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Topology-optimized thermal metamaterials traversing
full-parameter anisotropic space
Wei Sha 1, Run Hu 2, Mi Xiao 1✉, Sheng Chu3, Zhan Zhu2, Cheng-Wei Qiu 4 and Liang Gao 1✉

It is widely adopted in thermal metamaterials that mixing different materials could conveniently result in effective thermal
conductivities (ETCs) beyond naturally-occurring materials. When multiple materials are isotropically mixed, the ETC is a direct
average governed by their filling fractions and given bulk conductivities. That could lead to an inhomogeneous and anisotropic
value within the maximal and minimal thermal conductivities of constituent materials. Usually thermal metadevices rely on
anisotropic thermal conductivity tensor, whose tensorial elements are frequently inter-dependent and confined within a limited
parametric space. It is thus nontrivial to establish a design recipe for advanced thermal metamaterials whose ETCs could cover
full-parameter anisotropic space. We demonstrate topological functional cells (TFCs) with copper and polydimethylsiloxane,
and show that the anisotropic ETCs traverse their full-parameter space. Such robust scheme based on topology-optimized TFCs
unlocks unexplored opportunities for functional thermal metadevices whose parameters may not be reached in previous
mixing approaches. This study also sheds light on the developments in emerging acoustic, mechanical and electromagnetic
composite materials.
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INTRODUCTION
In recent years, thermal metamaterials have attracted much
attention from researchers due to their extraordinary ability on the
manipulation of heat flow1–4, which benefits from the spatial
distribution of specific thermal conductivities in a given thermal
metadevice5–8. According to Fourier’s law9, thermal conductivity κ

is a tensor matrix (e.g., κ ¼ κxx κxy
κyx κyy

� �
;

κxxκyy > κxyκyx
κxx;yy > 0; κxy ¼ κyx

�
for

the 2D case10,11) that characterizes the general linear heat
conduction behavior between heat flux and temperature gradi-

ents, i.e., q ¼ qx
qy

� �
¼ �κ � ∇T ¼ � κxx κxy

κyx κyy

� �
∂x=∂T
∂T=∂y

� �
. For iso-

tropic materials, κxy= κyx= 0 and κxx= κyy, which make identical
thermal conductive behaviors in all directions and present some
limitations on manipulating heat flow. In contrast, anisotropic
materials can flexibly manipulate heat flow. Unfortunately, the
vast majority of natural materials are isotropic, which naturally
motivates the use of mixtures of natural materials to obtain
anisotropic effective thermal conductivities (ETCs).
For anisotropic ETCs, they can be divided into two categories by

whether κxy is equal to 0. When κxy= 0, they have been frequently
studied in orthotropic composite materials12,13. Considering
achieving an arbitrary ETC with κxy= 0, the combination of natural
materials based on Effective Medium Theory (EMT) for predicting
properties of mixtures are widely employed, such as Wiener
bounds13,14 (WB), Maxwell–Euken model14,15, Bruggeman
model16, and Asymptotic Homogenization Method (AHM)17. As
shown in Fig. 1a, for two given materials (e.g., M1 and M4), it has
been demonstrated that WB achieved by layered structures
determine the lower and upper bounds of ETCs, and the orange
area in between represents the entire ETCs which can be achieved
by proper mixtures of M1 and M4. To design a mixture

configuration with the targeted anisotropic ETC inside the orange
area of Fig. 1a, we can directly resort to designing mixtures of M1

and M4 along the black dashed curve based on EMT in Fig. 1a,
which is efficiency-limited and case-dependent. Alternatively, we
can start with a pre-determined structure shape and then find
proper materials, like the layered structures with M2 and M5 lying
on the WB along the blue curves in Fig. 1a. However, the selected
M2 and M5 may not exist in nature, and even if we can find two
proper naturally-occurring thermal conductive materials, their
contact thermal resistance may be an issue. Using the aforemen-
tioned strategies, the mixtures with targeted ETC can only be
designed along the curves as seen in Fig. 1a, leaving ample space
rarely explored. For anisotropic ETCs with κxy ≠ 0, as illustrated in
Fig. 1c, we take κxx, κyy and κxy (κyx) as three orthogonal axes to
construct a 3D coordinate system Φ(κxx, κyy, κxy)⊂ R3 and use
Ω(Ma, Mb) to denote the full-parameter anisotropic space of
thermal conductivity with just two given materials Ma and Mb, e.g.,
Ω(M1, M4). For ETCs with κxy ≠ 0 in Ω(M1, M4), generally they can be
obtained by the rotation of the mixtures with ETCs in Ω(M1, M4,
κxy= 0), i.e., the orange area in Fig. 1a (see Supplementary Note 1
for details about the rotation of the mixtures). Therefore, using the
same strategies mentioned above, the mixture with a targeted
ETC in Ω(M1, M4) can only be designed along some surfaces,
inevitably leaving more ample space rarely explored. Here, we
propose a universal and efficient strategy by employing structural
topology optimization18–21 to obtain the optimized material
layout of a mixture with desired ETC, which is dubbed topological
functional cell (TFC) hereinafter (seen in Fig. 1a–c), and ETCs could
easily traverse the full-parameter anisotropic space of thermal
conductivity by the judiciously designed TFCs.
In this paper, we successfully traverse the full-parameter

anisotropic space Ω(Copper, PDMS) of thermal conductivity by
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TFCs with different ETCs. Then, the thermal properties of several
typical TFCs inside Ω(Copper, PDMS) are validated numerically
and experimentally. We propose the regionalized scattering
cancellation method to design a series of thermal metadevices,
including thermal connector, reflector, concentrator and cloak.
The temperature field distributions of the four thermal
metadevices are schematically shown in Fig. 1d. Finally, we
fabricate them by 3D printing and experimentally characterize
their thermal functionalities. This study offers an avenue for
traversing the full-parameter anisotropic space with topology-
optimized thermal metamaterials under two given natural

materials, hence enabling highly robust manipulation of heat
flow and achieving the powerful design capability for thermal
metadevices.

RESULTS
Traversal of full-parameter anisotropic space and
manipulation of heat flow
Naturally-occurring materials usually have specific and isotropic
thermal conductivities22, forming a discrete database of thermal
conductivity values only located on the purple dash-dotted
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Fig. 1 Schematic of full-parameter anisotropic space of thermal conductivity and four thermal metadevices. a Full-parameter anisotropic
space with κxy= 0 and the purple dash-dotted line indicates isotropic ETCs. A targeted ETC inside Ω(M1, M4, κxy= 0) can be achieved by the
mixture of materials M1 and M4 based on EMT (along the black dashed curve). Alternatively, we can resort to selecting proper materials, i.e., M2
and M5, based on WB (along the blue curves). In contrast, all ETC s inside the orange region can be easily achieved via TFCs. The legend on the
right illustrates different mixture configurations. The subscript denotes the materials whose thermal conductivities are given at the top of the
figure. b Illustration of the full-parameter anisotropic space with κxy= 0 achievable by TFCs with different materials. c Full-parameter
anisotropic space with the rotation of TFCs (RTFCs). The orange liked-ellipsoid space is the full-parameter anisotropic one Ω(M1, M2) of thermal
conductivity. The inset shows a side view of Ω(M1, M2). d Schematic of ideal temperature field for four thermal metadevices, including thermal
connector, reflector, concentrator and cloak, which is designed based on the full-parameter anisotropic space. Black arrows indicate the
direction of heat flow, and the colors indicate the distribution of temperatures.
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line in Fig. 1a–c. In contrast, the ETC values of mixtures with
naturally-occurring materials can occupy a large space bounded
by WB, i.e., the full-parameter anisotropic space of thermal
conductivity. Here, we start with consideration of how much
space can be occupied by the ETC of a mixture with two given
materials Ma and Mb. For simplicity, we consider the 2D-case

thermal conductivity tensor κ¼ κxx κxy
κyx κyy

� �
. It is known that the

ETC of a mixture based on WB, i.e., Series and Parallel models,

can be quantified as κs ¼ κy 0
0 κx

� �
or κp ¼ κx 0

0 κy

� �
, where

κx= faκa+ fbκb and κy= 1/(fa/κa+ fb/κb), κa and κb are respec-
tively the thermal conductivities of two given materials,
and fa and fb are their corresponding volume fractions with
fa+ fb= 1. When fa increases from 0 to 1, the ETC of this mixture
will vary along the upper or lower bounds. Thus, as seen in
Fig. 1a, the ETCs of mixtures with M1 and M4 occupy the orange
area Ω(M1, M4, κxy= 0). Then, considering the rotation of the
mixtures, the 3D orange surface-bounded space Ω(M1, M4) in
Fig. 1c will be occupied by the ETCs of mixtures with M1 and M4,
i.e., the full-parameter anisotropic space. Specifically, the

corresponding relationship between the ETC
κxx κxy
κyx κyy

� �
in

Ω(M1, M4) and the ETC
κx 0
0 κy

� �
in Ω(M1, M4, κxy= 0) can be

expressed as

κxx κxy

κyx κyy

� �
¼ RTðθÞ κx 0

0 κy

� �
RðθÞ; κx;y ¼ κxx þ κyy ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κxx � κyy
� �2þ4κ2xy

q� 	
=2

(1)

where R(θ) is the rotated matrix, and θ is the rotated angle. Thus,

the ETC
κxx κxy
κyx κyy

� �
in Ω(M1, M4) and the ETC

κx 0
0 κy

� �
in Ω(M1,

M4, κxy= 0) can be convertible by rotating the equivalent structure
with an angle θ. Note that the symmetry axis of Ω(M1, M4) is the
purple dash-dotted line with κxx= κyy and κxy= 0 in Fig. 1c,
composed of the points with isotropic ETCs. Space Ω(M1, M4) is
not generated by the rotation of the plane space Ω(M1, M4,
κxy= 0) around the symmetry axis (purple dash-dotted line in Fig.
1c) because the cross-section of Ω(M1, M4) perpendicular to the
symmetry axis is proved to be an ellipse mathematically, as shown
in the inset of Fig. 1c (see Supplementary Note 1 for the rigorous
derivation). As shown in Fig. 1b, we can obtain different full-
parameter anisotropic space when changing the thermal con-
ductivity of one material. It is concluded intuitively that when
keeping one material with the high thermal conductivity
unchanged, the other material with a lower thermal conductivity
will create a larger full-parameter space. Additionally, the lower
thermal conductivity of the material will narrow the gap between
the Ω and physical limit of Second law of thermodynamics10,11

(see Supplementary Fig. 2 for more details).
As mentioned above, the full-parameter anisotropic space

Ω(Ma, Mb) represents all the 2D-case ETCs that can be achieved
by mixtures with materials Ma and Mb. It is known that layered
structures have been frequently adopted to design thermal
metamaterials due to their easy realization, such as thermal
cloak1,5–7,23, concentrator5, rotator5, reflection24 and illusion25.
However, the ETC value of the layered structures with rotation is
only located on the shell boundary ∂Ω(Ma, Mb). We can
anticipate that if all ETCs in Ω(Ma, Mb) can be achieved robustly,
the thermal metamaterials can be freely designed, even if
involving a variety of inhomogeneous anisotropic ETCs, such as
those induced by coordinate transformation method4,26. Here,
we employ topology optimization to design TFCs with different
ETCs, so as to traverse the full-parameter anisotropic space (see
Methods for detailed information about topology optimization).

Taking copper and polydimethylsiloxane (PDMS) as typical
materials, the TFCs with these two materials are designed. As
shown in Fig. 2a, the blue points denote the ETCs of TFCs, i.e.,
the discrete anisotropic ETCs in Ω(Copper, PDMS, κxy= 0). They
can almost fill half the Ω(Copper, PDMS, κxy= 0). According to
Supplementary Note 1 and Eq. (1), when rotating these TFCs
from 0 to 180 degrees, all the ETC values within Ω(Copper,
PDMS) can be obtained. Therefore, the whole full-parameter
anisotropic space of thermal conductivity is traversed by the
ETCs of TFCs. Schematically, Fig. 2b shows three typical TFCs
with anisotropic ETCs, i.e., κ1, κ2 and κ3, which are directly
obtained via topology optimization. Their topology optimization
iteration processes are shown in Fig. 2c and Supplementary Fig.
3, respectively. It is found that the TFCs become distinct along
with the optimization iteration process, and their ETCs are close
to the target ones.
Because of the powerful design ability of topology optimiza-

tion, the TFCs with desired ETCs within the full-parameter
anisotropic space can be designed robustly. This computational
way adequately excavates the design ability of structural
materials, thereby conveniently traversing the full-parameter
anisotropic space. Compared with the previously designed ways,
topology optimization provides an inverse design paradigm,
which is universal, elegant, efficient and exact, and can be used
for designing TFCs with the desired κ within Ω. According to
Fourier’s law equation q ¼ �κ � ∇T, this design paradigm
enables freely manipulating heat flow and conveniently design-
ing thermal metamaterials with different functionalities. To
manipulate heat flow, we first deduce the relationship between
the heat flux vectors across the interface of two materials with
different κ. As shown in Fig. 2d, the heat flux changes its
direction when it conducts across the interface l(j) (l(j) denotes the
j-th interface) from Area i (i= 1) to Area i+ 1 (i= 1). It is known
that the component of the heat flux vector along the normal
direction of l(j) maintains the same without interfacial thermal
resistance, namely

qðinÞ� �
?lðjÞ ¼ qðoutÞ� �

?lðjÞ

qðin;outÞ� �
?lðjÞ ¼ qðin;outÞ� �

lðjÞ


 

 � sin αðin;outÞ

� �
lðjÞ

αðinÞ
� �

lðjÞ ¼ θð ÞlðjÞ� arccos
qðin;outÞxð ÞlðjÞ
qðin;outÞð Þ

lðjÞj j
� 	

αðoutÞ
� �

lðjÞ ¼ θð ÞlðjÞþ arccos
qðin;outÞxð ÞlðjÞ
qðin;outÞð Þ

lðjÞj j
� 	

(2)

where qðin;outÞ� �
?lðjÞdenotes the normal component of heat flux

vector qðin;outÞ ¼ qðin;outÞx

qðin;outÞy

" #
across the interface l(j), and θð ÞlðjÞ

denotes the angle between the interface l(j) and the horizontal
line. By substituting Eq. (2) into Fourier’s law equation, we can
obtain

qðin;outÞ
� �

lðjÞ
¼ �κði;iþ1Þ � ∇ Tði;iþ1Þ

� �
lðjÞ

(3)

where κðiÞ ¼ κ
ðiÞ
xx κ

ðiÞ
xy

κ
ðiÞ
yx κ

ðiÞ
yy

" #
and T(i) represent the thermal conduc-

tivity tensor and temperature distribution of Area i, respectively.
Obviously, the heat flux q(in,out), thermal conductivity tensor

κði;iþ1Þ ¼ κ
ði;iþ1Þ
xx κ

ði;iþ1Þ
xy

κ
ði;iþ1Þ
yx κ

ði;iþ1Þ
yy

" #
, and the temperature distribution

T(i,i+1) of different areas are correlated by Eq. (3). Therefore, under
a given temperature gradient, q(in,out) can be controlled by

adjusting κði;iþ1Þ ¼ κ
ði;iþ1Þ
xx κ

ði;iþ1Þ
xy

κ
ði;iþ1Þ
yx κ

ði;iþ1Þ
yy

" #
, which can be selected from

the full-parameter anisotropic space of thermal conductivity.
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Simulated and experimental verifications of thermal
properties of TFCs
Here, the thermal properties of the three TFCs in Fig. 2b are
validated by numerical simulations and experiments under the
linear temperature gradient. We first consider the simulated
temperature field distribution of a pure continuous plate, whose
thermal conductivity is assigned with the target ETCs, i.e., κ1, κ2
and κ3, as shown in Fig. 3a–c, where materials with different
anisotropies present different perturbations to the temperature
field under the same thermally boundary conditions. They are
regarded as references and called as theoretical simulations
hereinafter. Then, the simulated temperature field distribution of
the three periodic TFCs, called as structural simulations herein-
after, are respectively shown in Fig. 3d–f (see Methods for details
about numerically theoretical and structural simulations). From
Fig. 3a–f, the corresponding isotherms are similar under the above

two simulated cases, which indicates that each temperature field
under structural simulations is close to the corresponding
reference one under theoretical simulations.
Next, as shown in Fig. 3g–i, we further experimentally validate

the thermal behaviors of the three TFCs after fabricating their
samples by 3D printing, called as structural experiments herein-
after (see Methods for details of an experimental setting). As
shown in Fig. 3j–l, each experimentally steady-state temperature
field distribution is close to the corresponding reference one as
well. To quantitatively compare the temperature field distribution,
we calculate the temperature value of the points on the red
dashed lines in Fig. 3d–f under the above three cases, i.e.,
theoretical simulation, structural simulation and structural experi-
ment. The temperature profiles under three cases are plotted in
Fig. 3m–o, and their differences are small quantitatively. Therefore,
it is validated that the ETCs of TFCs are close to the target ones
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Fig. 2 Traversal of full-parameter anisotropic space Ω(Copper, PDMS) by topology optimization and manipulation of heat flow.
a Illustration of traversing full-parameter anisotropic space with TFCs. The ETCs of TFCs correspond to the blue points, and each TFC is
composed of copper (yellow) and PDMS (green). b Three typical ETC tensors and the corresponding TFCs. The size of each cell is
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both theoretically and experimentally, implying the robust
accuracy and traversal of our design paradigm.

Applications of full-parameter anisotropic space
We design the topology-optimized thermal metadevices to show
the significance of traversing full-parameter anisotropic space.
Here, we consider two types of thermal metadevices, i.e., thermal
connector and reflector, which divert heat flow stably and can be
used to bypass non-embedded obstacles, reverse bending and
achieve thermal periscope. Besides, we further consider thermal
cloak and concentrator that make their interior object from being
thermally detected by restoring their exterior background
temperature profile. Inspired by the scattering cancellation
method6, we propose a regionalized scattering cancellation
method to design thermal metadevices based on Eqs. (2) and (3).

We divide the whole design area into several subareas, solve the
thermal conduction equation with particular boundary con-
straints between the subareas, and obtain the relationship
between the thermal conductivity tensors in each subarea.
Taking the thermal connector as an example, as shown in Fig. 4a,
we divide the design area into four areas by three interfaces, and
the isotherms in each area are parallel. The shape of the thermal
connector is determined by the geometry parameters β1 and β2,
and the temperature gradient components of different areas are
described as

∂T ð1Þ
∂x ¼ ∂T ð2Þ

∂x ¼ ∂T ð3Þ
∂x ¼ ∂T ð4Þ

∂x ¼ �ϕ

∂T ð1Þ
∂y ¼ ∂T ð2Þ

∂y ¼ ∂T ð3Þ
∂y ¼ ∂T ð4Þ

∂y ¼ 0

(
(4)

where ϕ is a constant to be determined. By substituting Eq. (4)
into Eq. (2), we obtain a general solution as follows (see
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Fig. 3 Simulated and experimental results of three TFCs. a–c Theoretical simulations of pure materials with target ETC tensors κ1, κ2 and κ3.
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Supplementary Notes 2 and 3 for the details):

κb ¼ κð2Þxx ; κ
ð2Þ
yx ¼ κð3Þyx ; κb ¼ κð3Þxx ; cot β1 ¼

κ
ð2Þ
xx

κ
ð2Þ
yx

; cot β2 ¼
κ
ð3Þ
xx

κ
ð3Þ
yx

(5)

where κb is the thermal conductivity of background material
(Area 1 in Fig. 4a). When cotβ1= 1 and cotβ2= 1, Eq. (5) can be
simplified to κb ¼ κ

ð2Þ
xx ¼ κ

ð2Þ
yx ¼ κ

ð3Þ
xx ¼ κ

ð3Þ
yx . With consideration of

the reciprocity and nonnegativity of κ, we obtain κð1Þ ¼ κð4Þ ¼
13 0
0 13

� �
and κð2Þ ¼ κð3Þ ¼ 13 13

13 26

� �
. Then, the theoretical

simulation with the pure continuous materials for the thermal
connector is performed. The result is displayed in Fig. 4b, where
the thermal isotherms are parallel in the whole area, and the
thermal connection functionality is theoretically achieved. Next,
we need to design the corresponding TFCs with the desired
anisotropic κ to fill each area. Topology optimization is employed
by taking the required κ as the target, and the corresponding
TFCs are obtained. The structurally simulated result of the
thermal connector is shown in Fig. 4c, which looks similar to the

theoretically simulated one (see Methods for details of theoretical
simulations). Then, we fabricate the sample of topology-optimized
thermal connector (seen in Fig. 4d) by 3D printing for experiment,
and its experimentally steady-state temperature field distribution
under the same boundary condition is shown in Fig. 4e (see
Methods for details of experiments). For theoretical simulation,
structural simulation and structural experiment, the corresponding
temperature fields are similar, and thermal connection function-
ality is achieved. It is worth noting that the theoretical simulation
result is so perfect and can be considered as the reference for
structural simulation and structural experiment. We further plot
the temperature profile on the red dashed line in Fig. 4c to
evaluate the deviation between the simulated and experimental
results. As shown in Fig. 4f, the results of theoretical simulation
(black dash-dotted curve), structural simulation (red curve) and
structural experiment (blue markers) agree well. The temperature
values on the observation line are approximately equal, which is
also a good verification of thermal connection functionality.
Therefore, the TFCs with the desired ETCs from the full-parameter
anisotropic space can robustly manipulate heat flow and achieve
thermal connector numerically and experimentally.
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Moreover, we also design other kinds of thermal metadevices,
i.e., thermal reflector, concentrator and cloak, to further show the
significance of TFCs in manipulating heat flow (see Supplementary
Notes 2–6 for the details). For each thermal metadevice, we obtain
the desired anisotropic κ by regionalized scattering cancellation
method and provide a feasible solution in Supplementary Table 1.
We achieve these thermal metadevices based on the computa-
tionally TFCs with required ETCs within Ω(Copper, PDMS).
Figure 5a–f shows the theoretical and structural simulation results
of thermal metadevices, respectively. Besides, we fabricate the
samples (Fig. 5g–i) of the thermal metamaterials by 3D printing for
experiments, and their experimentally steady-state temperature
fields are shown in Fig. 5j–l. The temperature profiles along the
observation red dashed lines are also plotted in Fig. 5m–o. From
the above results, it is further illustrated that the proposed

regionalized scattering cancellation method is effective and the
full-parameter anisotropic space can be easily and robustly
traversed by TFCs, which can be employed to manipulate heat
flow freely and achieve thermal metadevices experimentally.

DISCUSSION
We have demonstrated that the ETCs of rotated TFCs can
traverse the full-parameter anisotropic space. Considering the
manufacturing accuracy of 3D printing, the minimum feature size
of metal structures should be in the order of magnitude of 10−4

m to ensure that the designed thermal metamaterials can be
fabricated27, which can resort to increasing the filter radius28,29

during topology optimization of TFCs (see Supplementary Fig.
5a–c) and using the materials with lower thermal conductivity
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(see Supplementary Fig. 5b, d). Besides, although smaller TFCs
can achieve better thermal performance, the size of TFCs cannot
be infinitely small considering the manufacturing accuracy of 3D
printing. Thus, the size of TFCs depends on the dimension of
thermal metamaterials and the desired thermal performance of
each TFC. For example, in designing a thermal connector, the
length of |AB| in Fig. 4a is 50 mm. It is numerically and
experimentally verified that the TFCs with 10 × 10 periodic
arrangements can achieve the desired thermal performance well.
Then, the size of each TFC is set as 5 mm × 5mm.
In this work, thermal metamaterials with regular shape are

designed in steady states. Complex and transient-state thermal
metamaterials can also be designed based on the traversed full-
parameter anisotropic space of thermal conductivity. Specifically,
for designing thermal metamaterials in transient states, follow-
up studies can be carried out by taking heat capacity and
physical density of materials into account. For designing complex
thermal metamaterials, such as fast heat sink setup30,31,
enhanced energy harvesting medevices32, and multilayer printed
circuit boards33, the combination of the proposed method in this
work and some advanced multiscale topology optimization
(MTO) strategies can be investigated, such as data-driven MTO34

and kriging-assisted MTO35.
In conclusion, we believe that discussions about manufacturing

technology limitations and the design of complex thermal
metamaterials will not alter the overall conclusions and insight
gained from the presented work. This paper provides a universal
and efficient inverse design of mixtures with two solid-state
materials, whose ETCs can traverse their full-parameter aniso-
tropic space of thermal conductivity, i.e., their entire 2D-case ETC
set. Each ETC in the copper-PDMS full-parameter anisotropic
space can be conveniently achieved by a topology-optimized
TFC. The ETCs of three typical TFCs are validated numerically and
experimentally. Then, we propose the regionalized scattering
cancellation method and design the topology-optimized thermal
metadevices based on the full-parameter anisotropic space. Their
thermal functionalities are validated numerically and experimen-
tally. As a powerful way to design mixtures with any ETC in the
full-parameter anisotropic space, our work not only shows a
promising strategy to traverse the full-parameter anisotropic
space of thermal conductivity, but also exhibits a profound
advance in conveniently designing thermal metamaterials to
freely manipulate the heat flow, which may trigger the counter-
part exploration methods in other physical fields, like acoustic36,
mechanics37 and electromagnetics26.

METHODS
Multiscale topology optimization
This study employs multiscale topology optimization to design thermal
metamaterials. At the macroscale, the κ distribution of each subarea is
computationally obtained via the regionalized scattering cancellation
method. Then, at the microscale, the TFC with a target κ will be designed
by topology optimization. The density-based topology optimization method
SIMP18,19 (solid isotropic material with penalization) is employed to optimize
TFCs, as it is effective and convenient for obtaining the optimized material
distribution. In finite element analysis (FEA)38, the four-node rectangle
elements are employed and the element thermal conductivity is defined by
the interpolation κðρeÞ¼κPDMS þ ρpeðκcopper � κPDMSÞ, where κcopper and κPDMS
are the thermal conductivities of the conductor copper and insulator PDMS,
respectively. ρe is a design variable, and p is the penalization factor that can
help force the design variable as 0 and 1 in the final optimized structure.
The element thermal conductivity matrix, global thermal conductivity
matrix and global thermal load matrix are respectively expressed as

ke¼κðρeÞ
R
Ve

∂N
∂x

� �T ∂N
∂x

� �þ ∂N
∂y

� �T
∂N
∂y

� �� �
dVe , KðρeÞ ¼

PN
e¼1 keðρeÞ and

Q ¼ PN
e¼1 Nq

0
e , where N is the shape function and Ve is the volume of a

finite element. The thermal conduction governing partial differential
equations is solved by using FEA, i.e., KðρeÞT ¼ Q, where T is the global

temperature matrix. To obtain a structure with the target ETC κilmðl;m ¼
1; 2Þ effectively and conveniently, we set the minimization of the volume
fraction of copper as the objective function C and the relative error between
the desired and target ETC as a constraint function G. Hence, the topology
optimization model can be depicted as

minρe C¼ 1
Vj j
PN
e¼1

ρe

s:t::KðρeÞT ¼ Q

κHlm¼ 1
Vj j
PN
e¼1

ðΔTðlÞe ÞTkeΔTðmÞ
e ; ðl;m ¼ 1; 2Þ

G ¼ g ðκHlm � κilmÞ2
� �

� ε

0 � ρe � 1; e ¼ 1; 2:::N

(6)

where the numerical homogenization method39,40 is adopted to calculate
the ETC tensor κHlm . V is the volume of the TFC. N is the total number of
finite elements. ΔTe ¼ T0e � Te is the temperature difference vector, where
T0e is the nodal temperature vector under the uniform test heat flow q0

e
(e.g., {1, 0}T and
{0, 1}T in the 2D case). Te is the induced nodal temperature field resulting
from the FEA of a TFC, and ε is a small positive number. The heuristic
formulas of the constraint function G are set as

G ¼ ðκH11 � κi11Þ2=aþ ðκH22 � κi22Þ2=bþ ðκH12 � κi12Þ2 þ ðκH21 � κi21Þ2; for κi12 ¼ 0

G ¼ ðκH11 � κi11Þ2=aþ ðκH22 � κi22Þ2=bþ ðκH12 � κi12Þ2=c þ ðκH21 � κi21Þ2=d; for κi12 ≠ 0

(7)

where a, b, c and d are dimensionless and take the absolute values of κ i11,
κi12, κ

i
21 and κi22, respectively. A filter28 is used to avoid checkerboards and

ensure manufacturability in each optimization iteration. The gradient-
based method of moving asymptotes (MMA)41,42 is applied to update the
design variables. The sensitivity analysis of C and G with respect to ρe is
conducted by the adjoint method43. Finally, we will reprocess the structure
obtained by topology optimization to get a smooth one. The designed
TFCs in partitioned areas by the regionalized scattering cancellation
method are then assembled to generate thermal metamaterials, which are
further fabricated by 3D printing.
In topology optimization for obtaining the TFC with a specific ETC, the

design domain is set as 5 mm× 5mm and further meshed into 200 × 200
finite elements. We set that the penalization factor p= 5, the small positive
number ε ¼ 1e�4, and the filter radius of 3 is used. The thermal
conductivities of copper and PDMS are set as 400Wm−1K−1 and
0.16Wm−1K−1, respectively. Schematically, Supplementary Fig. 3 shows
the topology optimization process of some TFCs. The clear structures and
small values of the constraint function G illustrate the effectiveness of the
topology optimization model in Eq. (6).

Numerical simulation
For consistency with topology optimization, the thermal conductivities of
copper and PDMS in the simulation are also set as 400Wm−1K−1 and
0.16Wm−1K−1, respectively. The numerical simulation is performed via the
software COMSOL Multiphysics 5.5. The interface between softwares
COMSOL Multiphysics 5.5 and Matlab R2017a is used to ensure the
consistency of simulated and topological structure models. We conduct the
linear heat flow to test the performance of TFCs and thermal metamaterials.
Then, we calculate the steady-state temperature field distributions.
For numerical simulations of TFCs shown in the inset of Fig. 3m–o, each

structure for simulation is constructed by 10 × 10 periodic arrangements
of the cell obtained by topology optimization. Then, the total size of each
structure for simulation is 50 mm × 50 mm, and the temperatures of the
left and right boundaries of each structure are maintained at 423 K and
273 K, respectively. The upper and lower boundaries of each structure are
thermally insulated. The temperature configuration is sustained during
the entire simulation process, and the simulated temperature fields are
shown in Fig. 3d–f. For comparison, we set a pure plate with the size of
50 mm × 50mm, filled with an anisotropic material. The κ of the
anisotropic material is set as the targeted one of the TFC. The same
simulation boundary conditions are set. Numerically simulated results of
the pure plate are shown in Fig. 3a–c.
For numerical simulations of thermal metamaterials, based on the

specific design domains, thermal metamaterials are generated by shaping
the 10 × 10 periodic arrangement of the TFCs into the desired shape and
then assembling them. We set the background as the high thermal
conductivity silica gel (13 Wm−1K−1). Besides, the left boundary of each
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thermal metadevice is set as the high-temperature wall (i.e., 363 K for
connector and reflector, and 423 K for cloak and concentrator), while the
right boundary (bottom boundary in thermal reflector) is set as the low-
temperature wall (273 K). The other boundaries in the simulation are
thermal insulations. Numerically simulated temperature fields of thermal
metadevices are shown in Figs. 4c and 5d–f. For comparison, we set the
corresponding area as pure anisotropic materials, and the κ of the
anisotropic material is set as the target one (see Supplementary Table 1 for
the κ of corresponding area). The same simulation boundary conditions
are set. Numerically simulated results of thermal metadevices are shown in
Figs. 4b and 5a–c, which are regarded as ideal thermal behaviors for the
results in Figs. 4c and 5d–f.

Experiments
In experiments, the samples of TFCs and thermal metamaterials are
fabricated by the following steps. We first shape the 10 × 10 periodic
arrangement of the TFCs into the desired shape and assemble them. Then
the STL models for 3D printing are generated after stretching 2D porous
copper structures into 5mm thickness. Finally, we fabricate the thermal
metamaterials by 3D printing (seen in Figs. 3g–i, 4d and 5g–i), and fill PDMS
into the copper structure in a mold. After deaerating, heating and trimming,
the samples are ready. The whole thermal metadevices are covered by the
0.1mm thick polyvinylchloride (PVC) and placed on the insulating foam.
For the experimental thermal system of the TFCs, the high temperature

of 423 K is imposed on the left side of the fabricated sample through a
temperature-control heating strip, while the cooling strip is imposed on
the right side, and the temperature of the right side is fixed at 273 K.
For the experimental thermal system of thermal metamaterials, we use

the high thermal conductivity silica gel (13Wm−1K−1) with 5 mm thick as
the background material, which can be cut to the desired shape. To
decrease the effect of thermal resistance, we fill thermally conductive
silicone grease (13 Wm−1K−1) into the seams between the samples and
background material. The high temperature (i.e., 363 K for connector and
reflector, and 423 K for cloak and concentrator) is imposed on the left side
of the system through a temperature-control heating strip, while the
cooling strip is imposed on the right side (bottom side in thermal reflector)
of the system and the temperature is fixed at 273 K.
The temperature fields of all the thermal systems under the above

thermal boundaries are captured by the infrared (IR) camera, and the
temperature values of points on the observation lines are calculated by
the collected data from the IR camera. The final temperature fields of
TFCs and thermal metadevices are respectively shown in Figs. 3j–l, 4e
and 5j–l (see Supplementary Videos 1 and 2 for the recorded and
accelerated experimental dynamic temperature field during the whole
process). The calculated temperature values of points on the observation
lines for TFCs and thermal metadevices are respectively shown in
Figs. 3m–o, 4f and 5m–o.
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