
ARTICLE OPEN

Bayesian optimization with experimental failure for
high-throughput materials growth
Yuki K. Wakabayashi 1,3✉, Takuma Otsuka2,3✉, Yoshiharu Krockenberger1, Hiroshi Sawada2, Yoshitaka Taniyasu1 and
Hideki Yamamoto1

A crucial problem in achieving innovative high-throughput materials growth with machine learning, such as Bayesian optimization
(BO), and automation techniques has been a lack of an appropriate way to handle missing data due to experimental failures. Here,
we propose a BO algorithm that complements the missing data in optimizing materials growth parameters. The proposed method
provides a flexible optimization algorithm that searches a wide multi-dimensional parameter space. We demonstrate the
effectiveness of the method with simulated data as well as in its implementation for actual materials growth, namely machine-
learning-assisted molecular beam epitaxy (ML-MBE) of SrRuO3, which is widely used as a metallic electrode in oxide electronics.
Through the exploitation and exploration in a wide three-dimensional parameter space, while complementing the missing data, we
attained tensile-strained SrRuO3 film with a high residual resistivity ratio of 80.1, the highest among tensile-strained SrRuO3 films
ever reported, in only 35 MBE growth runs.
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INTRODUCTION
Recent advances in materials informatics exploiting machine-
learning techniques, such as Bayesian optimization (BO) and
artificial neural networks, offer an opportunity to accelerate
materials research1–5. In particular, data-driven decision-making
approaches have attained high-throughput in experiments where
machine-learning models are incrementally updated by newly
measured data6–10. BO is a sample-efficient approach for global
optimization11. It has proven itself useful to streamline the
optimization of the materials synthesis conditions for bulk12 and
thin film materials13. Further acceleration of experimental optimiza-
tion by designing Gaussian process (GP) models that leverage prior
knowledge, such as physical models, is also making progress14,15.
Taking thin film growth as an example, the BO algorithm provides
the growth conditions that should be examined in the next growth
run, which enables automatic optimization of the growth
parameters. In combination with automated growth16–18 and
characterization apparatuses, the entire growth process has been
automated. These approaches are collectively referred to as
autonomous materials synthesis19–24.
The missing data problem is a general issue encountered in

materials informatics when analyzing real materials data25,26. Since
missing data are common in various materials databases,
appropriate handling of the missing data is vital for accelerating
materials research. Furthermore, this problem is also critical in
optimizing the conditions for materials growth since it is caused in
the growth parameter space when a target material cannot be
obtained due to growth parameters that are far from optimal. One
possible solution is to restrict the search space of growth
parameters so that the space is guaranteed to exclude experi-
mental failures that lead to missing data. Such restriction may be
empirically carried out based on the experience and intuition of
researchers and/or the information available in databases and the
literature. However, there is no guarantee that the optimal growth
parameters for the target material exist in such a small parameter

space. Therefore, to maximize the benefit of high-throughput
materials growth, including autonomous materials synthesis, it is
essential to search in a wide parameter space while complement-
ing the missing data generated due to unsuccessful growth runs,
e.g., when the designated phase is not formed.
This study proposes a BO method capable of handling missing

data even when a target material has not formed due to growth
parameters that are far from optimal. We equalize the evaluation
value for the missing data to the worst evaluation value available
at that time. This imputation of experimental failure enables us to
search a wide parameter space and avoid unstable parameter
regions. We demonstrate the effectiveness of the BO method with
experimental failure first by using virtual data for simulation, and
subsequently through implementation for real materials growth,
namely machine-learning-assisted molecular beam epitaxy (ML-
MBE) of itinerant ferromagnetic perovskite SrRuO3 thin films,
where we used the residual resistivity ratio (RRR) as the evaluation
value. We achieved the RRR of 80.1, the highest ever reported
among tensile-strained SrRuO3 films, through the exploitation and
exploration in a wide three-dimensional parameter space in only
35 MBE growth runs—the tensile-strained SrRuO3 thin films
achieved by epitaxial strain showed higher Curie temperature
than those of bulk or compressive-strained films27. The proposed
method provides a flexible optimization algorithm for a wide
multi-dimensional parameter space that assumes experimental
failure, and it will enhance the efficiency of high-throughput
materials growth and autonomous materials growth.

RESULTS AND DISCUSSION
Simulation with virtual data
Our parameter search problem is described as follows. Given a
multidimensional parameter denoted by vector x, an experimental
trial returns its evaluation y. In materials growth optimization,
x and y represent growth parameters and physical property that
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evaluate grown materials, respectively. Examples of physical
properties include electrical resistance, X-ray diffraction intensity,
and so on. The choice of evaluation metrics should be determined
by the purpose of the study. We assume an additive observation
noise y = S(x) + e, where e follows the normal distribution as
e � N 0; σ2ð Þ. This noise in y corresponds to experimental
fluctuations of the physical property currently under focus in
materials prepared nominally under the same conditions. Here,
the relationship between the parameter and evaluation, denoted
by function S(⋅), is unknown a-priori. Our goal is to find x* such
that its corresponding evaluation S(x*) is maximized. Since the
underlying S is unknown, we sequentially carry out experimental
trials with a parameter that is likely to return a better evaluation
given past observations. That is, we choose a parameter xn such
that its result yn � S xnð Þ is predicted to be high given the data
observed so far x1; y1ð Þ; ¼ ; xn�1; yn�1ð Þf g, where xn and yn are
nth parameter and nth evaluation values, respectively. Bayesian
optimization is adopted for this sequential parameter search (see
the Methods section ‘Bayesian optimization with experimental
failure’ for details).
Our technical challenge is how to handle experimental failures.

Specifically, evaluation yn may not always be returned for a
specified parameter xn. To meet this challenge, we need to satisfy
two requirements. First, the optimization procedure should avoid
subsequent failures if the target material has not been formed
under certain synthesis conditions. Second, even if a certain
parameter xn turns out to be a failure, the prediction model
should be updated. The lack of evaluation yn provides some
information. For example, if xn led to a failure, parameters in a
distance from the failed xn should be favored because xn is far
from optimal parameter region or xn is a condition in which
another undesired material is stabilized. Thus, a failure can guide
the sequential optimization by encouraging the exploration of
other parametric regions.
This paper seeks two approaches to cope with experimental

failures. The first approach is called the floor padding trick: when
the experiment turns out a failure given parameter xn, the floor
padding trick uses the worst value observed so far, namely the yn
value is complemented by min1�i<n yi . This simple trick provides
the search algorithm with information that the attempted
parameter xn worked negatively. At the same time, this method
is adaptive and automatic. The past experiments determine how
bad a failure should count; in contrast, a naïve alternative is to give
a predetermined constant value to failures. This may require
careful tuning of the padding constant. The floor padding trick
fulfills both requirements discussed above: the worst evaluation
helps avoid parameters near the failure and updates the
prediction model as well. The other approach is the binary
classifier of failures, which, in addition to a prediction model for
the evaluation value yn, we employ to predict whether a given
parameter xn leads to a failure or not. The binary classifier meets
the first requirement to avoid subsequent failures. Nevertheless,

the second requirement is yet to be addressed since the binary
classifier may not affect the evaluation prediction when we
employ distinct models. Thus, the floor padding or naïve constant
padding is combined with the binary classifier to update the
prediction model accordingly.
We designed several methods by incorporating the floor

padding trick and the binary classifier. These methods are
compared using a simulated function, where simulation means
the evaluation is calculated by artificial functions (see the Methods
section ‘Simulated functions’ for details). They are designed to
investigate the efficiency of the various combination of the floor
padding trick (abbreviated as ‘F’) and the binary classifier
(abbreviated as ‘B’), as summarized in Table 1. When F is active,
the method uses the floor padding for experimental failures, while
the baseline uses a predetermined constant value without
F. Similarly, when B is active, the method constructs a binary
classifier28 to predict failures in addition to the prediction model
of evaluation, both of which are based on the Gaussian process29

(see the Methods section ‘Bayesian optimization with experi-
mental failure’ for details). In this work, each method searched the
three types of simulated parameter spaces (Fig. 1) until 100
observations were queried. This search process was repeated five
times to account for randomness. For each process, five search
points were randomly chosen as the initial observations. The
observation noise was set to σ2= 0.005.
Figure 2 shows the parameter search results for the Circle

function. Each curve indicates the best evaluation value averaged
over five runs as a function of the number of observations,
whereas the shaded areas represent the best and worst evaluation
among the five runs for each method. A curve that rises with
fewer observations indicates a better search algorithm since it
requires fewer resources before reaching a high evaluation. A
vertically narrow shaded area means that the method performs
robustly against randomness in the search process, such as the
initial choice of parameters and observation noise. First, we
observe that the choice of a constant value to replace failed
evaluations affects the curves in Fig. 2b. In particular, the slope of

Table 1. Compared methods.

Floor padding Binary classifier

Baseline

F ✓

B ✓

FB ✓ ✓

The floor padding trick replaces missing evaluation with the worst value
adaptively. The binary classifier takes into account the probability of
experimental failure.
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Fig. 1 Visualization of functions used in the simulated experiments. Search spaces are two-dimensional [−1,1] boxes for the Circle (a), Hole
(b) and Softplus (c) functions. White areas indicate experimental failure regions.
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the curves at the early stage is sensitive to the choice of the
constant; for example, baseline @0 shows a quick improvement at
first while @−1 gives slower improvements. Appropriate tuning of
this value may be difficult in general and dependent on the
experience and knowledge of individual researchers. As shown in
Fig. 2a, the floor padding trick of method F demonstrates an initial
improvement as quick as @0 without careful tuning of the
constant. With that said, the final average evaluation of F is
suboptimal compared to the best @−1. Second, method FB with
the floor padding and binary classifier combined results in slower
improvements of evaluation (Fig. 2a). The binary classifier
alleviates the sensitivity to the choice of the constant value for
handling failures in that the discrepancy between the curves in
Fig. 2c is suppressed compared with that in Fig. 2b. However, the
initial improvements in the evaluation of B@0 and B@−1 are
inferior to that of F (Fig. 2a), and the final evaluation is also
exceeded by @−1 (Fig. 2b).
Figure 3 shows the results for the Hole function. The overall

tendency of the two tricks is similar to that of Circle: the floor
padding leads to quick improvements of the evaluation in the
early part of the search process (Fig. 3a). We observe sensitivity to
the choice of padding constant in Fig. 3b: the baseline of @−1
quickly improved the evaluation and reached a high evaluation on
average at the end, whereas @0 struggled to find good
parameters. Note that a favorable choice of the padding constant
depends on the function: baseline @0 showed quicker improve-
ments for the Circle function (Fig. 2b), while @−1 performed
better for the Hole function (Fig. 3b). Method F with the floor
padding trick gave competitive curves at early stages for both

functions compared to the baseline methods. Another similarity to
the Circle result is that method B shows less sensitivity to the
choice of constant in Fig. 3c and, at the same time, slower
improvement compared to method F in Fig. 3a or @−1 in Fig. 3b
with a well-chosen constant. Method FB, the combination of the
floor padding and binary classifier, was comparable to method F,
as shown in Fig. 3a.
Figure 4 shows the optimization result for the Softplus function,

the maximum of which exists on the boundary of failed region.
Despite the difficulty in the location of maximum point, all the
methods demonstrated steady improvements during the search
process. However, methods with the binary classifier, such as FB,
are sometimes stuck in a suboptimal value, as suggested by the
wider shade in Fig. 4a. One of the reasons is that the classifier
made the exploration conservative: the proportion of failed
observations of method F was 11.2% in the five trials, whereas
that of FB was 7.4%. This indicates FB tried to avoid failures and
missed the maximum at the boundary. A comparison of F, @0, and
@−1 showed the efficacy of method F without an effort of the
choice of the padding value.
Our simulation experiments confirmed the efficacy of the floor

padding: this trick is beneficial for initial quick search progress and
sidesteps the difficult choice of padding constants. As for the
binary classifier, this approach also alleviates the sensitivity to the
choice of constant, though the search progress can be slowed.
Furthermore, combining it with the floor padding was not as
effective as expected. Thus, we adopted method F for the ML-MBE
growth of SrRuO3 films to make the most of limited resources for
experiments.
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Fig. 2 Parameter search results for the Circle function. Best evaluation values averaged over five runs as a function of the number of
observations. Shaded areas indicate the range of the best and worst values of five runs. a Methods F and FB that adaptively replace failed
evaluations by the floor padding. b Baseline methods that use a constant value for the failed evaluations. Method @0 used the fixed value of 0
when the experiment failed, whereas @−1 used −1. c Methods with classifier while padding a constant to failures. B@0 used a value of 0 as
the evaluation when the experiment failed, whereas B@−1 used −1.
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Fig. 3 Parameter search results for the Hole function. Best evaluation values averaged over five runs as a function of the number of
observations. Shaded areas indicate the range of the best and worst values of five runs. a Methods F and FB that adaptively replace failed
evaluations by the floor padding. b Baseline methods that use a constant value for the failed evaluations. Method @0 used the fixed value of 0
when the experiment failed, whereas @−1 used −1. c Methods with classifier while padding a constant to failures. B@0 used a value of 0 as
the evaluation when the experiment failed, whereas B@−1 used −1.
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Application for ML-MBE of SrRuO3 films
To demonstrate the applicability and effectiveness of the BO
method with experimental failure to actual growth of materials,
we applied method F to our recently developed ML-MBE13 of
SrRuO3 films on DyScO3 (110) substrates. The itinerant 4d
ferromagnetic perovskite SrRuO3 is one of the most promising
materials for oxide electronics owing to its high metallic
conduction, chemical stability, compatibility with other perovskite
oxides, and ferromagnetism with strong uniaxial magnetic
anisotropy30–39. In addition, the recent observation of the Weyl
fermions in SrRuO3 points to this material as an appropriate
platform to integrate two emerging fields: topology in condensed
matter and oxide electronics40–44. The RRR value, defined as the
ratio of resistivity at 300 K [ρ(300 K)] to that at 4 K [ρ(4 K)], is a good
measure of the purity of metallic systems, and accordingly, the
quality of single-crystalline SrRuO3 thin films35,39,45–47. For practical
applications of SrRuO3, such as electrodes in dynamic random
access memory application, high-quality SrRuO3 films are neces-
sary48,49. In terms of physical interest, high-quality SrRuO3 films are
also indispensable because only SrRuO3 films with high RRR values
above 20 have enabled the observation of quantum transport of
Weyl fermions41,42. Thus, we adopted RRR as the evaluation value.
Figure 5 shows the flow of the ML-MBE growth using the BO

with experimental failure (see Methods section ‘ML-MBE growth
and sample characterizations’ for details). For the growth of high-
quality SrRuO3, fine tuning of the growth conditions (the supplied
Ru/Sr flux ratio, growth temperature, and O3-nozzle-to-substrate
distance) is important13,49. In a previous study13, to simplify the
intricate search space of entangled growth conditions, we ran
the BO for a single growth condition while keeping the other
conditions fixed. In addition, to avoid experimental failures, the
search range was reduced to the growth parameter range within
which the SrRuO3 phase had formed. In contrast, in the present
study, we ran the BO algorithm in the three-dimensional space
directly. Following the F method, when the SrRuO3 phase had not
formed, we defined the RRR value of those samples to be the
worst experimental RRR value by that time, instead of reducing
the search range. The search ranges for the Ru flux rate,
growth temperature, and O3-nozzle-to-substrate distance were
0.25–0.50 Å/s, 700–900 °C, and 10–50mm, respectively. Here, the
Ru/Sr ratio is determined by the Ru flux ratio as the Sr flux rate
was fixed at 0.98 Å/s. The O3-nozzle-to-substrate distance is a
parameter for oxidation strength.
Figure 6 shows how the BO algorithm predicts RRR values with

unseen parameter configurations and acquires new data points.
The process starts with five random initial growth parameters
(Fig. 6a) and gains experimental RRR values for the updated GPR
model with 18 (Fig. 6b) and 37 (Fig. 6c) samples. Two-dimensional

plots of the predicted RRR, standard deviation s, and EI values at
the O3-nozzle-to-substrate distance, at which the highest EI value
was obtained, are shown in the lower panels (Fig. 6d–l). Among the
five random initial growth parameters, the SrRuO3 phase had not
formed at the Ru flux rate= 0.47 Å/s, growth temperature= 832 °C,
and the O3-nozzle-to-substrate distance= 25mm (Fig. 6a). Thus,
we defined the RRR value of this sample to be the worst
experimental one at that time (13.1). This imputation of experi-
mental failure enabled direct search of the wide three-dimensional
parameter space. The prediction results from the five initial
samples yielded the highest EI at a O3 nozzle-substrate distance
1.5 mm larger than that for the highest experimental RRR value at
that time (Fig. 6a). The RRR obtained at the next set of growth
parameters (RRR= 35) was slightly larger than the highest RRR
value of the five initial samples (RRR= 33.4). The region with
relatively small s of the predicted RRR became larger as the
number of experimental samples increased from five to 37
(Fig. 6g–i), indicating that the accuracy of the prediction had
increased. The small s values result in lower EI values (Fig. 6j–l). This
suggests that we have only a limited chance to improve the RRR
value by further modifying the growth parameters. Through this
exploitation and exploration of the materials growth data with
experimental failure in the three-dimensional parameter space, the
highest RRR value increased and reached over 80 in only 35 MBE
growth runs (Fig. 7). The highest experimental RRR of 80.1, was
achieved at the Ru flux= 0.365 Å/s, growth temperature= 826 °C,
and O3-nozzle-to-substrate distance= 22mm. This is the highest
RRR ever reported among tensile-strained SrRuO3 films27,35. The
achievement of the target material with the highest conductivity in
such a small number of optimizations demonstrates the effective-
ness of this method utilizing the floor padding trick for high-
throughput materials growth.
In summary, we presented a BO algorithm which complements

the missing data. We designed several methods by combining the
floor padding trick and the binary classifier, and compared them
by simulation experiments. We found the efficacy of the floor
padding trick, while the binary classifier decelerates the search in
the early stages. The imputation of missing data to the worst
experimental RRR value at that time allows us to search a wide
parameter space directly and will enhance the time and cost
efficiency of materials growth and autonomous materials synth-
esis. With regard to the growth parameter optimization for the
growth of high-quality tensile-strained SrRuO3 thin films, the
experimental RRR of 80.1 was achieved in only 35 ML-MBE runs
with the floor padding trick. The proposed method, providing a
flexible optimization algorithm for a wide multi-dimensional
parameter space that assumes experimental failure, will play an
essential role in the growth of various materials.
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Fig. 4 Parameter search results for the Softplus function. Best evaluation values averaged over five runs as a function of the number of
observations. Shaded areas indicate the range of the best and worst values of five runs. a Methods F and FB that adaptively replace failed
evaluations by the floor padding. b Baseline methods that use a constant value for the failed evaluations. Method @0 used the fixed value of 0
when the experiment failed, whereas @−1 used −1. c Methods with classifier while padding a constant to failures. B@0 used a value of 0 as
the evaluation when the experiment failed, whereas B@−1 used −1.
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METHODS
Bayesian optimization with experimental failure
Here, we describe our parameter search method based on Bayesian
optimization. Our notation uses italic characters to denote scalar values,
bold lower-case symbols for vectors, and bold upper-case characters for
matrices. Supplementary Fig. 1 outlines our method. Let xn,d denote the
dth element of the parameter in the nth trial. That is, the D-dimensional
parameter is written as a column vector xn ¼ xn;1; ¼ ; xn;D

� �>
, where �> is

the transpose operator. We assume the search space is bounded; namely,
every element has its minimum and maximum values, xd and xd ,
respectively. The value of nth evaluation yn is a real number when the
experiment is successful, but is denoted as ϕ otherwise. In our
implementation, ϕ= NaN (not a number) for experimental failure.
The parameter is first normalized as

~xn;d ¼ xn;d � xd
xd � xd

(1)

such that all elements in exn fall between 0 and 1. This facilitates the
training of the Gaussian process used as the prediction model. The floor
padding trick preprocesses the evaluations as follows. Let y1; ¼ ; yn�1 be
the observed evaluations so far. The failed evaluations are replaced with
the worst successful value as:

~yn0 ¼
yn0 if yn0 ≠ϕ;

min
1�i<n

~yi if yn0 ¼ ϕ;

(
(2)

for n0 ¼ 1; ¼ ; n� 1. If y1= ϕ, then ~y1 ¼ 0 or any other reasonable guess
of low evaluation. Note that the padded value may vary later; for example,

when we have observed y1 ¼ 10; y2 ¼ ϕ; y3 ¼ 15, ~y2 is padded with the
worst observed value 10. If we later obtain the observations as
y1 ¼ 10; y2 ¼ ϕ; y3 ¼ 15; y4 ¼ 5, then we use ~y2 ¼ 5 to determine the
fifth experimental condition.
We start the search by trying a random initial point x1 to obtain the first

evaluation y1. We may optionally start with multiple initial points
depending on the budget for the total number of experiments. Then,
we iterate the update of the prediction model, decide a parameter for the
next experiment, and then receive its evaluation through the actual
experimental process.
Given the preprocessed n−1 observations Dn�1 :¼ exi ; ~yif gn�1

i¼1 so far, we
fit the Gaussian process to predict the evaluation of the unexplored
parameter region and to decide which parameter to try in the next step.
The predictive evaluation ~y0 at normalized parameter ex0 given Dn−1 is
specified as the following normal distribution50: p ~y0jex0;Dn�1ð Þ ¼
N m ex0ð Þ; s2 ex0ð Þð Þ, where the mean and variance are calculated as follows.

m ex0ð Þ ¼ kn�1 ex0ð Þ> σ2Iþ Kn�1
� ��1eyn�1 (3)

s2 ex0ð Þ ¼ σ2 þ k ex0;ex0ð Þ � kn�1 ex0ð Þ> σ2Iþ Kn�1
� ��1

kn�1 ex0ð Þ (4)

Here, k ex0;ex0ð Þ is the kernel function, kn�1 ex0ð Þ is the kernel vector, Kn−1 is
the kernel matrix, ~yn�1 ¼ ~y1; ¼ ; ~yn�1½ �>, and I is an identity matrix of
appropriate size. The mean m ex0ð Þ and standard deviation s ex0ð Þ of the
predictive distribution of Eqs. (3) and (4) are derived through matrix and
vector operations. The kernel vector is defined with the kernel function
k(⋅,⋅): kn�1 ex0ð Þ ¼ k ex0;ex1ð Þ; ¼ ; k ex0;exn�1ð Þ½ �> . The ith row and jth column of
the matrix Kn−1 is defined as kij ¼ k exi ;exj� �

. The kernel represents the

Heater
Substrate

O3

e-beam
evaporators

EIES

Sr
Ru

Vacuum
chamber

O3-nozzle-to-substrate
distance

a MBE growth

b RRR measurements

Growth
No.

Temp.
  (°C)

Ozone

[mm]

Ru flux
  [Å/s]

RRR

1 709 42 0.42 13.1

2 832 14 0.45 33.4

3 839 42 0.39 13.6

c Update the data set
d Select a next growth condition

by BO with experimental failure

ML-MBE

160

120

80

40

0

R
es

is
tiv

ity
 (µ

•c
m

)

3002001000

Temperature (K)

RRR = 80.1

900

850

800

750

700

Te
m

pe
ra

tu
re

 (°
C

)

0.500.450.400.350.300.25

Ru flux ( /s)

0.03

0.02

0.01

0.00

EI

18 sample

4 832 25 0.47 NaN

nozzle

Fig. 5 Flow of ML-MBE growth using BO with experimental failure. a Schematic illustration of our multisource oxide MBE setup. EIES:
Electron Impact Emission Spectroscopy. b Resistivity vs. the temperature curve of the SrRuO3/DyScO3 film with a RRR of 80.1, as an example.
c Growth conditions for four samples, as an example. d Two-dimensional plots of EI values at the O3-nozzle-to-substrate distance of 22.5 mm
obtained from the collected data for 18 samples, as an example.

Y.K. Wakabayashi et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022) 180



similarity between the two parameters. When exi and exj are close to each
other, kij amounts to a large value, which leads to a high correlation
between ~yi and ~yj . For Bayesian optimization, the radial basis function (RBF)
kernel and Matérn 5/2 kernel are popular choices. When the distance is

given by Δij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

d¼1
exi;d�exj;d� �2

sd

r
, the RBF kernel is defined as

kij ¼ Aexp �Δ2
ij

� �
, and Matérn 5/2 kernel is kij ¼ A 1þ ffiffiffi

5
p

Δij þ 5
3Δ

2
ij

� �
exp � ffiffiffi

5
p

Δij
� �

. Here, A > 0 and sd > 0 are hyperparameters of the kernel and
usually tuned to maximize the likelihood of observation Dn�1

29.
Once the prediction model is constructed, we will choose a parameter

that maximizes the possibility to produce a high evaluation value in the
next experiment. We use the expected improvement (EI) criterion. EI is
defined as follows:

aEI ex0ð Þ ¼ E
p ~y0 jex0 ;Dn�1

� � ey0 � yn�1ð ÞI~y0�yn�1

� �
(5)

where I~y0�yn�1
is the indicator function, which equals 1 when ~y0 � yn�1 and

0 otherwise, and yn�1 ¼ max1�i<n ~yn is the best evaluation so far. The
intuition of EI is that it measures the expected gain over the best-observed

evaluation. Thus, our next parameter is the maximizer of aEI ex0ð Þ where the
search space is 0 � ~x0d � 1 for all d. The floor padding trick can also be
combined with other acquisition functions in the literature other than the
expected improvement (see Supplementary Note ‘Floor padding trick with
other acquisition function’ for details).
Supplementary Fig. 2 shows the effect of the floor padding trick

compared with an approach that ignores failed observations. By replacing
the failure with the worst evaluation, the floor padding trick reduces the
predicted mean (Supplementary Fig. 2a and b) and uncertainty in the
prediction (Supplementary Fig. 2c and d) around the failed observations
‘−’. As a result, the floor padding trick led the search inward to avoid past
failures (Supplementary Fig. 2f). In contrast, the lack of compensation for
failures triggered a search outward (Supplementary Fig. 2e) due to the
high prediction mean and moderate standard deviation. These results
indicate that the prediction model should consider the failure information
since the search method would repeatedly recommend parameters in
failed regions if the upcoming failure were ignored. Thus, the floor padding
trick or at least padding with a sufficiently small constant is necessary to
cope with experimental failures.
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The EI function is modified when the binary classifier is adopted to
predict the experimental failures. The modified criterion takes the form

aEI;B ex0ð Þ ¼ aEI ex0ð Þp y0≠ϕjex0;Dn�1ð Þ (6)

This is the product of the original EI and the predicted probability of ex0
not resulting in a failure ϕ. By assuming the occurrence of experimental
failure is independent from the evaluation value, this modified EI amounts
to the expectation of the experiment being successful with its gain in the
evaluation from the best one obtained so far. The assumption is justified
by obtaining a distinct classifier and evaluation prediction model.
This formulation is an extension of the constrained BO28, where the

objective is given as

max
x

S xð Þ s:t:C xð Þ � c (7)

where C(x) ≤ c is a constraint. The constraint function C(x) is unknown but
observable: an observation consists of (x, y, z) with y= S(x) and z= C(x)
(the observation noise was omitted for clarity). Two Gaussian processes
are considered to predict y' and z' for unseen x'. The resulting EI of the
constrained BO28 is the product of expected improvement in y' and the
probability of z' ≤ c.
The binary classifier is the replacement of the constraint part. Instead of

handling the continuous variable z, the classifier fits with the binary
outcome: y= ϕ or y ≠ ϕ. We can still use the Gaussian process with the
same kernel explained above, while variational inference is employed for
the learning to approximate the likelihood of binary observations29.
Supplementary Fig. 3 shows how the EI function is modified. The
probability of success p y0≠ϕjex0;Dn�1ð Þ is lowered by failed observations
(Supplementary Fig. 3a). This directly discourages the exploration of failed
regions in subsequent trials. Because of the approximate variational
inference, the probability estimated by the binary classifier is not sharp;
that is, it is not as high as 1 around successful observations and not as low
as 0 around failures. This attenuates the variation in the EI function, as
shown in Supplementary Fig. 3b and c.

Simulated functions
This section explains the setup of functions used in the simulation
experiments. Figure 1 depicts three functions. The search space is two-
dimensional between −1 and 1 for all functions. The Circle and Softplus
function fail when x21 þ x22 > 1; whereas the Hole function fails when |x1| < L
and |x2| < L, or x21 þ x22 > 1. With a slight abuse of notation, subscript xd
means the dth element of the parameter by omitting the index of
observation. Hole length is set as L ¼

ffiffiffiffiffiffiffi
π�2

p
2 such that the area of failure is

half of the search space. The Circle function is defined to have four peaks:

SCircle xð Þ ¼ 1
ZCircle

3
2
exp �G0 xð Þð Þ þ

X3
i¼1

exp �Gi xð Þð Þ
 !

(8)

where Gi xð Þ ¼P2
d¼1 aid xd � cidj j with center

c0 ¼ 0:7; 0½ �>; c1 ¼ 0; 0:7½ �>; c2 ¼ �0:7; 0½ �>; c3 ¼ 0;�0:7½ �> (9)

and scale being

a0 ¼ 5; 1½ �>; a1 ¼ 1; 5½ �>; a2 ¼ 5; 1½ �>; a3 ¼ 1; 5½ �> (10)

The peaks are connected with ridges, which may facilitate finding the
top by tracing the ridges. Function SCircle (x) is normalized by
ZCircle= 1.53 such that the maximum of the function is 1 at x ¼ 0:7; 0½ �> .
The Hole function is similarly defined but the ridges are tilted:

SHole xð Þ ¼ 1
ZHole

3
2
exp �H0 xð Þð Þ þ

X3
i¼1

exp �Hi xð Þð Þ
 !

(11)

where Hi xð Þ ¼P2
d¼1 aid zidj j with rotated vector

zi ¼ R x� c0i
� �

;withR ¼ 1ffiffiffi
2

p 1 �1

1 1

	 

(12)

Center coordinates were slightly moved to avoid touching the failure
boundary:

c00 ¼ 0:75; 0½ �>; c01 ¼ 0; 0:75½ �>; c02 ¼ �0:75; 0½ �>; c03 ¼ 0;�0:75½ �> (13)

whereas scale ai was the same as that used for the Circle function. Since
the peaks are disconnected, the parameter search may add some difficulty.
Function SHole (x) is normalized by ZHole= 1.85 such that the maximum of
the function is 1 at x ¼ 0:75; 0½ �>. We investigate whether replacing failed
observations with low values may affect the optimization when the
optimum is located at the boundary between successful and failed regions.
To this end, we used the following Softplus function:

Ssp xð Þ ¼ 1
Zsp

ln 1þ ex1þx2ð Þ (14)

where Zsp= 1.63 is used as a normalization factor such that the maximum

of the function is 1 at x ¼ 1ffiffi
2

p ; 1ffiffi
2

p
h i>

. As shown in Fig. 1c, the optimal point

x ¼ 1ffiffi
2

p ; 1ffiffi
2

p
h i>

lies at the boundary between successful and failed regions.

Impact of the padding for failed observations on prediction
Our method replaces failed observations with inferior values, that is, small
values for maximization problems, to construct the prediction model.
While this may distort the fitting of the prediction model to the shape of
the objective function, we empirically confirm that the distorted
prediction is viable for optimization. For example, Supplementary Fig. 4
depicts the predicted mean of the Hole function given 100 observations.
These 100 observations were collected via the sequential procedure of the
BO with respective padding methods: F, @0, and @−1. As a whole, the
feature of having four peaks is well reproduced by the incremental choice
of observations, which is critical for the maximization problem. In contrast,
the function shape is poorly reproduced in low-value regions. This is partly
due to the replacement of failure values and partly because such areas are
less important for maximization, leading to a sparse distribution of
observations.

ML-MBE growth and sample characterizations
Epitaxial tensile-strained SRO films with a thickness of 60 nm were grown
on DyScO3 (DSO) (110) substrates in a custom-designed molecular beam
epitaxy (MBE) system with multiple e-beam evaporators (Fig. 5a). Rare-
earth scandate DyScO3 has a GdFeO3 structure, a distorted perovskite
structure with the (110) face corresponding to the pseudocubic (001)
face27. Since the in-plane lattice parameter for the pseudocubic (001) face
of DyScO3 (3.944 Å) is larger than that of bulk SrRuO3 (3.93 Å), the SrRuO3

films epitaxially grown on the DyScO3 substrate is tensile strained. Detailed
information about the MBE system is described elsewhere51–53. We
precisely controlled the elemental fluxes even for elements with high
melting points, e.g., Ru (2,250 °C), by monitoring the flux rates with an
electron-impact-emission-spectroscopy sensor and feeding the results
back to the power supplies for the e-beam evaporators. The oxidation
during growth was carried out with ozone (O3) gas (~15% O3+ 85% O2)
introduced through an alumina nozzle pointed at the substrate. For the
high-quality SrRuO3 growth, fine tuning of the growth conditions (the ratio
of the Ru flux to the Sr flux, growth temperature, and local ozone pressure
at the growth surface) is important13,49. To systematically change the Ru
flux ratio to the Sr flux, we changed the Ru flux while keeping the Sr flux at
0.98 Å/s. The growth temperature was controlled by the heater shown in
Fig. 5a. We can adjust the local ozone pressure at the growth surface by
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3020100

Growth number
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 RRR
 NaN

Fig. 7 ML-MBE optimization results. Highest experimental RRR and
RRR values plotted as a function of the growth number. The purple
crosses indicate the NaN points at which the SrRuO3 phase was not
obtained.
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changing the O3-nozzle-to-substrate distance while keeping the flow rate
of O3 gas at ~2 sccm. We ran the BO algorithm in the three-dimensional
space. The search ranges for the Ru flux rate, growth temperature, and O3-
nozzle-to-substrate distance were 0.25–0.50 Å/s, from 700–900 °C, and
10–50mm, respectively. We searched equally spaced grid points for each
parameter. The number and corresponding intervals of the respective
quantities were 50 (0.005 Å/s interval), 100 (2 °C interval), and 80 (0.5 mm
interval). The experimental errors of the actual values from the nominal
values for the respective growth parameters are typically ±0.005 Å/s, ±1 °C,
and ±0.2 mm, respectively. Since the three-dimensional parameter space
consisted of 400,000 (50 × 100 × 80) points, performing a trial for the entire
space in a point-by-point manner was unrealistic, as only several runs can
be carried out per day with a typical MBE system. The crystal structure of
the films was monitored by in-situ reflection high-energy electron
diffraction (RHEED) after the growth. When diffractions from the SrRuO3

phase were indiscernible and/or diffractions from SrO or RuO2 precipitates
(impurity phases) appeared, we defined the RRR value of those samples to
be the worst experimental RRR value by that time. To determine the RRR of
the samples, their electrical resistivity was measured using a standard four-
probe method with Ag electrodes deposited on the SrRuO3 surface
without any additional processing. The distance between the two voltage
electrodes was 2mm.
Here, a black-box function RRR= S(x) is the target function specific to

our SrRuO3 films, and x represents the growth parameters (Ru flux rate,
growth temperature, and O3-nozzle-to-substrate distance). We used a
data set Dn�1 :¼ exi ; ~yif gn�1

i¼1 (Fig. 5c) obtained from past n−1 MBE
growths and RRR measurements (Fig. 5b) of SrRuO3 films to construct a
model to predict the value of S(x) at an unseen x. To this end, we use
Gaussian process regression (GPR) to estimate the mean m and standard
deviation s at an arbitrary parameter value x (see the Methods section
‘Bayesian optimization with experimental failure’ for details). Specifically,
GPR predicts the value of S(x) as a Gaussian-distributed variable
N m xð Þ; s2 xð Þð Þ, where m and s depend on x and n−1 observations. In
short, m(x) represents the expected value of RRR and s(x) represents the
uncertainty of RRR at x. To consider the inherent noise in the RRR of
SrRuO3 films grown under nominally the same conditions, the variance of
the observation noise σ2 of the GPR model was set to 0.02 or 0.002. In our
implementation, we used the same kernel function (Matérn 5/2 kernel)
used in materials science8 and the BO literature11 since it is good at
fitting functions with steep gradients. We iterated the routine after the
initial MBE growth with five random initial growth parameters and RRR
measurements. First, GPR was updated using the data set at the time
(Fig. 5c). Subsequently, to assign the value of the growth parameter in
the next run, we calculated the EI54 (Fig. 5d).
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