8% –

dpn10742 – – – – 90.7% ± 5.6% 80.7% ± 22.1% –

dpn13142 – – – – 86.7% ± 18.0% 79.8% ± 16.8% –

dpn6842 – – – – 74.6% ± 29.2% 61.9% ± 27.1% 40.1% ± 5.2%

dpn68b42 – – – – 69.6% ± 29.6% 56.9% ± 29.4% 36.5% ± 8.5%

dpn9242 – – – – 84.1% ± 17.8% 78.3% ± 12.3% –

dpn9842 – – – – 87.1% ± 17.9% 72.9% ± 26.9% –

EfficientNet-b019 77.7% ± 23.9% 56.9% ± 14.3% 51.1% ± 12.6% 53.7% ± 15.8% 59.0% ± 41.5% 55.9% ± 32.7% 34.7% ± 16.9%

EfficientNet-b119 66.9% ± 26.4% 62.9% ± 19.5% 52.8% ± 19.7% 58.7% ± 13.9% 60.0% ± 40.7% 57.1% ± 33.7% 40.7% ± 7.1%

EfficientNet-b219 65.1% ± 26.0% 66.9% ± 21.6% 51.1% ± 18.4% 59.4% ± 14.6% 68.6% ± 36.0% 57.6% ± 33.6% –

EfficientNet-b319 69.4% ± 26.9% 68.1% ± 22.0% 62.4% ± 19.1% 59.2% ± 11.4% 71.6% ± 33.9% 60.0% ± 33.0% –

EfficientNet-b419 74.8% ± 26.0% 67.9% ± 18.7% 58.9% ± 15.2% 57.2% ± 13.9% 70.3% ± 35.3% 61.4% ± 33.0% –

EfficientNet-b519 76.3% ± 23.0% 70.5% ± 22.5% 61.3% ± 17.2% 57.7% ± 17.3% 73.4% ± 35.6% 64.6% ± 31.3% 36.4% ± 17.0%

Inception-ResNet-V244 94.5% ± 3.1% 64.4% ± 12.2% 63.0% ± 11.0% 43.1% ± 11.1% 87.9% ± 10.4% 75.6% ± 25.7% 38.2% ± 5.2%

Inception-V444 91.6% ± 8.8% 76.2% ± 19.9% 69.1%± 13.3% 48.6% ± 12.1% 84.0% ± 26.4% 73.2% ± 26.9% 39.3% ± 6.3%

MobileNet-V246 – – – – 71.3% ± 34.5% 60.5% ± 34.2% 45.7% ± 6.5%

ResNet-10143 – – – – 86.4% ± 18.1% 76.1% ± 15.7% 38.5% ± 8.6%

ResNet-15243 – – – – 86.2% ± 18.7% 75.5% ± 23.7% –

ResNet-1843 – – – – 89.8% ± 5.9% 82.1% ± 7.3% –

ResNet-3443 94.3% ± 2.1% 57.9% ± 11.7% 59.5% ± 7.2% 35.8% ± 11.3% 91.1% ± 5.3% 80.2% ± 9.7% –

ResNet-5043 91.2% ± 7.2% 48.9% ± 11.9% 55.3% ± 5.9% 32.2% ± 9.4% 82.5% ± 24.2% 81.2% ± 9.6% 38.2% ± 3.4%

ResNeXt-101_32x8d47 95.3% ± 1.5% 57.5% ± 12.1% 57.3% ± 4.4% 39.8% ± 8.8% – – –

Resnext-50_32x4d47 90.9% ± 8.9% 54.7% ± 11.6% 54.6% ± 7.8% 39.0% ± 9.6% 81.9% ± 23.9% 69.9% ± 27.0% 33.4% ± 5.1%

SE_ResNet-10148 93.3% ± 8.4% 66.4% ± 13.1% 57.8% ± 9.4% 47.7% ± 11.2% 93.3% ± 4.0% 84.6% ± 7.8% 42.4% ± 6.6%

SE_ResNet-15248 95.2% ± 1.9% 60.6% ± 12.5% 57.4% ± 6.0% 38.6% ± 9.3% 93.0% ± 4.4% 82.7% ± 19.2% 40.2% ± 4.1%

SE_ResNet-5048 94.8% ± 4.3% 63.1% ± 15.3% 57.3% ± 5.4% 39.8% ± 9.2% 88.9% ± 18.2% 81.6% ± 14.6% 47.3%± 8.2%

SE_ResNeXt-101_32x4d47 95.4% ± 1.3% 67.3% ± 19.3% 60.8% ± 13.5% 44.2% ± 8.6% 91.8% ± 6.0% 79.5% ± 18.7% 45.6% ± 5.3%

SE_ResNeXt-50_32x4d47 96.0% ± 0.3% 67.3% ± 17.4% 59.6% ± 5.1% 44.4% ± 9.4% 92.6%± 4.0% 83.3% ± 14.0% 41.6% ± 2.5%

SENet-15448 94.5% ± 4.2% 76.6% ± 17.5% 63.2% ± 12.7% 51.0% ± 15.0% 91.9% ± 6.7% 75.9% ± 30.0% 42.2% ± 4.5%

VGG-13_bn39 94.2% ± 6.6% 65.2% ± 17.8% 64.3% ± 14.8% 46.6% ± 15.0% – – –

VGG-16_bn39 95.2% ± 2.1% 66.6% ± 19.0% 66.2% ± 14.7% 40.2% ± 17.0% 87.5% ± 18.7% 84.0% ± 5.1% 33.8% ± 8.4%

Xception45 93.8% ± 4.5% 61.3% ± 10.8% 54.1% ± 7.8% 39.3% ± 9.9% 92.0% ± 5.1% 74.6% ± 33.9% 42.5% ± 9.7%

There was not a single best encoder architecture and the performance of the encoder architectures varied significantly between experiments. The highest
accuracy score for each dataset is shown in bold. Often the newer encoder architectures such as the SE, inception, ResNeXT, and EfficientNet families tended
to perform better than the older architectures such as VGG and ResNet, however this was not always the case. The large variation of encoder performance
shows that experimenting with many model architectures and evaluating performance on a validation set is often required to achieve higher accuracy.
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Fig. 4 Accuracy of Super-4 segmentation models evaluated on test data with unseen imaging conditions. The left column shows the
images from the test set. The middle column shows the IoU accuracy masks for the best ImageNet model (UNet++, EfficientNet-b0). The right
column shows the same for best top MicroNet model (UNet, EfficientNet-b1). Each row shows the test image and accuracy masks of the same
image. The accuracy mask colors represent the same as in Fig. 3. The red triangles indicate example locations where the ImageNet model
over-segmented and connected the tertiary precipitates which the MicroNet model accurately segmented. The yellow triangles indicate
example locations where the ImageNet model failed to identify tertiary precipitates that the MicroNet model successfully identified. The
orange triangles in the fourth row indicate one of many example locations where the ImageNet model improperly identified the corner of a
secondary precipitate as a tertiary precipitate.
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MicroNet model was highly useable for oxide thickness measure-
ments after simple morphological operations (such as binary
opening which is useful for removing small objects to remove the
noise in the segmentation mask). The error of oxide thickness
measurements made on the segmented images is shown in

Fig. 6c. Measurement errors using models trained EBC-1 and EBC-2
were less than 5% for both MicroNet and ImageNet with ImageNet
performing slightly better. For the one-shot case (EBC-3) MicroNet
segmented the oxide with enough accuracy to obtain an average
measurement error of 20% while the ImageNet model produced

Fig. 5 Results of EBC segmentation. a shows examples from the train and test splits of the EBC datasets. The single training image for EBC-3
outlined in red. b shows the segmentation results for the top ImageNet and MicroNet models for each EBC experiment. The accuracy mask
colors represent the same as in Fig. 3. The red triangles indicate example locations on the test image where the ImageNet models were not able
to distinguish between the substrate and the thermally grown oxide when training on a single image. The yellow arrows indicate locations
where the thermally grown oxide was under segmented when training on a single image with both the MicroNet and ImageNet models.

Fig. 6 Plots showing percent error in size measurements performed on segmented images. a compares the average percent measurement
error when measuring the size of individual secondary precipitates from test set images segmented by the best models in the Super
experiments. Error bars are the standard deviation of the error across all the precipitates in the test set images. b compares the error of tertiary
precipitate size measurements. c compares the average percent error of thermally grown oxide thickness measurements after performing
simple morphology operations on the segmented test images. The error bars are the standard deviation across the three test images.
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unusable segmentations leading to an average measurement
error above 80%. Both models under-segmented the thermally
grown oxide in the lighter contrast test image as indicated by the
yellow arrow in Fig. 5. But considering that the models were
trained on only one training image, that the lighter contrast image
looked quite different from the training image, and that the image
contained only a single instance of the oxide layer, the accuracy is
surprisingly good.

DISCUSSION
From a practical standpoint, choosing the best pre-training source
and encoder architecture for a particular microscopy analysis task
and dataset may require some experimentation. Here, we provide
some guidelines based on the results presented in this manuscript
and our unreported experience using the models. The provided
code makes it easy to vary these parameters and experiment with
different combinations. In general, encoders pre-trained on
ImageNet and then further pre-trained on MicroNet often
provided the best results. We suggest starting with ImageNet-
then-MicroNet pre-trained encoders. On the Super-4 task, when
applying the model to out of distribution data, Table 4 shows that
pre-training on MicroNet and ImageNet-then-MicroNet was about
equal on average while pre-training on ImageNet was worse. The
top three models trained on Super-4 were pre-trained on
MicroNet. Unet and Unet++ decoders were consistently the best
in our experiments. However, DeeplabV3+ should also be
considered due to its reportedly improved performance on
natural images and ability to capture multi-scale context20. The
performance of the encoder architectures varied significantly
between experiments. We found that the newer encoder
architectures such as the SE, inception, ResNeXT, and EfficientNet
families tended to perform better than the older architectures
such as VGG and ResNet, however this was not always the case.
There was a moderate correlation between the encoders’
MicroNet classification accuracy and their downstream segmenta-
tion accuracy with a Pearson’s correlation coefficient of 0.55 and
0.58 on EBC-2 and Super-2 respectively. In short, experimentation
is often required to achieve the best results and the provided code
makes that easy; however, users are encouraged to start with the
UNet++ decoder and an encoder with high MicroNet classifica-
tion accuracy that was pre-trained on ImageNet-then-MicroNet.
Transfer learning works to the extent that a data-rich initial task

is similar to the target task such that the learned representations
from the initial task are applicable to the target. However, transfer
learning has limitations and may not always provide the best
results. One potential drawback is negative transfer where the
transferred knowledge has a negative impact on the target task21.
This could be caused in part by the loss of the nice starting
condition properties provided by random Kaiming initialization
without the benefit of useful starting filters ideally provided by
transfer learning. The root cause of negative transfer is the
divergence of the source data distribution to the target data
distribution22. Thus, on many microstructure tasks, MicroNet may
be less prone to negative transfer than ImageNet. However,
microstructures are extremely diverse and in some instances the
target task may be significantly different from both ImageNet and
MicroNet and require the sourcing of additional task specific
training data. Transfer learning also restricts the target task to the
pre-trained model architectures that are available. Some tasks may
require specialized model architectures such as those that can
handle 3D microstructure data or extremely large images or for
applications that require fast execution with small models that
aren’t suitable for distinguishing between large numbers of
classes. Ultimately, the accuracy from pre-training may not be
sufficient for the target application. In those cases, large amounts
of labeled data from the target domain along with the flexibility of

hyperparameter and architecture optimization precluded by
transfer learning may be required.
Transfer learning from CNN encoders pre-trained on MicroNet

produced more accurate segmentation models with a higher IoU
with significantly less training data than pre-training on ImageNet.
MicroNet encoders also generalized to better to unseen data with
different imaging or sample conditions. This is significant because
creating labeled training data for segmentation tasks is expensive
and time consuming and the labeled data cannot account for all
possible imaging and sample conditions that the model should be
expected to perform accurately on. By producing higher accuracy
with less training data and generalizing better to out-of-
distribution microscopy images, this technique shows promise
to produce segmentation results that are more accurate and
comparable between microscopes, microscopists, and research
groups, thus increasing the utility and shareability of the trained
models.
The improved segmentation accuracy suggests that the

MicroNet pre-trained encoders generate superior microstructure
feature representations and will likely improve the accuracy of
other deep learning microscopy analysis tasks that commonly
utilize pre-trained ImageNet encoders, making this technique
broadly and generally applicable. The following microstructure
analysis tasks that use pre-trained ImageNet encoders would likely
benefit from MicroNet pre-trained encoders with only a small
change to the code. Using deep regression to directly predict
material properties or grain size23,24. Using the final feature vector
from the encoder (with or without dimensionality reduction) as
input into other ML algorithms such as support vector machines,
gaussian processes, or random forests to predict material proper-
ties25,26. Extracting feature vectors from the entire encoder to
predict properties6. Automatically classifying important features or
defects in microstructure images27–29. Classifying EBSD patterns15.
Classifying small patches for semantic segmentation14. Performing
object detection and instance segmentation10. The pre-trained
MicroNet encoders have been made readily available and the
provided code contains examples to demonstrate how MicroNet
encoders can be downloaded and used in existing projects that
leverage pretrained ImageNet encoders by adding only a couple
lines of code.
Ultimately better microstructure representations can be used to

build more accurate data-driven models that establish processing-
structure-property relationships to improve inverse design
through techniques such as active learning. Inverse design allows
practitioners to first determine target material properties based on
design criteria and iteratively discover how to produce that
material with far fewer experiments, saving significant time,
money, and labor. Structure is the central link in processing-
structure-property relationships and accurate microstructure
segmentation and feature extraction is critical to quantitatively
establishing these relationships.

METHODS
Description of datasets
A large dataset called MicroNet, containing 110,861 microscopy images,
was created to pre-train classification models to be used as encoders in
segmentation models. The majority of MicroNet images were sourced
inhouse with additional images from the UltraHigh Carbon Steel
Micrograph DataBase30, the Aversa Scanning Electron Microscopy (SEM)
dataset31, synthetic SEM powder data32, SEM images from the Materials
Data Repository hosted by the National Institute of Standards and
Technology, and a photovoltaic dataset33. On average MicroNet images
were much larger than ImageNet (1048 × 741 versus 469 × 387 pixels)
giving the MicroNet dataset a pixel equivalence of 474,323 ImageNet
images for the encoders to learn from. For comparison, ImageNet contains
14 million images across 20,000 classes (often combined into 1000 sub-
classes). MicroNet contained 54 classes and was split into train/validation
sets with 50 images for each class in the validation set representing a 97.5/
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2.5 training/validation split. The large training/validation ratio was required
so that each class had the same number of images in the validation set and
the smallest classes had at least two-thirds of their images in the training
set. Fifty images per class was deemed large enough to acquire reliable
validation accuracy to prevent overfitting during training. While the
validation set was balanced, the training set had some class imbalance
with several classes each containing less than 0.2% of the total images and
one class containing 12.5% of the images. Most classes had over 1100
images or one percent of the training set. MicroNet contained images from
optical, scanning electron, and transmission electron microscopes and
included numerous material classes including metals, polymers, ceramics,
and composites. Over half the images were from scanning electron
microscopes and almost a third were from optical microscopes. Only one
class contained synthetic data and accounted for less than two percent of
the dataset. About 70% of the images had a single grayscale channel while
others, especially the optical microscopy images, were three-channel RGB
images. Micrographs from a variety of imaging techniques and material
types were included to enhance the universality of transfer-learning from
MicroNet for material microstructure quantification tasks.
Separating the data into appropriately labeled classes was not a

straightforward task. Material classifications are almost continuously
hierarchical in nature with broad categories such as metals and polymers
at the top which can be subdivided an arbitrary number of times based on
composition or processing. Due to the stochastic nature of materials
processing, each material specimen could even be considered a unique
class, like each individual human. ImageNet contains hierarchical labels,
but most pre-trained encoders are standardly trained on 1000 pre-
determined classes which, perhaps arbitrarily, group types of passenger
cars into a single class and keeps many dog breeds in separate classes.
Here, inhouse data was labeled in the following manner. 1. Images were
obtained pre-grouped in folders based on the researcher and experiment
that produced them. 2. Image folders were compared to ensure class
uniqueness (separable by at least differences in composition or processing)
and combined where appropriate. 3. Classes with less than 200 images
(training and validation) were combined with another class if they shared a
common root class and excluded from the dataset otherwise. (For
example, several folders containing Ti-6Al-4V with differences in proces-
sing conditions were combined into a single class.) 4. All images were
examined to ensure basic quality and label accuracy. Publicly available
micrograph images from external sources were labeled in a similar manner
starting from the original labels. Some classes were significantly different in
appearance than other classes (e.g., the synthetic powder class and images
of SiC-SiC composites) and were much easier to classify than classes that
were similar in appearance (e.g., several classes of Ni-superalloys with
slight differences in formulation). The classes were subdivided as much as
possible without imparting too much class imbalance to encourage the
models to learn better representations required to distinguish between
similar classes.
The segmentation algorithms were tested on two sets of material

micrographs: SEM images of a Ni-superalloy and cross-sectional SEM
images of a SiC/SiC EBC with a thermally grown oxide layer. The Ni-
superalloy had three classes to segment: a matrix phase, secondary
precipitates (large blobs), and tertiary precipitates (small blobs). The EBC
had two classes: an oxide layer and the background (not oxide layer). The
segmentation training data was annotated using the GNU Image
manipulation Program (GIMP).

Training classification models
Many CNN classification models were trained on MicroNet to use as
segmentation encoders through transfer learning. Models for each
architecture were initialized with weights downloaded from the PyTorch
model zoo from models that had been pre-trained on ImageNet.
Additional models for most of the classification architectures were also
initialized with random weights following Kaiming initialization to evaluate
the effect of encoder training on MicroNet from scratch (VGG-11, VGG-13,
EfficientNet-b6, and EfficientNet-b7 architectures were not trained from
scratch). The Kaiming initialization was designed to reduce the exploding
or vanishing gradient problem by encouraging the variance of activations
to be similar across network layers when using rectified linear unit (ReLU)
activation functions34,35. During training, any grayscale images were
converted to color by copying the gray channel to the three RGB channels
and all images were preprocessed by mean centering and normalizing
each channel according to the ImageNet statistics in order to best utilize
pre-trained weights36. Image transformations were used to augment the

training data set including random resizing, horizontal and vertical flipping,
rotation, photometric distortions, and added noise. After random resizing,
training images were cropped in a random location to the size required by
the encoder architecture (usually 224 × 224 pixels). Validation images were
resized while preserving the aspect ratio such that the smaller side was the
appropriate size, then the larger side was center cropped to produce a
square input image. Each training image was augmented randomly each
epoch. An epoch is one training iteration where the entire training data set
is input to the model and the model weights are updated to better fit the
desired output of the full training set. Training was performed on four
Nvidia Quadro GV100 32 GB GPUs using the PyTorch Python library37 in a
similar fashion to ref. 38. Optimization was performed with stochastic
gradient decent with a momentum of 0.9 and an initial learning rate of 0.1
that decayed by 10% every 30 epochs in a manner consistent with
ImageNet pre-training. Weight decay, which is the fraction each model
parameter is reduced each epoch, was 1e-4. A batch size (the number of
samples shown to the model for each weight update) of 1024 was used
where possible and reduced for larger models due to hardware memory
constraints. Models were trained until there was no improvement to the
validation score using early stopping with a patience of 30 epochs. The
following encoder architectures were tested in this work: VGG39 (with and
without batch normalization40), DenseNet41, dual path networks (dpn)42,
EfficientNet19, ResNet43, Inception-V444, Inception-Resnet-V244, Xception45,
MobileNet-V246, ResNeXt47, and SE-Net48.

Training segmentation models
Segmentation models were trained on four Nvidia Quadro GV100 32 GB
GPUs using PyTorch37 and the segmentation models library49. Training
data images were converted to color and each channel was normalized
and mean centered in the same manner as the classification data. Training
data augmentation included random cropping to 512 × 512 pixels; random
changes to contrast, brightness, and gamma; and added blur or image
sharpening. The superalloy data was also randomly flipped vertically and
horizontally and rotated while the EBC data was only horizontally flipped
to preserve orientation significance. While not applied here, random
resizing could be included when desired to make the models robust to
changes in magnification or image resolution. The Adam50 optimizer was
used during training with a learning rate of 2e-4 until there was no
improvement on the validation dataset for 30 epochs followed by training
with a learning rate of 1e-5 until early stopping after another 30 epochs
with no validation improvement. While the different segmentation
architectures used in this study have been trained by others with various
optimizers, Adam was used here on all segmentation models for
consistency and because initial testing showed good results when using
Adam. Minibatching was not used to train the segmentation models (i.e.,
the model weights were updated once each epoch after seeing the entire
training set). The model validation metric to determine early stopping and
compare different models was IoU. The loss function was a weighted sum
of balanced cross entropy (BCE) and dice loss51 with a 70% weighting
towards BCE. BCE measures the cross-entropy error of segmentation
predictions and works well when there is class imbalance by weighting the
error of smaller area classes more heavily. Dice loss, also known as the F1-
score, balances the error contribution of false negatives and false positives
by taking the harmonic mean of precision and recall. Numerically, dice loss
is very similar to IoU. Initial testing showed higher IoU validation accuracy
with the combined loss function than either independently or when using
IoU as the loss function directly. This is likely because BCE has more stable
gradients while dice loss is more robust to imbalanced classes and similar
to the real objective of maximizing IoU. The following decoder
architectures were tested: Unet52, Unet++53, Linknet54, FPN55, PSPNet56,
PAN57, and DeepLabV3+20,58.

Size measurements
The size of the segmented secondary and tertiary Ni-superalloy
precipitates in the ground truth and segmented images were measured
by calculating the number of pixels covered by each precipitate. Individual
precipitates were identified using a connected components algorithm
implemented in the scikit-image python library59,60. The percent error of
precipitate sizes was compared to measurements on the corresponding
precipitate in the hand labeled ground truth images. The average percent
error of the size measurements along with error bars indicating the
standard deviations are shown in Fig. 6.
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EBC oxide thickness measurements were performed on the ground truth
and segmented images after performing simple binary morphology
operations using scikit-image to reduce the segmentation noise (especially
required for EBC-3). First, morphological closing followed by morphological
opening was applied to remove small false negatives and small false
positives respectively and to smooth the segmentation boundary. Then
small, enclosed gaps up to 1000 pixels^2 in the segmented oxide layer
were removed while falsely identified and separated regions of oxide layer
up to 1000 pixels^2 were remove using the remove_small_objects
function. Oxide thickness was measured by multiplying a medial axis
transform of the image by a distance transform to produce a radius
measurement at each pixel along the backbone of the oxide using the
medial_axis function in scikit-image. Noise reduction using morphological
operations was required to perform the medial axis transform. The average
percent error and standard deviation of the average oxide thickness
measured on the segmented images compared to the ground truth
images are shown in Fig. 6.

DATA AVAILABILITY
Data that supports the findings of this study, including labeled segmentation data
and pre-trained encoders trained on MicroNet, are available at https://github.com/
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