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Training data selection for accuracy and transferability of
interatomic potentials
David Montes de Oca Zapiain 1✉, Mitchell A. Wood1, Nicholas Lubbers 2, Carlos Z. Pereyra 3, Aidan P. Thompson 1 and
Danny Perez 4✉

Advances in machine learning (ML) have enabled the development of interatomic potentials that promise the accuracy of first
principles methods and the low-cost, parallel efficiency of empirical potentials. However, ML-based potentials struggle to achieve
transferability, i.e., provide consistent accuracy across configurations that differ from those used during training. In order to realize
the promise of ML-based potentials, systematic and scalable approaches to generate diverse training sets need to be developed.
This work creates a diverse training set for tungsten in an automated manner using an entropy optimization approach.
Subsequently, multiple polynomial and neural network potentials are trained on the entropy-optimized dataset. A corresponding
set of potentials are trained on an expert-curated dataset for tungsten for comparison. The models trained to the entropy-
optimized data exhibited superior transferability compared to the expert-curated models. Furthermore, the models trained to the
expert-curated set exhibited a significant decrease in performance when evaluated on out-of-sample configurations.
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INTRODUCTION
The rapid adoption of machine learning (ML) methods in virtually
all domains of physical science has caused a disruptive shift in the
expectations of accuracy versus computational expense of data-
driven models. The diversity of applications arising from this swell
of attention has brought about data-driven models that have
accelerated pharmaceutical design1–3, material design4,5, the
processing of observations of celestial objects6, and enabled
accurate surrogate models of traditional physical simulations7–9.
While many of these models have proved extremely powerful,
new questions and challenges have arisen due to the uncertainty
in model predictions coined as extrapolations10, i.e., when
prediction occurs on input that are found outside of the support
of the training data. Moreover, the accuracy of a machine-learned
model can only be quantified using the training itself, or on a
subset thereof, held out as validation. For that reason, it is often
extremely difficult to predict “real-world” performance where
unfamiliar inputs are likely to be encountered.
In this manuscript, we focus on application to classical

molecular dynamics (MD), which is a powerful technique for
exploring and understanding the behavior of materials at the
atomic scale. However, performing accurate and robust large-scale
MD simulations is not a trivial task because this requires the
integration of multiple components, as Fig. 1 schematically shows.
A key component is the interatomic potential (IAP)11–15, i.e., the
model form that maps local atomic environments to energies and
forces needed to carry out a finite time integration step. An
accurate IAP is critical because large-scale MD simulations using
traditional quantum ab initio calculations such as Density
Functional Theory (DFT) are prohibitively expensive beyond a
few hundred atoms. Given a local (i.e., short-ranged) IAP, MD
simulations can leverage large parallel computers since the
calculation of forces can efficiently be decomposed into
independent computations that can be concurrently executed16,

thus enabling extremely large simulations17,18 that would be
impossible with direct quantum simulations. However, a critical
limitation of empirical IAPs is that they are approximate models of
true physics/chemistry and as such have to be fitted to reproduce
reference data from experimental or quantum calculations. ML
techniques have recently enabled the development of IAPs that
are capable of maintaining an accuracy close to that of quantum
calculations while retaining evaluation times that scale linearly,
presenting significant computational savings over quantum
mechanics. This is due to their inherent ability to learn complex,
non-linear, functional mappings that link the inputs to the desired
outputs19–21. Nevertheless, despite significant advances in the
complexity of the behavior that can be captured with ML-based
models, machine learning interatomic potentials (MLIAPs) often
struggle to achieve broad transferability22–24.
Indeed, increasing the complexity of the ML models, while

useful to improve accuracy, is not sufficient to achieve transfer-
ability. In fact, it could even be detrimental, as more data could be
required to adequately constrain a more complex model. In other
words, the more flexible the IAP model form, the more critical the
choice of the training data becomes. Generating a proper training
set is not a trivial task given the fact that the feature space the
models need to adequately sample and characterize, which is the
space that describes local atomic environments, is extremely high
dimensional. Consequently, MLIAPs are typically trained on a set
of configurations that are deemed to be most physically relevant
for a given material and/or to a given application area25, as
determined by domain experts. Numerous examples now
demonstrate that high-accuracy predictions are often achieved
for configurations similar to those found in the training
set23,24,26–29. However, the generic nature of the descriptors used
to characterize local environment26,29–31, coupled with the
inherent challenge in extrapolating with ML methods, often lead
to poor transferability. This challenge can be addressed in two
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ways: i) by injecting more physics into the ML architectures so as
to constrain predictions or reproduce known limits9,32,33, or ii) by
using larger and more diverse training sets to train the MLIAP so
that a majority of the atomic environments encountered during
MD simulations are found within the support of the training
data34. In this work, we explore the second option, which is
generally applicable to all materials and ML architectures. While
conceptually straightforward, a challenge presented to this
approach is that relying on domain expertise to guide the
generation of very large training sets is not scalable, and runs the
risk of introducing anthropogenic biases35. Therefore, the devel-
opment of scalable, user-agnostic, and data-driven protocols for
creating very large and diverse training sets is much preferable.
Additionally it is worth stressing that this problem, and solutions
herein, are not confined to the development of IAP, but apply to
nearly all supervised ML training problems.
The key objective of this paper is to demonstrate the validity of a

diverse-by-construction approach for the curation of training sets
for general-purpose ML potentials whose transferability greatly
exceeds what can be expected of potentials trained to human-
crafted datasets. We believe that this approach fills an important
niche for the many application domains where it is extremely
difficult for users to a priori identify/enumerate all relevant atomic
configuration (e.g., when simulating radiation damage, shock
loading, complex microstructure/defect effects, etc.).
In the following, we demonstrate improvements to the training

set generation process based on the concept of entropy
optimization of the descriptor distribution36. We leverage this
framework to generate a very large (>2 ⋅ 105 configurations,
>7 ⋅ 106 atomic environments) and diverse dataset for tungsten
(hereby referred to as the entropy maximized, EM) set in a
completely automated manner. This dataset was used to train
MLIAP models of atomic energy of various complexity, including
neural-network-based potentials, as well as linear28 and quadratic
SNAP potentials37. The performance of EM-training was compared
to equivalent models trained on a human-curated training set
used for developing an MLIAP for W/Be (referred to as the domain-
expertise, DE set below)22,27.
While Tungsten is chosen as the material of interest, none of the

results are specific to the choice of material or elemental species.
The results show that EM-trained models are able to consistently
and accurately capture the vast training set. We demonstrate a
very favorable accuracy/transferability trade-off with the EM
training set, where extremely robust transferability can be
obtained at the cost of a relatively small accuracy decrease on
configurations deemed important by experts. In contrast,

potentials trained on conventional DE datasets are shown to be
mildly more accurate on configurations similar to those contained
in the training set, but suffer catastrophic increase in errors on
configurations unlike those found in the training set. While it
warrants further study, a hybridization of these training data types
was shown to offer an improved accuracy on DE configurations,
see Supplemental Note 11.
Furthermore, the DE-trained MLIAPs exhibited significant

sensitivity to the classes (expert-defined groupings) of configura-
tions that were used for training and validation. Specifically, large
errors were observed when the training and validation sets
contained subjectively different manually-labeled classes of
configurations instead of a random split (cf. Supplemental Note
8). These results highlight the perils of relying on physical intuition
and manual enumeration to construct training sets. In contrast,
the EM-based approach is inherently scalable and is fully
automatable, since it does not rely on human input. Therefore,
making the generation of very large diverse-by-design training
sets, and hence the development of accurate and transferable
MLIAPs, possible.

RESULTS AND DISCUSSION
Representation and sampling
In order to avoid over fitting complex ML models, many popular
techniques such as compressive sensing, principal components,
drop-out testing, etc., are employed to test if the model
complexity exceeds that of the the underlying data.
While we only have tested a pair of training sets, the objective is

to understand how complex of a model is needed to capture the
ground truth (quantum accuracy) embedded in either training set.
It is important to note that even though the discussion will be
focused on the specific application to interatomic potentials, the
complexity of the training set is an important factor in any
supervised machine learning task.
We first characterize and contrast the characteristics of training

sets generated by the two aforementioned methods. The domain
expertise(DE) constructed dataset, containing about 1 ⋅ 104 con-
figurations and 3 ⋅ 105 atomic environments, was created in order
to parameterize a potential for W/Be27, building on a previous
dataset developed for W22. The data was manually generated and
labeled into twelve groups (elastic deformations of BCC crystals,
liquids, dislocation cores, vacancies, etc.) so as to cover a range of
properties commonly thought to be important25,38. The second
set was generated using an automated method that aims at
optimizing the entropy of the descriptor distribution36, as
described in Maximization of the Descriptor Entropy.
Figure 2 compares the DE set to the EM set in terms of the

distribution of configuration energy (left panel) and of three low-
rank bispectrum components28,39 (right panel), which we use to
represent the atomic environment (cf. Methods)26,28. Observed in
the energy distribution, the EM set is very broad in comparison
with the DE set which is strongly peaked at energies close to the
known ground-state BCC energy of −8.9 eV/atom, extending to
about −7.5 eV/atom. In contrast, the energy distribution of the EM
set spans energies between −8.5 and −5.0 eV/atom, peaking at
around −8 eV/atom. Due to the large number of configurations in
the EM set, a sizeable number of configurations are also located in
the tails of the distribution; 442 (0.19%) below −8.5 eV/atom and
656 (0.29%) above −5.0 eV/atom. While the overlap between the
energy distributions of the two sets is limited, it will be shown
below that MLIAPs trained on the EM set can accurately capture
the energetics of these low-energy DE configurations.
The three different probability density plots (Fig. 2 right panel)

show that the descriptor distribution of the EM set is also much
broader and more uniform than the DE set (note the logarithmic
probability scale). To quantitatively compare the bispectrum

Fig. 1 Schematic for the component parts needed for a scalable
and accurate Molecular Dynamics simulation utilizing a machine
learned interatomic potential. Advances made herein correspond
to the Model Form - Training Set pair whereas the computational
aspects of the remaining pairs have been detailed elsewhere16.
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distributions, we compared to covariance of both datasets in the
frame of reference where the DE data has mean zero and unit
covariance in the space spanned by the first 55 bispectrum
components (as defined by a ZCA whitening transformation). In
that same frame, the EM descriptor distribution is broader in 51
dimension and at least 5× broader in 27 dimensions, strongly
suggesting that Fig. 2 provides a representative view of the actual
behavior in high dimension. In the four dimensions where the
entropy set is slightly narrower, it is so by a factor between 0.5 and
0.9. This is consistent with the relative performance of the MLIAPs
trained and tested on the different datasets, as will be shown in
Transferability.
In order to further demonstrate the increased diversity and

uniformity of the EM dataset relative to that of the DE set, we
performed Principal Component Analysis (PCA) in order to
represent the training data of each dataset with a reduced
number of dimensions40,41. Supplemental Note 1 shows that the
PCA representation of the DE set isolates into multiple clusters
significantly in the first two PC dimensions. On the other hand the
PC representation of the EM set is a single cluster that is dense
and compact in the first two PC dimensions. Therefore, further
demonstrating the overall more uniform and diverse sampling of
the descriptor space in EM training. A projection of the DE training
into the principal components of EM data is given Supplementary
Fig. 14 resulting in the same conclusion.
It is important to note that the choice of bispectrum

components as descriptors of the local atomic environment is
not the only possible representation. Entropy maximization in
another descriptor space (e.g., moment tensors, atomic cluster
expansion) will result in a somewhat different distribution of
configurations. However, we expect the qualitative features

highlighted here using bispectrum descriptors, including the fact
that the DE set is largely contained within the support of the EM
set, to be robust. Supplemental Note 13 further demonstrates this
as it shows atomic environments generated using the EM method
with bispectrum components still encompass DE when using
Smooth Overlap of Atomic positions as descriptors26,30,39,42.

Accuracy limits
While a very diverse training set is a priori preferable with regards
to transferability, accurately capturing the energetics of such a
diverse set of configurations could prove challenging. It is
therefore important to assess how the choice of model form/
complexity affects the relative performance of MLIAPs trained and
tested on the EM and DE sets. To do so, we consider a broad range
of models, ranging from linear, quadratic, and neural network
forms, in increasing levels of complexity. In all cases, the input
features are the bispectrum descriptors that were used to generate
and characterize the training sets. The models used can be seen as
generalizations of the original SNAP approach28,37,43. Details of the
model forms tested, as well as information on the fitting process
can be found in the Methods section and in the examples provided
in the Supplemental Information.
The accuracy of the trained models was assessed by quantifying

the error on a validation set of configurations randomly held-out
of the training process. We first evaluated the performance of
each one of the different models for predicting the energy of
configurations that were generated with the matching framework
(i.e., EM or DE) on which the model was trained. Figure 3 reports
the accuracy, quantified as the Root Mean Squared Error (RMSE),
of the models on their respective validation set.

Fig. 3 RMSE validation errors for as a function of the number of degrees of freedom for different types of models trained and tested on
distinct random samples from their respective dataset. A EM set; B DE set. Each model form and complexity shows a saturation of the
validation errors indicated by the solid horizontal line. Slight improvement in NN predictions is seen with increasing D.

Fig. 2 Distributions of energy and bispectrum components of the configurations generated using the entropy maximization (EM)
framework and using domain expertise (DE). (Left) Distribution of potential energy predicted by density functional theory. (Right)
Distribution of three different low-rank bispectrum components, see Methods for details on descriptor values.
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In order to compare models of variable complexity, Fig. 3
displays validation RMSE against the number of free parameters
NDoF that are optimized in the regression step of the different ML
models. For the simplified ML models (linear and quadratic SNAP)
NDoF is determined uniquely by the number of descriptors,
D= {Bjkl}, where D denotes the number of bispectrum component
used to characterized the atomic environments and is determined
by the level of truncation used. However, for NN models NDoF also
depends on the number of hidden layers and the number of
nodes per layer (cf. Methods section for more details). Figure 3A
and B shows that in spite of the different nature of the models
evaluated, the performance of all model classes remarkably
asymptotes to roughly the same error, including the deep NNs
where NDoF ≥ NTraining. This asymptote occurs after about 103 DoF,
which is much less than the training size of ~105 for the EM set.
The value of the limiting error is observed to slightly decrease with
increasing number of descriptors. Finally, the errors are observed
to saturate at a lower value when training and validating on the
DE set (~4 ⋅ 10−3eV/atom) than on the EM set (~10−2 eV/atom).
This is perhaps unsurprising given the comparatively more
compact and less diverse nature of the DE set, which makes it
more likely that the validation set contains configurations that are
relatively similar to configurations in the training set, a point that
we will expand on the following paragraphs.
Figure 3B also shows that NNmodels surprisingly do not overfit to

the training data even when NDoF ≥NTraining, where one could expect
the RMSE value of the validation set to increase. This is presumably
caused by the non-convex nature loss function which makes it more
difficult to access very low loss minima that would lead to
overfitting. In addition, it is important to mention that our training
protocol also reduced the learning rate when the validation loss
plateaued (cf. Methods for the detailed protocol). In contrast,
quadratic SNAP models, cf. Fig. 3B)—for which the loss function is
convex—show clear signs of overfitting to the DE set when
NDoF≃NTraining, an observation that was previously reported25,37.
These results demonstrate that the details of the MLIAP’s

architectures appear to have limited impact on the ultimate
accuracy when training and validation data are sampled from
similar distributions, so long as the model is sufficiently flexible.
The following section shows that the choice of the training data,
not the model form, is the key factor that determines the
transferability of the models.

Transferability
While the accuracy/transferability trade-off has been evident for
many years for traditional IAPs that rely on simple functional
forms, the development of general ML approaches with very large
numbers of DoF in principle opens the door to MLIAPs that would
be both accurate and transferable. However, as discussed above,
the introduction of flexible and generic model forms can in fact be
expected to make the selection of the training set one of the most
critical factors in the development of robust MLIAPs.
In order to assess the relative transferability of the models

trained on the different datasets, we select three models for
further analysis: the NN-A1, NN-B1, and a quadratic SNAP model, all
using an angular momentum limit of Jmax ¼ 3 which corresponds
to D= 30. These three models have 383, 3965, and 495 degrees of
freedom, respectively. Also, all of these models are on the
saturation regime where the model performance asymptotes to
roughly the same error. Figure 4 reports the distribution of the
root squared error (RSE) from the different models trained and
validated on the four possible combinations of DE and EM.
Specifically, Fig. 4A, D report the RSE distributions predicted for
configurations selected from the same set as the one used to train
the model (e.g., when both training and validation are done on DE
data), while panels B and C reports the error distributions when
validation configurations are chosen from a different set (e.g.,
when training is done on DE data but validation is done on EM
data and vice versa). The detailed errors corresponding to these
four different possibilities, as well as to additional MLIAP models,
are reported in the Supplementary Notes 4, 5, 6, and 7.
Figure 4A, D shows that the both sets of models exhibit low

errors when predicting the energy of randomly held-out config-
urations sampled from the set the model was trained on (DE or
EM), consistent with the results shown in the previous section. In
both cases, the distribution peaks around 10−2 eV/atom and
rapidly decays for larger errors, with long tails toward smaller error
values. The models trained and validated on the DE data (panel
D)) show a slightly heavier tail at low errors than the model trained
and validated on the EM data, in agreement with the slightly lower
asymptotic errors reported in Fig. 3. Otherwise, the behavior of the
different models is similar, except for the quadratic-SNAP model
from panel D) which shows slightly lower errors.
Transferability of a model is quantified by predicting on

configurations sampled from a different dataset than the one used

Fig. 4 Distribution of RSE errors for different combination of training and testing data. A Trained on EM and validated on EM; B trained on
DE and validated on EM; C Trained on EM and validated on DE; D trained on DE and validated on DE. Only errors within three standard
deviations from the observed mean value, about ~99% of the data, are reported to clearly convey the shape of the distribution.
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for training, Fig. 4B, C. The performance of the two sets of models
now show dramatic differences. Figure 4B shows a very large
increase in errors, by almost two orders magnitude, when predicting
the energy of configurations sampled from the EM set using models
trained to DE data. Supplemental Note 9 addresses how these
prediction errors are concentrated with respect to the high energy
configurations that are clear extrapolations of the model.
In contrast, Fig. 4C shows only a modest increase in error when

predicting the energy of configurations sampled from the DE set
using models trained to EM data. In other words, models trained
on a compact dataset that is concentrated in a small region of
descriptor space (such as the DE set) can be very accurate, but
only for predictions that are similar to the training data because
excursions that force the trained MLAIPs to extrapolate out of the
support of their training data leads to extremely large errors.
Conversely, models trained to a very broad and diverse dataset
might have comparatively slightly larger errors when validating
over the same diverse dataset, but, perhaps unsurprisingly, show
very good and consistent performance when tested on a dataset
that is contained within the support of its training data, where
testing points can be readily accessed by interpolation. This
numerical experiment clearly demonstrates that transferability of a
given model is critically influenced by the choice of data that is
used to trained the model and that very large and diverse datasets
ensure both high accuracy and high transferability.
The presented results also suggests that the fact that the

distribution of energies of the EM set decays very quickly as it
approaches the BCC ground state (cf., Fig. 2), did not affect the
performance of the models when testing on configurations from
the DE set, whose distribution is strongly peaked at low energies,
see also Supplemental Note 9.
In order to determine whether the large errors observed when

DE-trained models are validated on EM data are attributed to
high-energy configurations, that could be argued to be irrelevant
in most conditions of practical interest, different partitions of the
DE set into training and validation data were also investigated.
Therefore, instead of partitioning using a random split of the data,
the training/validation partitions were instead guided by the
manual labeling of the DE set into distinct configuration groups. In
this case, entire groups were either assigned to the training or to
the validation set in a random fashion, so that configurations from
one group can only be found in either the training or the
validation set, but not in both. This way, we limit (but not
rigorously exclude) the possibility that very similar configurations
are found in both the training and validation sets. The validation
errors measured with this new scheme dramatically increase by
one to two orders of magnitude for quadratic-SNAP potentials, as
compared to the random hold-out approach. Therefore, clearly
showing that even well-behaved, expert-selected, configurations
can be poorly captured by MLIAPs when no similar configurations
are present in the training set. Consequently, further demonstrat-
ing that MLIAP should not be used to extrapolate to new classes of
configurations, even if these configurations are not dramatically
different from those found in the training set (e.g., different classes
of defects in the same crystalline environment). A more detailed
analysis can be found in Supplemental Note 8. Therefore, the
results shown in this work instead suggest that in order to ensure
robust transferability one requires the generation of very large
and diverse training sets that fully encompass the physically-
relevant region for applications, so that extrapolation is never, or
at least very rarely, required.
Finally, we demonstrate that the resultant NN models are

numerically and physical stable by testing them in production MD
simulations using the LAMMPS code44,45. Figure 5 shows the
deviation in energy as a function of MD timestep δt for the Type A
NN models trained using the EM data set. In all cases, the degree
of energy conservation is comparable to that of the SNAP linear
model and exhibits asymptotic second order accuracy in the

timestep, as expected for the Störmer-Verlet time discretization
used by LAMMPS. Higher order deviations emerge only at δt > 10
fs, close to the stability limit determined by the curvature of the
underlying potential energy surface of tungsten. All of the models
were integrated into the LAMMPS software suite using the
recently developed ML-IAP package, completing the link between
Model Form and Simulation Engine in Fig. 1. The ML-IAP package
enables the integration of arbitrary neural network potentials into
the atomistic software suite of LAMMPS, regardless of the training
method used. As a result, all the models developed in this work
can be used to perform simulations with the accuracy of quantum
methods (i.e., direct transcription of the energy surface defined by
suitably diverse DFT training data). To conclude, coupling this
code package with the universal training set generation outlined
in this work enables a seamless integration of ML models into
LAMMPS and thus will enable a breadth of research hitherto
unmatched.

CONCLUSION
The present work demonstrates a needed change in the character-
ization of ML models that is motivated by the goal of transferable
interatomic potentials thereby avoiding known pitfalls of extrapola-
tion. Counter-intuitive results presented here showed that model
accuracy saturates even when the model flexibility increases and
thereby re-directs attention to what is included as training data when
assessing the overall quality of an interatomic potential. Machine
learned interatomic potentials differ from traditional empirical
potentials (simple functional forms derived from physics/chemistry
of bonding) in this assessment of the trained space wherein the
accuracy of an empirical potential is quantified on the ability to
capture domain expertise selected materials properties. Transferring
these practices to the training of MLIAP demonstrated that a
physically motivated, user expertise, approach for defining training
configurations fails to yield MLIAP capable of having desired
transferability. Nevertheless, this work also demonstrated that
transferability can be achieved by producing a training set that
maximizes the volume of descriptor space such that the model rarely
extrapolates, where high errors are expected, even when this results
in high-energy, far from equilibrium states of the material. Initial
efforts to generate MLIAP from hybridized training sets is promising
as hybrid training sets produce lower DE validation errors than either
DE or EM trained models alone, see Supplemental Note 11. In
addition, and as a point that is important for the community of
molecular dynamics users, the entropy optimized training sets used
to generate the transferable MLIAPs are descriptor agnostic, material
independent, and automated with little to no user input tuning.
Ongoing work aims to incorporate uncertainty of individual DFT

Fig. 5 Energy conservation as a function of MD timestep size for
the Type A NN models and the linear SNAP model with EM
training. In all cases, a tungsten BCC supercell was simulated under
NVE dynamics at 3000 K for 7.5 ps. The energy deviation was
calculated by Eq. (2). All the models exhibit asymptotic second order
accuracy in δt, characteristic of the Störmer-Verlet time discretiza-
tion. Higher order deviations emerge only at δt > 10 fs, close to the
stability limit. This demonstrates that the NN models yield energy
and force predictions that are consistent, smooth, and bounded.
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training calculations (i.e., variable convergence criterion) to further
address the sources of model saturation and to establish optimized
hybrid training sets. Also, novel software advances in LAMMPS now
allow for any ML model form to be used as an interatomic potential
in a MD simulation. This is an important scientific advancement
because it allows for subsequent research that utilizes these highly
accurate and transferable ML models to be used within a code
package that is actively utilized by tens of thousands of researchers.
Beyond the use case of IAP, the protocol presented in this work

for training set generation is something that many data-sparse ML
applications can take advantage of when characterizing the
accuracy of a generated model. Therefore, it should be expected
that ML practitioners report regression errors, but also now to
quantify the complexity of the training data in order for end users
to understand where to expect interpolation versus extrapolations
in a more quantitative fashion.

METHODS
Maximization of the descriptor entropy
The data-driven EM set was generated using an entropy-optimization
approach introduced in previous work36. This framework aims at
generating a training set that is i) diverse, so as to cover a space of
configurations that encompasses most configurations that could poten-
tially be observed in actual MD simulation, and ii) non-redundant, in order
to avoid spending computational resources characterizing many instances
of the same local atomic environments. To do so, we introduce the so-
called descriptor entropy as an objective function that can be systematically
optimized. In what follows, the local environment around each atom i is
described by a vector of descriptors Di of length m. These descriptors can
be arbitrary differentiable functions of the atomic positions around the
target atom. In this work, the Di are taken to be the bispectrum
components which were introduced in the development of the GAP
potentials26,30,39, and then adopted in the SNAP approach28,37. To avoid
excessive roughness on the entropy surface in high dimension, we used
the five lowest-order bispectrum components (m= 5) in the optimization
procedure. As reported above, we nonetheless observe very significant
broadening of the descriptor distribution compared to the DE set in almost
all directions of the 55-dimensional space induced by the lowest-order
bispectrum components. This behavior, which will be studied in detail in
an upcoming publication, was also observed in the original publication36.
The diversity of local environments within a given configuration of the

system can be quantified by the entropy of the m− dimensional
descriptor distribution S({D}). High entropy reflects a high diversity of
atomic environments within a given configuration, while low entropy
corresponds to high similarity between atomic environments. The
descriptor entropy is therefore an ideal objective function in order to
create a diverse dataset. The creation of high entropy structures can be
equivalently recast as the sampling of low-energy configurations on an
effective potential energy surface given by minus the descriptor entropy.
This enables the training set generation procedure to be implemented in
the same molecular dynamics code that will be used to carry out the
simulations.
The effective potential is of the form:

Ventropy ¼ V repulsive � KSðfDgÞ (1)

where Vrepulsive is a simple pairwise repulsive potential that mimics a hard-
core exclusion volume, thereby prohibiting close approach between
atoms, and S({D}) is a nonparametric estimator of the descriptor entropy
based on first-neighbor distances in descriptor space46. The addition of
Vrepulsive is essential to avoid generating nonphysical configurations that
would prevent convergence of the DFT calculations. As a result, this
effective potential can be used to carry out either molecular-dynamics-
based annealing or direct minimization, as discussed in the original
publication36.
A possible limitation of this approach is that regions of descriptor space

corresponding to crystalline configurations, which are key to many
materials science applications, might be under-sampled, as entropy
maximization promotes configurations where each atomic environment
differs from others. In order to avoid this possibility, the dataset also
contains “entropy-minimized” configurations, which are obtained using
the same procedure as the entropy-maximized ones, except that that sign
of K in Eq. (1) is reversed, leading to configurations where order is

promoted instead of suppressed. It is important to acknowledge that the
type of local order (e.g., FCC or BCC) that is promoted through entropy
minimization is not pre-specified by this approach, the data generation
procedure is captured in Fig. 6.
This loop was repeated N/2 times, generating a total of N= 223,660

configurations, half of which are entropy-minimized, and half entropy-
maximized. The range of atom counts and box volumes is chosen with
respect to ambient density of Tungsten (15.9°A3/atom). Note that except
for very small systems, this sampling procedure typically does not
converge to the global minimum of Ventropy, but instead remains trapped
in local minima of the effective potential energy surface. Different initial
random starting points (w.r.t. to initial atomic positions and cell sizes and
shapes) will converge to different final states. As shown in Fig. 2, this allows
for the generation of a wide range of different configurations, instead of
repeatedly generating structures that are internally diverse but very similar
to each other. The difficulty of converging to the global entropy optimum
is therefore a positive feature in this case. The same effect also occurs in
the case of entropy minimization, where this procedure yields crystals that
contain stacking defects, grain boundaries, line and point defects, etc., with
perfect crystal being only rarely generated.
The energy and forces acting on the atoms were then obtained with the

VASP DFT code using the GGA exchange correlation functional with an
energy cutoff was set to 600 eV, and a 2 × 2 × 2 Monkhorst-Pack k-point
grid used47–50. The calculations were converged to an SCF energy
threshold of 10−8 eV. Imposing a constant plane wave energy cutoff and
k-point spacing for all of the diverse configurations is certainly an
approximation, and was done to automate the generation of these training
labels. Since the entropy maximization method does not need these DFT
results to generate new structures, stricter DFT settings can be applied a
posteriori.
The main advantage of this method in contrast with conventional

approaches that rely on domain knowledge is that it is fully automated and
executed at scale because no human intervention is required. In other
words, the generated training set was not curated a posteriori to manually
prune or add configurations, and the weight of the different configurations
in the regression was not adjusted. The training configurations are further
material-independent, except for the choice of the exclusion radius of the
repulsive potential and the range of densities that was explored. As a
result, this means that in the case of pure materials, configurations
generated using generic parameter values can simply be rescaled based
on the known ground-state density of the target material. Therefore, the
method naturally lends itself to high throughput data generation, as every

Fig. 6 Automated workflow that generates both entropy max-
imized and minimized atomic structures given Eq. (1). Represen-
tative structures of either type are colored by local crystal structure.
Entropy minimized structures are mostly crystalline but with defects,
while entropy maximized structures are largely amorphous and/or
show non-closed packed structure types.
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training configuration can be generated and characterized with DFT in
parallel, up to some computational resource limit.
Note that entropy optimization differs in philosophy from some recently

proposed active learning approaches23,24,51 where training sets are
iteratively enriched by using a previous generation of the MLIAP to
generate new candidate configuration using MD simulations. Candidates
are added to the training set whenever a measure of the uncertainty of the
prediction reaches a threshold value. These methods are appealing as they
also allow for the automation of the training set curation process, and
because they generate configurations that can be argued to be
thermodynamically relevant. Nevertheless, the diversity of the training
sets generated active learning approaches ultimately relies on the
efficiency of MD as a sampler of diverse configurations. However, many
potential energy surfaces are extremely rough, which can make them very
difficult to systematically explore using methods based on naturally
evolving MD trajectories. Take for example a configuration of atoms that
has a high energy barrier to a new state of interest. Unless a high
temperature is set in MD, which skews the thermodynamically relevant
states, these rare events will dictate the rate new training is added.
Consequently, in active learning methods the selection of the initial
configuration from which MD simulations are launched then becomes very
important. In contrast, entropy optimization explicitly biases the dynamics
so as to cover as much of the feature space as possible using an artificial
effective energy landscape that maximizes the amount of diversity
contained in each configuration. Note however that both approaches
can easily be combined by substituting entropy-optimization for MD as the
sampler used within an iterative loop. Finally, notice that some active
learning approaches, specifically those based on the d-optimality criterion
of Shapeev and collaborators23, also build on the insight that extrapolation
should be avoided in order to identify candidate configurations that
should be added to the training set.

Neural Network Models
Neural networks are highly flexible models capable of accurately
estimating the underlying function that connects a set of inputs to its
corresponding output values from available observations20,52. Feed
Forward Neural Networks (FFNN) are quite versatile models that can be
tailored to predict the results for a wide variety of applications and
fields53–55. FFNNs have been successfully used to develop IAPs14,15,56,57. In
this work, we train different FFNNs to learn the mapping between the local
atomic environment (characterized using the bispectrum compo-
nents26,28,30,39) and the resultant energy of each atom (denoted as Ei).
The total energy of the system is subsequently obtained by summing the
atomic energies (i.e., Etot= ∑iEi). Note that the atomic energies are not
available from DFT, so training only considers total energies of entire
configurations. The different neural networks are trained by minimizing
the squared error that quantifies the discrepancy between the values
predicted by the model (i.e., the FFNN) and a set of “ground-truth” output

values obtained for the training set. In this work we trained two different
sets of FFNNs, the EM and DE sets described above, using the same
training protocol for both.
The training protocol starts by selecting a subset of the training set on

which to train the model. In this work we used 70% (randomly sampled) of
the configurations to train the model. In addition, we used 10% (again
randomly sampled) as a validation set and the remaining 20% as the test
set. The validation set and the test set are not used directly for the training
on the model. These sets are used to monitor for over-fitting and to
critically assess the ability of the trained model to generalize to new/
unseen data. Partitioning a given data set into training, validation, and
testing is a common strategy in deep learning model development.
This work considered ten different neural networks architectures. Five of

the architectures systematically reduced the number of features before
predicting the energy in the last layer. These neural networks are denoted
as Type A (step-down) and their architecture is illustrated in Fig. 7A. The
activation function used between each layer is the SoftPlus activation
function and is applied to all the layers (after transforming the inputs
adequately) except the final output layer because it is the one that predicts
the energy associated to the input bispectrum components. The other five
neural networks initially increased the number of features and subse-
quently decreased the number of features before predicting the energy in
the last layer and are denoted Type B(expand-then-contract). Similar to
Type A networks, the activation function used is the SoftPlus function.
Figure 7B illustrates the architectures of the Type B neural networks.
Supplemental Note 2 details the procedure leveraged for selecting the
optimal learning rate and batch size and Supplemental Note 3 details the
procedure used for selecting the optimal featurization of the bispectrum
components for training deep-learning potentials.
Each one of the ten different neural networks was trained for 800

epochs using the optimal values for the learning rate and batch-size
previously identified. Furthermore, we used the ADAM optimizer58 and
incorporated a learning rate scheduler that reduced the learning rate by
half if the validation loss did not change by 1 ⋅ 10−4 over 50 epochs. After
each network was trained we assessed its accuracy by comparing its
energy prediction to the ground-truth (obtained with ab-initio calculations)
using the Root Squared Error (RSE).

Simulation stability
We tested the numerical and physical stability of all of the models by
running realistic molecular dynamics simulations in the LAMMPS atomistic
simulation code44,45. The most important characteristic of any classical
potential is the degree to which it conserves energy when used to model
Hamiltonian or NVE dynamics. Theoretically, under these conditions, the
total energy or Hamiltonian H= T+ V is a constant of the motion, while
the kinetic energy T and potential energy V fluctuate equally and
oppositely. In practice, the extent to which the total energy is conserved is
strongly affected by the timestep size δt, as well as the time discretization

Fig. 7 Visual representation of the two neural network architecture types. A type A step-down and B type B expand-and-contract. The
input is a vector of D descriptors of the atomic environment of one atom. These are passed through each layer in the network to yield the
atomic energy Ei of the atom. Integer factors indicate the number of nodes in each layer. The total number of nodes defines the number of
degree of freedom NDoF for each model. Recall from Fig. 3 that D is 14, 30, or 55. Notice that D only affects the nodes in the input layer since
the nodes on the other layers remain unchanged.
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scheme, and any pathologies in the potential energy surface and
corresponding forces. Because LAMMPS uses Störmer-Verlet time dis-
cretization that is both time reversible and symplectic59, a well-behaved
potential should exhibit no energy drift and the small random variations in
energy that do occur should have a mean amplitude that is second order
in the timestep size. We characterize both of these effects by simulating a
fixed-length trajectory with a range of different timestep sizes and sample
the change in total energy relative to the initial state. The average energy
deviaton is defined to be

ΔHðδtÞ ¼ 1
nN

Xn

i¼1

jHðti ; δtÞ � Hðt0Þj; (2)

where H(ti; δt) is the total energy sampled at time ti from a trajectory with
timestep δt, n is the total number of samples, and N is the number
of atoms.
All the NVE simulations were initialized with 16 tungsten atoms in a BCC

lattice with periodic boundary conditions, equilibrated at a temperature of
3000 K, close to the melting point. Each simulation was run for a total
simulation time of 7.5 ps and the number of time samples n was 1000. All
calculations were performed using the publicly released version of
LAMMPS from November 2021. In addition to the base code, LAMMPS
was compiled with the ML-IAP, PYTHON, and ML-SNAP packages. The
MLIAP_ENABLE_PYTHON and BUILD_SHARED_LIBS compile flags were set.
An example LAMMPS input script has been included in the Supplemental
Information.
The dependence of energy deviation on timestep size for some

representative models is shown in Fig. 5. In all cases, we observe
asymptotic second order accuracy, as expected for the Störmer–Verlet time
discretization used by LAMMPS. Higher order deviations emerge only at
δt > 10 fs, close to the stability limit determined by the curvature of the
underlying potential energy surface of tungsten.

Bispectrum components and SNAP potentials
The entropy maximization effective potential, the neural network
potentials, and the SNAP potentials described in this paper all use the
bispectrum components as descriptors of the local environment of each
atom. These were originally proposed by Bartok et al.26,30,39 and then
adopted in the SNAP approach28,37.
In the linear SNAP potential, the atomic energy of an atom i is expressed

as a sum of the bispectrum components Bi for that atom, while for
quadratic SNAP, the pairwise products of these descriptors are also
included, weighted by regression coefficients

EiðrNÞ ¼ β � Bi þ 1
2
Bi � α � Bi ; (3)

where the symmetric matrix α and the vector β are constant linear
coefficients whose values are determined in training. The bispectrum
components are real, rotationally invariant triple-products of four-
dimensional hyperspherical harmonics Uj

39

Bj1 j2 j ¼ Uj1�j
j1 j2

Uj2 : U
�
j ; (4)

where symbol �j
j1 j2

indicates a Clebsch-Gordan product of two matrices of
arbitrary rank, while: corresponds to an element-wise scalar product of two
matrices of equal rank. For structures containing atoms of a single
chemical element, the Uj are defined to be

Uj ¼
X

rik<R

f cðrikÞujðrikÞ; (5)

where the summation is over all neighbor atoms k within the cutoff
distance R. The radial cutoff function fc(r) ensures that atomic contributions
go smoothly to zero as r approaches R from below. The hyperspherical
harmonics uj are also known as Wigner U-matrices, each of rank 2j+ 1, and
the index j can take half-integer values f0; 12 ; 1; 32 ; ¼ g. They form a
complete orthogonal basis for functions defined on S3, the unit sphere in
four dimensions30,60. The relative position of each neighbor atom
rik= (x, y, z) is mapped to a point on S3 defined by the three polar angles
ψ, θ, and φ according to the transformation ψ= πr/r0, cos θ ¼ z=r, and
tanφ ¼ x=y. The bispectrum components defined in this way have been
shown to form a particular subset of third rank invariants arising from the
atomic cluster expansion61. The vector of descriptors Bi for atom i
introduced in Eq. (3) is a flattened list of elements Bj1 j2 j restricted to
0 ≤ j2 ≤ j1 ≤ j ≤ J, so that the number of unique bispectrum components
scales as OðJ3Þ. In the current work, J values of 1, 2, 3, and 4, are used,
yielding descriptor vectors Bi of length D= 5, 14, 30, and 55, respectively.

The radial cutoff value used for entropy maximization, neural network and
SNAP models was R= 4.73Å.
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