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Machine learning assisted design of shape-programmable 3D
kirigami metamaterials
Nicolas A. Alderete1,3, Nibir Pathak1,3 and Horacio D. Espinosa 1,2✉

Kirigami-engineering has become an avenue for realizing multifunctional metamaterials that tap into the instability landscape of
planar surfaces embedded with cuts. Recently, it has been shown that two-dimensional Kirigami motifs can unfurl a rich space of
out-of-plane deformations, which are programmable and controllable across spatial scales. Notwithstanding Kirigami’s versatility,
arriving at a cut layout that yields the desired functionality remains a challenge. Here, we introduce a comprehensive machine
learning framework to shed light on the Kirigami design space and to rationally guide the design and control of Kirigami-based
materials from the meta-atom to the metamaterial level. We employ a combination of clustering, tandem neural networks, and
symbolic regression analyses to obtain Kirigami that fulfills specific design constraints and inform on their control and deployment.
Our systematic approach is experimentally demonstrated by examining a variety of applications at different hierarchical levels,
effectively providing a tool for the discovery of shape-shifting Kirigami metamaterials.
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INTRODUCTION
The recent rediscovery of Japanese Kirigami by the engineering
community has ushered in a new era in the field of flexible and
reconfigurable surfaces, enabling diverse multiscale applications
in soft robotics1,2, stretchable electronics3,4, optics5, and textiles6.
Underlying the potential of Kirigami-engineering lies a simple
concept: the purposeful introduction of cuts in thin sheets subject
to tension produces nonlinear responses (i.e., bifurcations) that
preclude failure and break the sheet’s bidimensionality to yield
three-dimensional surfaces. However, the simplicity of Kirigami is
only apparent, with recent numerical and experimental investiga-
tions showing that slight variations within a common geometric
motif can result in variegated symmetric and anti-symmetric
three-dimensional shapes7, displaying three-dimensional tilts and
twists, that can be controlled via quasi-static stretching8. While
this rich landscape of deformed configurations makes Kirigami-
based designs a fertile ground for shape-morphable applications,
systematic methods to arrive at Kirigami motifs that fullfil a design
requirement (i.e., inverse design problem) have been scarce, with
trial-and-error (based on time-consuming experimental and
computational iterations) remaining the prevalent approach. The
inverse problem in the realm of Kirigami metamaterials has
primarily been tackled using optimization methods9–11, which
have been shown to be successful but can be time-consuming,
especially in highly nonlinear problems involving buckling, as for
each new optimization target, the entire design space would have
to be probed, which ultimately results in expensive computational
iterations. Amid this paucity of approaches, data-driven methods
pose an intriguing alternative for the exploration of vast design
spaces in nonlinear mechanical metamaterials12,13 and, particu-
larly, for the solution to the complex Kirigami design problem. In
this regard, the majority of efforts leveraging machine learning
techniques have focused on the mechanical properties of Kirigami
systems (e.g., yield strain/stress14, ultimate stress/strain15), leaving
the topological reconfigurability aspect and experimental valida-
tion unaddressed. Seeking to address this gap, which leaves

Kirigami’s most salient advantage over competing metamaterials
untapped, we herein leverage an integral data-driven approach
that aims to solve the Kirigami inverse-design problem at the
meta-atom level, with implications and applications at the
metamaterial level. More generally, in the area of mechanics and
materials, the majority of data-driven approaches dealing with
inverse design have mainly centered on individual attributes (e.g.,
design for energy absorption16, spectral properties17, toughness18,
etc.). In such studies, the sole focus was on the creation of a
mapping from target properties to material design parameters,
which are usually agnostic to the path between undeployed and
deployed states11. In contrast, here we present and experimentally
demonstrate a complete, systematic workflow for rational design,
comprised of four concatenated modules: (1) exploration of the
design space, (2) inverse design, (3) investigation of the conditions
for deploying arrived-at designs and their tunability, and (4) utility
to attain configurations outside the initial design space.
To illustrate the capabilities and potential of the proposed

framework, we here focus on the same programmable and
controllable Kirigami motif, previously investigated by ref. 7 and
ref. 8, consisting of two inner panels delimited by a pair of internal
line cuts and a pair of U-shaped cuts (Fig. 1). Though simple at first
glance, prior investigations into this pattern have revealed a
cornucopia of out-of-plane deformations exhibiting symmetry and
symmetry-breaking behavior elicited by coincident and sequential
bifurcations of the panels. The undeformed meta-atom geometry
(Fig. 1 a, b) is completely defined by the sheet’s length (L), width
(W) and thickness (t), the length of the hinges (a1�4), the height
and width of the line and U-shaped cuts (h;w; c), and their
distances to the exterior boundaries (d). In addition to the
geometry, the mechanical response of the Kirigami is dictated by
its elastic properties (Modulus E and Poisson’s ratio, υ) and the
degree of uniaxial stretch (σ).
Using the aforementioned Kirigami template as a meta-atom, the

geometric design space is sampled employing a space-filling, quasi-
random Sobol sequence. Employing the Kirigami geometries
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(features), linear and geometrically-nonlinear finite element analyses
are conducted to solve the linear and nonlinear buckling problem,
respectively. While the former provides the necessary imperfection
modes to trigger the bifurcations in the system, the latter provides
the deformation and structural metrics that define the target
properties of our design problem (responses). Specifically, the
deformed coordinates of the centerline traversing the inner panels
and of the two lateral edges of each panel are chosen as
representative of the deformed configuration of the Kirigami
meta-atom (Fig. 1b). Far from being complete descriptors of the
Kirigami deformations, these coordinates are sufficient to describe
the three-dimensional rotations of the panels (tilts, θ1�2, and twists,
ψ1�2
1�2) necessary for various applications. Similarly, the force-

displacement curve is obtained from simulations as indicative of
the structural response of the Kirigami. Together with the geometric
parameters of the underformed configurations, the deformation and
structural metrics constitute the dataset. The dataset is subsequently
fed to our machine learning framework, which rests on three pillars
that contribute to the rational design of the Kirigami. The first one
uses a clustering approach to explore the space of achievable
deformed configurations (i.e., what shapes are possible?). The
second one leverages a tandem deep neural network (T-DNN)
architecture to predict the cut layout to obtain a specific deformed
configuration (i.e., how should the Kirigami be cut?). The third and
final approach uses symbolic regression to obtain surrogate models
that predict variables relevant to the tunable actuation of the
designed Kirigami meta-atom (i.e., what is the range of accessible
deformation?). All combined, these approaches provide an unequi-
vocal picture of the Kirigami meta-atom which, when supplemented
with integrative elements (e.g, array architecture/actuation, surface
functionalization), can guide the design of functional Kirigami
metamaterials. The framework is summarized in Fig. 2.

RESULTS AND DISCUSSION
Characterization of the Kirigami design space
We begin the design endeavor by characterizing the limits of
achievable Kirigami configurations for a set of cut geometries. This is
essential to future steps along the design process (e.g., optimization,
implementation, etc). In terms of the Kirigami design problem here
advanced, this translates into a need for knowing what basic 3D out-
of-plane deformations are attainable leveraging the proposed
Kirigami motif. In the past, a number of authors have attempted
to map the Kirigami landscape of the present motif, but they have
done so under consideration of a subset of possible cut geometries
(e.g., by changes in hinges lengths, symmetric layouts, etc.)7,8,19. As
such, these prior investigations provided a limited description of
Kirigami-based potential designs. With the purpose of elucidating
the full Kirigami design landscape, we proceeded to comprehen-
sively survey the range of deformed configurations from sampling
variations involving all ten of the geometric parameters defining the
cut layout a1�4; h1�2;w1�2; c1�2f g. Using linear buckling FEM
simulations, the out-of-plane deformations corresponding to each
combination of cuts was characterized and fitted, using a 5-knot B-
spline, to the deformed coordinates of the centerline traversing the
inner panels (Fig. 3a). The five-coefficient vector, representative of
the deformation, was subsequently reduced to two representative
principal components (PCs) using singular value decomposition
(SVD). The dimensionally reduced data, capturing over 98% of the
variance of the original dataset, was further processed using
k-means clustering. This enabled partition of the space of Kirigami
deformations into five well-defined representative clusters
(Fig. 3b–f). As expected from previous studies, symmetric and
asymmetric linear (=; n) and nonlinear shapes (∪ ;\) with their
mirror images represent 4/5 of the total space (Fig. 3b–e).
Furthermore, a cluster situated midways from the others, is

Fig. 1 Kirigami meta-atom template. a Initial Kirigami canvas and canvas with interior cuts. b Deformed Kirigami with relevant deformation
descriptors.
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identified, which contains an array of miscellaneous shapes that not
only present symmetric and asymmetric features but also exhibit
local minima and maxima (Fig. 3f). As such, the value of the
clustering analysis lies in its capacity to provide an overall picture of
the versatility of a given Kirigami motif. With the configurational
space ascertained, one can infer that the present motif is suitable for
a variety of applications, e.g., flat mirrors (using clusters c-d), solar
troughs (using clusters b-e), or even free-form optics (using cluster f),
to name a few. Moreover, the knowledge and visualization of the
different unique shapes of the deformed configurations of the
Kirigami motif unfolded by the clustering allows the designer to
come up with a way to uniformly characterize the deformed
configuration using measures like tilt and twist angles. Having
identified the aptness of the Kirigami motif to design problems of
practical relevance, we next introduce a deep neural network
approach to obtain the specific set of cut parameters that would
fulfill a particular quantitative design requirement.

Inverse design of the Kirigami meta-atom
In the realm of Kirigami-based metamaterials, the inverse design
of Kirigami has essentially been achieved by the use of
constrained optimization techniques9,11. Although Kirigami lay-
outs obtained by such schemes are highly accurate (i.e., meeting
the intended target), the process itself can be time intensive. For
each new target shape, the entire design space has to be searched
again, which can lead to the need for carrying out hundreds to
thousands of numerical simulations in every iteration. In sharp
contrast, in data-driven approaches like neural networks, the
complete training dataset is obtained by carrying out the entire
batch of simulations once. Therefore, a neural network-based
framework for inverse design can reduce the computational effort
spent on expensive numerical simulations required for multiple
design tasks.
To tackle the challenge of designing Kirigami meta-atoms

geared towards achieving a specific deformed configuration, we

Fig. 2 General framework for the machine learning assisted design of Kirigami meta-atoms and metamaterials. a Dataset collection.
b Machine learning framework. c Implementation of Kirigami machine learning design.
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leverage a machine learning-based inverse design strategy.
Specifically, we employ a tandem neural network architecture13,20,
comprised of a forward (f-NN) and an inverse (i-NN) deep neural
network (Fig. 4a). As proof-of-concept and without loss of
generality, the ML-based inverse design approach is conducted
for the same Kirigami motif, but considering only variations in the
length of the hinges (geometric parameters a1�4).
In the first step, we train the f-NN to predict the parameters that

define the deformed configuration (θ1�2;ψ
1�2
1�2, Fig. 1) stemming

from a given meta-atom cut geometry (a1�4). As such, the fully
trained f-NN accurately (coefficient of determination
R2 � 0:93�0:94) relates the planar cuts to the 3D deformations
on a test set, hence constituting an inexpensive emulator for the
otherwise costly FEM simulations (Supplementary Note 1 and
Supplementary Figure 2a–f).

Unlike the f-NN mapping, the inverse problem of predicting
the design parameters (cut geometry) for a specific deformed
configuration is not well-posed due to the fact that a multiplicity
of Kirigami meta-atom designs can lead to the same deformed
configuration (i.e., non-unique solution). This non-uniqueness is
inherent to most inverse design problems and often leads to
convergence issues when training a neural network on such a
dataset13,21. To circumvent this issue, we complement the
forward mapping with an inverse mapping in a tandem fashion
with a modified loss function that incorporates two loss terms.
The first one, a direct-loss term representing the difference
between the i-NN predicted design parameters and the actual
design parameters; whereas the second one, the reconstruction-
loss term, quantifies the difference between the desired
deformation angles and the f-NN or FEM reconstructed

Fig. 3 K-means clustering based on the final z-coordinates of the nodes along the centerline of the Kirigami meta-atom. a Data
processing workflow for clustering the models based on the deformed shape of the inner panels. Five different clusters were produced by
k-Means clustering of the principal components of the B-spline coefficients fitted to the z-coordinates. b–f Representative examples of the
final shapes of the centerline of the central panel for the black, yellow, blue, green, and red clusters, respectively shown in the scatter plot in a.
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deformation angles (Eq. 1), viz.:

Lossi�NN ¼ 1
n

Xn

i¼1

λ g Θð Þ � ak k2 þ 1
n

Xn

i¼1

μ f g Θð Þð Þ � Θk k2 (1)

where g Θð Þ inverse mapping, f (a): pretrained forward mapping,
a = [ai] and

Θ ¼ θk ;ψ
l
k

� �
; λ and μ> 0:

The incorporation of the direct-loss (first term in Eq. 1) ensures
that the predicted design parameters are constrained to be within a
physically meaningful range without deviating too far from the true
values. Conversely, minimization of the reconstruction-loss, which
uses the pretrained f-NN, ensures that the i-NN predicted design
parameters lead to the desired deformed configuration. In other
words, the reconstruction-loss ensures that for the cases where
there are multiple sets of design parameters (a1�4) for the same
design requirement (θ1�2;ψ

1�2
1�2), every set yields positive training

feedback. The values of the scalars λ and μ set the weights of the
respective loss terms.
To evaluate the fully trained i-NN we used the test set. For every

set of desired deformed configuration (θ1�2;ψ
1�2
1�2), the i-NN

predicts the candidate set of design parameters (a�1�4) that is
likely to yield the desired deformation. The design validation is
performed by feeding the a�1�4 to the pretrained f-NN to
reconstruct the deformation angles (θ�1�2, ψ

�1�2
1�2 ) that a Kirigami

meta-atom with a�1�4 as its design parameters would yield. The
reconstructed set (θ�1�2, ψ

�1�2
1�2 ) is finally compared to the desired

set (θ1�2;ψ
1�2
1�2). A few representative examples comparing the

reconstructed set to the desired set of deformation angles from a
test dataset are shown in Fig. 4f–i. The coefficient of determina-
tion, R2, was around 0.98 between all the desired angles and the
reconstructed angles of the deformed state of the Kirigami meta-
atoms. In addition, we also show that the i-NN predicts the design
parameters ða1�4Þ well for all the cases in the test set
(R2 ¼ 0:96 � 0:98, Fig. 4b–e).

Fig. 4 Machine learning framework for inverse design. a Schematic of the tandem network architecture employed for the inverse design.
The inverse network (i-NN) takes in the desired deformed configuration (θ1�2;ψ

1�2
1�2) and predicts a set of geometric features (a�1�4). The i-NN

predicted geometric features (a�1�4) are fed to the pretrained f-NN to reconstruct the angles of the deformed configuration (θ�1�2, ψ
�1�2
1�2 ) and

thereafter validate the predictions of the i-NN. b–e i-NN predicted a1−4 vs true a1−4. f–i f-NN reconstructed ψ1�2
1�2 vs desired ψ1�2

1�2 . The
corresponding coefficient of determination (R2) are specified on the respective plots.
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As such, the T-DNN framework enables a computationally
efficient methodology to design Kirigami meta-atoms with specific
deformation-based design requirements, which can be easily
modified to accommodate other Kirigami meta-atom designs and
design objectives. However, an important point to be noted is that
neural network-based design frameworks cannot outperform
iterative methods of optimization in terms of accuracy. This is
because data-driven approaches like neural networks (NNs) always
have an error associated with them as data-driven methods are
merely emulators of the real process. In the absence of computa-
tional time constraints, traditional optimization techniques can
arrive at the desired solution with better accuracy. Therefore, if the
application involves only a few design tasks, standard optimization
techniques can work equally well. As the design space grows, NNs
offer the advantage of speed. Another possibility could be the use
of NNs to obtain a first estimate of the solution, followed by
application of conventional iterative optimization schemes to
converge to the design target.

Tunable control of the Kirigami meta-atoms
The Kirigami motif obtained via the T-DNN strategy satisfies the
deformation criteria when subject to a fixed stretch level. In this
sense, the obtained deformation parameters constitute a sort of
intermediate bound along the deformation path of the rotating
panels following bifurcation. While this approach aptly satisfies
designs that require a fixed level of deformation for functionality
(e.g., a deployable flat mirror always oriented at θ degrees), it
leaves aside the possibility of tuning the deformation to
encompass a range of deformed states (i.e., tunable deformation
control). To address this matter, we seek parsimonious models that
relate the geometries of the cuts to parameters relevant to the
tunable control of the Kirigami via nonlinear symbolic regression
by genetic programming. Such an approach not only complements
the inverse-design process but also augments the virtues of the
designed meta-atom.
To illustrate the framework, we focus on characterizing the

bifurcation diagram of the Kirigami panels, i.e., the actuating force
to the panel tilt (F � θ). First, a symbolic expression for the critical
tensile force (Fcrit) that gives rise to the out-of-plane displacement
of the inner panels (Fcrit � f a1�4ð Þ) is obtained (Fig. 5a, i).
Knowledge of the critical buckling force provides a first coordinate
pair (θ ¼ 0; F ¼ Fcrit) for the subsequent reconstruction of the
bifurcation curve. Using the values of the critical force obtained
from the FEM simulations previously described, we obtained the
following best 5-genes parsimonious model (Fig. 5a, ii-iii), with an
R2 � 0:95 (test set), viz.,

Fcrit ¼ 0:018a1=21 ða3 þ a4Þ þ 0:014a2ða4 þ a1=23 Þ � 0:0035a1a22

� 0:0004ða3 þ 3a4Þða3 þ a
1
2
1Þða3 þ 2a4Þ

þ 0:002a1a3ða4 þ 2Þ þ 0:14

(2)

Next, employing two coordinate pairs (θ ¼ 0; F ¼ Fcrit, and
θ ¼ θ1; F ¼ Fmax) the bifurcation diagrams (Fig. 5b, i) of each
Kirigami are fitted assuming a quadratic relationship (i.e,
F � kθ2 þ Fcrit, vertex form), where the leading term (k) is
subsequently modeled against the geometries of the cuts
(k � g a1�4ð Þ, Fig. 5b, ii-iii). The assumption of the quadratic
relationship to describe the progression of the deformation is
based on the nature of the physical phenomena (pitchfork
bifurcations). Using symbolic regression, the best 5-genes
parsimonious model, with an R2 � 0:93 (test set), is:

k ¼ 6:46ea1 þ 5:09ea2 tanh a22 þ 9:28ea1 tanh a2a3ð Þ þ 9:33ea2 tanh a1a4ð Þ tanh a2
�

� 3:84a1a2a3a4 tanh a3a4ð Þ � 8:5�x10�4

(3)

Combining the two surrogate models, the Kirigami designer can
construct response diagrams or integrate these expressions in a

control logic, that would enable precise operation of the Kirigami
meta-atom (Kixels) at a variety of actuation levels, thus circum-
venting the need for additional FEM simulations with the added
simplicity of easily programmable free-form and closed-form
expressions. Going back to the example of the deployable mirror/
tracker, the designed Kirigami can now be precisely actuated to
reflect/collect light at various angles depending on the position of
the light source (Fig. 5c). Noteworthy, the nature of the solution
obtained, as in every symbolic regression problem, depends on
the set of basis functions used (akin to how neural networks
depend on activation functions). With that in mind, we have
sought to use a broad class of mathematical functions to avoid
biasing and limiting the final expression. Without pursuing
derivation of universal law, the solutions found (accurate and
limited in expressional complexity), fulfill the very pragmatic
purpose of assisting the Kirigami engineer in controlling and
tuning its design. Similarly, while the above-obtained relationships
lack physical insight and are dependent on the unit system of the
original dataset, they constitute an accurate and effective way to
individually control the designed meta-atom, which is of great
importance when coupled with distributed actuation (i.e., control
at the Kixel level). With the aid of dimensional analysis, namely
grouping of parameters by the Buckingham π-Theorem, together
with larger and more encompassing material and geometric
datasets, physically meaningful and general laws could be
extracted to model the response of Kirigami. As an example, the
critical buckling force is discussed in Supplementary Note 2.

From meta-atoms to metamaterial applications
The proposed data-driven design framework can be applied to
the design of Kirigami metamaterials or structures by combining
arrays of Kirigami meta-atoms. At this higher hierarchy level,
functionality is achieved by complementing the direct function-
ality (i.e., 3D out-of-plane deformations of the panels) with
elements pertaining to the architecture (i.e., spatial disposition of
meta-atoms), actuation (e.g., single/distributed/smart actuation),
and the functionalization of the active surface (e.g., coatings,
embedded electronics for sensing, sub-textures, etc.). While
every particular application requires an adequate, ad-hoc dataset
(e.g., training for tilts and twists may not be ideal for designing
Kirigami with prescribed curvatures), the framework here
introduced is general enough to illustrate its potential through
a variety of applications that have bio-inspiration as a common
guiding principle.
To illustrate this, we start at the meta-atom level. Figure 6

presents the inverse design and experimental validation of three
Kirigami motifs with proof-of-concept design conditions. The
experimental validation consisted of (i) patterning the machine
learning predicted motifs using a laser cutter, (ii) subjecting the
Kirigami specimens to uniaxial stretch, while recording its
structural response (Force-Displacement curves), and (iii) obtain-
ing the out-of-plane displacements of the panels (uz) using the
classical Shadow Moiré technique. The first two examples respond
to design requirements where overall linear shapes with a fixed
slope (tilt) are preferred but with varying requirements with
respect to the twist of the panels (untwisted and twisted,
respectively). These objectives could easily typify design condi-
tions for light modulation and three-dimensional light steering
using flat mirrors. The third example corresponds to a design
objective of an overall nonlinear shape with symmetric tilts, which
could be representative of a mechanical gripper design with a
maximum contact angle. As can be seen from Fig. 6, there is good
agreement between the prescribed design objectives and the
experimental observations of the different tilts and twists.
Furthermore, the critical forces predicted by the symbolic
regression approach are also in accord with the experimental
observations of the inflection points in the meta-atom’s structural

N.A. Alderete et al.
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Fig. 5 Symbolic regression for control of inversely designed Kirigami meta-atoms. a SR applied to structural response of Kirigami: (i) Force-
displacement relationship, (ii) Accuracy vs. complexity of parsimonious mode with pareto front defined by green points, (iii) Predicted vs.
actual critical force for training and test set. b SR applied to structural response of each panel: (i) FEM and fitted bifurcation curves, (ii)
Accuracy vs. complexity of parsimonious mode with pareto front defined by green points, (iii) Predicted vs. actual fitting constant k for
training and test sets. c Schematic diagram for application of the symbolic regression framework for tunable control of Kirigami units with
distributed actuation.
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response. Differences between expected and observed results can
arise from a variety of sources, which fundamentally stem from
the fact that the derived physics-based surrogate model has been
trained on models that may not incorporate all the variables and

uncertainties of the problem. As such, we hypothesize that the
omission of higher order imperfection modes (and their interac-
tions), together with the exclusion of the material’s plastic
behavior (i.e., hinges act as stress concentrators, which may

Fig. 6 Inverse design framework application and experimental validation at the meta-atom level. a Design case I (Linear kirigami without
twist). b Design case II (linear kirigami with a twist). c Design case III (nonlinear kirigami). Scale bar= 1mm.
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locally yield), and the imperfections from the manufacturing
process (e.g., local charring, geometric deviations from prescribed
design, residual stresses/deformations that influence buckling
imperfections, etc.) are most likely to be accountable for the
discrepancies. While presently out of the scope of this paper,
quantification and introduction of the aforementioned variables
(i.e., uncertainties) in data-based design frameworks (e.g., prob-
abilistic and/or Bayesian machine learning12,22) will be paramount
when striving for reliable buckling-based shape-morphable
Kirigami devices operating in the field.
At the metamaterial level, Fig. 7 conceptually and experimen-

tally illustrates the use of the abovementioned Kirigami on four
bioinspired 1D and 2D metamaterial designs. The first, inspired by
the hairy structures found on the Western Honey Bees (Apis
mellifera), known to trap pollen particles23, consists of a Kirigami
metatexture comprised of meta-atoms in series, exhibiting in-
plane actuation and symmetric tilts (θ1�2 � 12�). Such design is
envisioned for the entrapment of particles of different sizes
(angle-stretch tunability) (Fig. 7a and Supplementary Video 1).
Another Kirigami metatexture design is envisaged, this time
inspired by the protruding barbs of the Bunny-Ear cacti (Opuntia
microdasys), which facilitate droplet transport and collection24.
Mimicking the natural counterpart, the metatexture leverages in-
series arrays of linear and flat Kirigami arranged in a triangular
fashion and actuated at an angle (Fig. 7b and Supplementary
Video 2). Since only a single protruding panel is of interest, the
base design condition for this case becomes θ1 � 12�;ψ1

1�2 ¼ 0.
For the third metamaterial, we chose to highlight the versatility of
Kirigami-engineering, by trying to mimic the heliotropic motion of
daisies (Bellis perennis). In this case, a standard solar-tracking
requirement would be to allow for high tilt angles (	45�). Given
that our sampled design space, only allows for maximum tilts of
(θ � 20�), new designs had to be sought. Without generating new
data and/or training new networks, we started with a machine
learning design of linear Kirigami meta-atoms, and then, using
mechanical- and Kirigami-design intuition, we first tuned the
length of the hinges (to symmetrize displacements) followed by
adjustment of the width of the vertical U-Cuts (to obtain extreme
tilts). Following this heuristic strategy, a Kirigami meta-atom,
actuated at the same level as our base Kirigami, yielded extreme
tilts. We note that an automated and computationally efficient
procedure is possible when using adaptive learning strategies25.
Structuring the obtained meta-atom in 1D and 2D arrays, a solar-
tracking metatexture can be arrived at (Fig. 7c and Supplementary
Video 3). Finally, another thought-provoking bioinspired design is
motivated by the mirror-eyes of the Bay Scallop (Argopecten
irradians), which exhibit parabolic surfaces that reflect incoming
light onto the retina26. To emulate such extraordinary design,
Kirigami meta-atoms that deform into parabolic surfaces are
sought. We note that for the limited set of geometric cut
parameters varied in the inverse design framework previously
discussed, only V-shaped deformations and not parabolic ones
can be obtained. To address this matter and obtain parabolic
configurations, we follow a similar machine learning assisted
approach (as for the solar tracker), complementing our ML-
framework approximation by tuning the vertical cuts (defined by
h;w) and the width of the inner cuts (defined by c). Using this
strategy, which highlights the power and versatility of Kirigami-
engineering and of the developed framework, a Kirigami strip
actuated into a dome with local parabolic shapes was obtained.
Here, hoop strains induce the stretch necessary to trigger the
panels’ bifurcations, see Fig. 7d. This reflector, made of parabolic
Kirigami, with tunable foci, could be leveraged to focus light
similarly to the eye of the bay scallop. Realization of this type of
smart surfaces could be achieved by means of pneumatic
actuation, where an array of carefully aligned nozzles (or an
airblade) propel a sheet-like stream of air onto the exterior
surfaces (i.e., sidebands outside the C-cuts) of the Kirigami strip.

Though the implementation details are presently outside the
scope of this work, we hope the presented examples inspire the
use of programmable and tunable Kirigami in the very active field
of flexible optics and imagers. Noteworthy, the mechanical-
intuition-based complementary step could be replaced by a more
efficient standard topology optimization step, where the T-DNN
solution is leveraged as an initial guess or starting point. While the
proposed framework was validated with arrays of Kirigami with
the same motif, a combination of motifs from the same or
different clusters is possible. Whereas design and applications of
combined surfaces within the same cluster has been demon-
strated for the case of a linear Fresnel mirror in previous work by
ref. 8, the interaction of meta-atoms and functionality of surfaces,
combining linear and nonlinear deformation-shapes, should be
further investigated.
Beyond bioinspired metasurfaces, our framework can also be

employed in the design of more complex metamaterials, in a
variety of physical problems. One of such possibilities, is
presented by the field of optical metasurfaces, where structural
reconfigurability, coupled with passive elements (e.g., resonators
that change orientation with respect to an incoming field) could
be exploited to modify the electromagnetic response of the
material27. In the field of mechanical metamaterials, clever
combinations of the Kirigami motif here investigated could be
used for programmable elastic wave propagation control and for
friction/drag control aimed at energy dissipation. While the
complexities of each application merit individual studies, and
proper selection of NN output variables, we expect the
introduced framework to accelerate the use of Kirigami-
engineering in such applications.
The aforementioned applications make a formidable case for

both the power and versatility of Kirigami-engineering as well
as for the need for data-driven frameworks, like the one
proposed here, to accelerate the design process in the face of
rich design spaces.
To summarize, Kirigami-engineering has been hailed as a game

changer in the field of reconfigurable metamaterials, but its
current development points to a potential that is yet to be fully
realized. In no small measure, responsible for the shortcomings of
Kirigami-engineering are the difficulties associated with their
rational design, which stem from their inherent nonlinearity, the
lack of analytical models, and their vast design and response
spaces. In an attempt to bring Kirigami-engineering closer to its
true potential, we have here introduced a comprehensive data-
driven framework that not only addresses the inverse design of
Kirigami but also provides utilitarian means to aid in their control
and take advantage of Kirigami’s tunability. While exploring a
relatively limited design space, the application of the proposed
framework to inform the design of bioinspired metamaterials, over
a range of hierarchal levels reveals the value of the reported
approach in the face of complex Kirigami applications.
For future exploration, a much broader set of cut geometries

and patterns can be incorporated, which could potentially be
addressed by the T-DNN framework shown here with certain
modifications to the network architecture and hyperparameters or
by other inverse design algorithms like supervised autoencoders15

and variational autoencoder28. The anticipated increase in the
dimensionality of the problem can be tackled by incorporating
convolutional neural networks (CNN), wherein the entire image of
the Kirigami motif (which inherently includes all the geometric
parameters) could be used as an input to the CNN that maps the
geometry to the deformed configuration via a lower dimensional
fully connected neural network. Moreover, to facilitate designing
for deformation parameters that are not within the initial training
design space, techniques like active transfer learning and data
augmentation can be employed25. Additionally, material proper-
ties, initial geometric imperfections, distributed actuation, and
associated uncertainties pose a vista of opportunities and
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Fig. 7 Inverse design framework application and experimental validation at the metamaterial level. Photo credit: a Kirigami metatexture
for tunable trapping. Photo of bee courtesy of Annette Meyer. b Kirigami metatexture for tunable wet contact angle. Optical photography by
Stan Shebs, under CC BY-SA 3.0 license, and SEM micrograph adapted from ref. 24. c Kirigami metatexture for solar tracking. Photo of daisies
courtesy of jhening. d Kirigami metatexture for flexible imagers. Photo of scallop courtesy of David Moynahan Photography. All pictures were
used with permission from the authors or under an appropriate license.
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challenges for future work, that will undoubtedly propel the
intelligent design of Kirigami and mechanical metamaterials. With
reliability and robustness of Kirigami devices in mind, the use of
full-field techniques (e.g., 3D-DIC) could be used to identify
regions undergoing plasticity or strain localization, which may
negatively impact functionality. As such, we envision future
Kirigami designers using and drawing inspiration from our
approach as a platform to realize multifunctional Kirigami
metamaterials operating at the nano-, micro-, and macroscale.

METHODS
Sobol sampling
For the k-means clustering analysis, geometric parameters defining the
inner cuts a1�4; h1�2;w1�2; c1�2f g were obtained from a quasi-random
Sobol sampling using N ¼ 20000 sample points, nvar ¼ 10 decision
variables. For the NN inverse design and symbolic regression, geometric
parameters defining the Kirigami hinges (a1; a2; a3; a4) were obtained from
a quasi-random Sobol sampling using N ¼ 15000 sample points, nvar ¼ 4
decision variables. All sets were obtained, randomly linearly scrambled,
and digitally shifted using MATLAB R2020 (MathWorks, Natick, MA, USA).
Lower and upper bounds for the decision variables were chosen as:
0:0065mm; 2:6mmf g.

FEM Simulations
All simulations were carried out using ABAQUS/STANDARD and ABAQUS/CAE
2020. The linear eigenvalue buckling under global tension was solved using
the Lanczos algorithm implemented in Abaqus (*BUCKLE, EIGENSOLVER=
LANCZOS). The first buckling eigenmode was extracted and used as initial
geometric imperfection for the subsequent nonlinear geometric analysis
(Supplementary Note 3). The post-buckling analysis was conducted using a
nonlinear geometric step (*NLGEOM) with numerical integration parameters:
maximum number of allowed increments (Nincr ¼ 104), initial time step
(ΔS0 ¼ 10�4), minimum time step (ΔSmin ¼ 10�10), and maximum time step
(ΔSmax ¼ 10�3). Following mesh convergence analysis, the Kirigami geometry
was meshed using three-dimensional, finite strain, first order quadrilateral
shell elements with reduced integration (Abaqus elements S4R), with a size of
Δl ¼ 0:01mm: One of the vertical edges of the Kirigami meta-atom was fully
constrained, while the opposite edge was subject to a uniaxial displacement
(Δx=t ¼ 1:5%). The material properties of Kapton tape were used as a
reference for all the models (E ¼ 2:5GPa; ν ¼ 0:34). For the clustering
analysis, fixed geometric dimensions were (all in mm): L ¼ 13, W ¼ 6:5, t ¼
0:065 and δ ¼ 1:17. For the inverse design analysis, and symbolic regression,
fixed geometric dimensions were (all in mm): L ¼ 13, W ¼ 6:5, t ¼ 0:065,
h1�2 ¼ 2:07, w1�2 ¼ 0:65,δ ¼ 1:17, c ¼ 0:065. Critical buckling forces for
symbolic regression were extracted from the linear buckling models. Tilts of
the inner panels (θ1�2) were computed from the final coordinates of the
nodes along the centerline of the Kirigami. Similarly, twists of the inner panels
(ψ1

1�2) were computed from the final coordinates of the nodes along the
lateral chords of the panels. A python script was used to automate the
preprocessing, processing, and post-processing stages of the FEM models.

Forward neural network
A threefold cross-validation method was employed to segregate the
ground truth data (15,000 models), obtained via FEM simulations, and then
train and validate the model. A deep neural network architecture with
three hidden layers (Supplementary Note 1 and Supplementary Table 1)
was trained to minimize the mean squared error loss between the true
deformation angles (θ1�2;ψ

1�2
1�2) and the ones predicted by the f-NN, with

respect to the weights and biases of the f-NN.

Lossf�NN ¼ 1
n

Pn

i¼1
jjf að Þ � Θjj2 (4)

where f (a): forward mapping, a = [ai] and Θ ¼ θk ;ψ
l
k

� �

During the optimization, the weights and biases of the f-NN were
updated using a backpropagation algorithm available in the PyTorch
library29.

Inverse neural network
A deep neural network architecture with two hidden layers (Supple-
mentary Note 1 and Supplementary Table 1) was used. Model training

and validation was carried out using a threefold cross-validation
method. The values of μ; λ used during the final training (Supplementary
Note 1 and Supplementary Table 1) were determined based on ease of
convergence and prediction accuracy using a grid search approach.

Symbolic regression
Symbolic regression via genetic programming models were implemen-
ted using the MATLAB-based open-source software of GPTIPS 230,31. A
population size of P ¼ 250 with Ngen ¼ 150 generations was used.
Multiple independent runs were conducted to ensure convergence to
the parsimonious model (Nruns ¼ 10). Mutation, crossover, and direct
reproduction probabilities were set at pmut ¼ 0:84, pcross ¼ 0:14,
pdir ¼ 0:02, respectively. All final symbolic regression models were built
using a total number of genes of ngenes ¼ 5. Datasets were divided into
training and testing subsets following a conventional 80�20% ratio,
respectively. MATLAB R2020 (MathWorks, Natick, MA, USA) was used.

Fabrication
Kirigami meta-atoms, 1D and 2D arrays were fabricated using an LPKF
Protolaser R laser cutter (LPKF Laser & Electronics, Tualatin, USA) housed in
Northwestern University’s Micro/Nano Fabrication Facility. The substrate
material was Kapton HN200 (Dupont, Wilmington, USA). Samples for Moire
imaging were spray coated with white aerosol to allow for contrast.

Experiments
Tensile experiments were conducted using a micro-mechanical testing
platform (Ernest F. Fullam Inc.) under displacement control at constant
quasi-static rates. Force-displacements were recorded. Shadow Moire
interferograms were obtained using a commercial chrome on glass
Ronchi Ruling of 100 line pairs per inch (Edmund Optics, Barrington,
USA). Shadow Moire configuration with light source and observation in
the same plane was chosen (L ¼ 350mm). The observation was
performed at a normal angle (camera to sample distance L ¼ 310mm)
by means of a Mako U-503B CCD Monochrome Camera (Allied Vision
Technologies GmbH) with 5 Megapixel resolution after passage through
a 1x objective. Images were post-processed in Adobe Photoshop
(Adobe, San Jose, CA, USA) for brightness and contrast adjustment only.
One-dimensional post-processing (grating removal, signal filtering, and
displacement calculations) was performed using an in-house developed
code in MATLAB R2020. For more details of the experimental setup and
post-processing, the reader is referred to our previous work on Kirigami
using Shadow Moire8.
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