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Interpretable learning of voltage for electrode design
of multivalent metal-ion batteries
Xiuying Zhang 1,2, Jun Zhou3, Jing Lu2,4✉ and Lei Shen 5✉

Deep learning (DL) has indeed emerged as a powerful tool for rapidly and accurately predicting materials properties from big data,
such as the design of current commercial Li-ion batteries. However, its practical utility for multivalent metal-ion batteries (MIBs), the
most promising future solution of large-scale energy storage, is limited due to scarce MIB data availability and poor DL model
interpretability. Here, we develop an interpretable DL model as an effective and accurate method for learning electrode voltages of
multivalent MIBs (divalent magnesium, calcium, zinc, and trivalent aluminum) at small dataset limits (150–500). Using the
experimental results as validation, our model is much more accurate than machine-learning models, which usually are better than
DL in the small dataset regime. Besides the high accuracy, our feature-engineering-free DL model is explainable, which
automatically extracts the atom covalent radius as the most important feature for the voltage learning by visualizing vectors from
the layers of the neural network. The presented model potentially accelerates the design and optimization of multivalent MIB
materials with fewer data and less domain-knowledge restriction and is implemented into a publicly available online tool kit in
http://batteries.2dmatpedia.org/ for the battery community.
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INTRODUCTION
Lithium-ion batteries (LIBs) have shown great success as the major
power source for transportation and as an energy storage solution
for grid applications1–3. Nowadays, the relatively low-energy
density and the scarcity of Li raw materials are the main issues
of LIBs for large-scale applications4,5. These issues call for high
density, cheaper and sustainable alternatives to present LIB
technologies. Multivalent metal-ion batteries (MIBs), including
Mg2+, Ca2+, Zn2+, Al3+, have the potential to meet this purpose,
due to the relatively high abundance of these elements in the
Earth’s crust and high-energy density6.
Within the arena of big data, deep learning (DL) has emerged as

a game-changing technique very recently, enabling numerous
scientific applications in chemistry7, mathematics8, physics9, and
biology10. In materials science, several DL models11–13 have also
been developed, such as AtomSets14, SchNet15, Material Optimal
Descriptor Network (MODNet)16, Compositionally Restricted
Attention-Based Network (CrabNet)17,18, Crystal Graph Convolu-
tional Neural Network (CGCNN)19–24. They have achieved great
success in the applications, for instance, identifying degradation
patterns of LIBs25, designing solid-state LIBs26, learning properties
from multi-fidelity data27, discovering stable lead-free hybrid
organic–inorganic perovskites28, screening 2D ferromagnets29,
discovering and designing electrocatalysts30,31, mapping the
crystal-structure phase32, and designing material microstruc-
tures33. It has been widely demonstrated that DL has much lower
model errors than conventional machine-learning (ML) models,
such as support vector regression (SVR) and kernel ridge
regression (KRR), when dealing with big data34. For example, the
reported mean absolute error (MAE) of the deep-neural network
(DNN) model is lower than conventional ML in predicting the
volume change and voltage of LIB electrodes35,36. However, DL

still cannot solve many problems in the field of batteries,
especially the MIBs beyond lithium, due to insufficient data
available. For example, Joshi et al. predicted the voltages of Na-ion
battery electrodes with a DNN model, but MAE is much higher
than that of LIBs35. Moreover, due to being highly complex, DNN
takes a long training time and is not explainable, which may not
outperform shallow learning in solving some battery problems,
especially for the design of batteries, in which explanations are in
great demand. Therefore, the high-performance and interpretable
DL model is of high need for predicting a variety of properties of
multivalent MIBs from small data and then designing high-
performing multivalent MIBs.
In this work, we take the voltage of multivalent MIBs as an

example to demonstrate how an interpretable deep transfer-
learning (TL) model, (Fig. 1) can be used for exploration and
design of electrode materials for battery applications, addressing
the conventional ML issues (low prediction accuracy and heavy
feature-engineering dependence) and DL limitations (low inter-
pretability and high big-data demand). It is worth noting that
high-voltage electrode materials can enhance the voltage plat-
form of batteries, which is the key component for high-energy
density MIBs and is generally used in the performance prediction
of materials of battery electrodes35–37. We firstly train our DL
models with relatively large data of the electrode voltage of LIBs
(2000+ data) from Materials Project (MP)10,38. It is found that MAE
of LIBs is only 0.32 V. Nevertheless, MAE of multivalent MIBs is
significantly high (up to 2.14 V) using the same method because of
small datasets of multivalent MIBs (as low as 149). We, thus,
integrate the TL technique39, widely used to address less data
restriction40,41, into our DL models. It greatly reduces the MAEs for
Zn-, Ca-, Mg-, and Al-ion batteries, for example, from 2.14 V down
to only 0.47 V for the Zn-ion battery. To interpret our DL models,
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we perform the visualization of the similarity between the
elements and local environments in different layers of the deep-
neural network. The DL models can automatically hierarchically
extract key features and explain the different contributions of
element groups in the periodic table to the corresponding
electrode voltages (Supplementary Fig. 1). Our results show that
the highly accurate and interpretable deep model could accel-
erate the discovery and design of electrode materials for
multivalent MIBs and the development of the large-scale battery
industry.

RESULTS AND DISCUSSION
Deep learning of Li-ion batteries
In all, 2190 samples of LIB electrode materials are used for model
training and assessment after excluding the outliers and incon-
sistencies. The data (target data) firstly is randomly split into
training, validation, and test parts with the ratio of 0.8:0.1:0.1,
respectively. The three parts show similar distributions (Fig. 2a,
top), indicating a reasonable split. Then, we train and supervise
our DL model (Fig. 1) with training and validation data,
respectively. The mean squared errors (MSEs) are chosen to be
the loss function and MAEs are the evaluation metric. After fully
training, MAE of our DL model for predicting the voltages of LIBs is
only 0.32 V, which is lower than the conventional ML results
(0.40 V). Our results are quite similar to the previous reports for
LIBs35,36. The predicted voltages have similar distributions (Fig. 2a,
right) with the target voltage (Fig. 2a, top) for all the training,
validation, and test sets. The data points of predicted voltages
plotted against the target voltages are around the dashed straight
line of y= x (Fig. 2a, dash line), which also indicates the high
accuracy of our model. However, our DL model developed from
LIBs (named Li-model) cannot be directly used for multivalent
MIBs (quite large MAEs Fig. 2b–e) because of the different
properties between LIBs and multivalent MIBs. It’s also inadvisable
to train DL models from small data of multivalent MIBs.
Furthermore, it is found that the MAEs of conventional ML are
similar to the Li-model (Fig. 2b–e). Thus, neither DL nor

conventional ML is suitable for multivalent MIBs. This critical
problem will be addressed in the late part of this paper.

Interpretability and visualization of the DL model
Although the state-of-the-art DL models outperform conventional
ML models in the large dataset regime, they are generally viewed
as black-box models due to the high complexity and are often
achieved at the cost of interpretability. This is a major drawback of
DL models for applications in which the interpretability of
decisions is a critical prerequisite, such as new materials discovery
and design20,42,43. Here, we visualize the embedding and
convolutional layers of the deep-neural network, separately20

(see in Fig. 1) to interpret the contribution of underlying features
to the electrode-voltage prediction. Taking the LIB as a proof of
concept, we first project the 64-dimensional elemental represen-
tation vectors on a two-dimensional (2D) plane constituted by the
first two principal components, dimension 1 and 2, using the
principal component analysis (PCA)44,45. Figure 3a shows the
visualized element features automatically extracted from the
embedded layers (Fig. 1). As can be seen, the elements can be
clearly clustered into three groups according to the location of the
corresponding elements in the periodic table. For instance, the
first two group elements, alkali, and alkaline-earth elements,
locate at the upper right corner of the plot; the early transition
metal (TM) elements locate at the left side; and the rest elements
mainly distribute at the lower right side. Such a distribution
indicates that the voltage of a crystal has a strong correlation with
the group number of the constituent elements. Interestingly, we
can observe a linear relationship between the covalent radius of
the elements and the second principal component (dimension 2)
(Fig. 3a inset). Thus, the covalent radius of the constituent
elements of electrodes should be one of the important features
for crystal voltage prediction. A conventional ML-based random
forest regression (RFR) model with 273 materials features46,47 is
also trained for analyzing the Gini importance factor by the weight
of features. The covalent radius is also found to be the most
important feature with the importance ratio as high as 20%
(Supplementary Fig. 2). Such a result indicates the validation of the
visualization analysis of our interpretable DL model.

Fig. 1 Illustration of the interpretable crystal graph convolutional neural network. A crystal is converted and characterized by atomic and
bonding vectors. The elemental and local environment representations for visualization of the model are constructed from the embedding
and the convolutional layers, respectively. The weights in the hidden layer and output layer are trained during transfer learning.
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Besides the visualization of the element representations in the
neural network, the interpretable model can get a clear picture of
the local environment from the electrode-voltage prediction. We
next visualize the local environment (see more details in the
Methods section), and take the oxygen coordination, at least two
oxygen atoms around the central element, as the local

environment representation because of the large number of
oxides for battery electrodes. There are 23,022 local oxygen-
coordination environments in total in our dataset. We first project
all the oxygen local environments into a 2D plane using the PCA
(Fig. 3b), and the elements are colored according to their local
voltage, which is the voltage for each atom in the corresponding
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Fig. 2 Plots of predicted voltage and target voltage for the metal-ion batteries. a The data points are predicted with the deep-learning
model and those in b–e are predicted with the transfer-learning model. The model errors of the Li-, Ca-, Mg-, Zn-, and Al-ion battery are shown
in the right-down corner. The histograms at the top and right show the distributions of predicted and target voltages, respectively. The black
dashed line is the identity line (y= x) for reference. The TL, CML, and Li-model mean the transfer learning, conventional machine learning, and
the model trained on LIB database only.
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Fig. 3 Visualization of the DL model. a, b The visualization of the two principal dimensions with PCA for the element representations and the
local oxygen-coordination-environment representations, respectively. Dimension 1 and 2 in the plot constitute a plane in the corresponding
vector space that can approximate the representations best. The points in a are colored according to their elemental groups. c the median
value of the learned local voltages for each element in the oxygen-coordination environments depicted in the elemental parodic table. The
elements in b and c are labeled according to the type of center atoms in oxygen-coordination environments and the colors are coded with
learned local voltages. The gray arrow in b indicates the change of local voltages.
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crystal and is calculated using Equation (2) in Methods. It shows
that the local voltage color changes along the diagonal direction
(gray arrow) in the dimension 1- dimension 2 plot. Such a
phenomenon indicates that both dimension 1 and dimension 2
have linear relationships with the local voltage, implying the local
voltage information has been learned by our model. To surface
such a relationship, we visualize the oxygen-coordination-
environments with the t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm48 (Supplementary Fig. 3). We find that
oxygen environments can be approximately grouped into three
large groups according to the t-SNE distribution: (i) the IA group
with low voltages, (ii) the main group with high voltages, and (iii)
the TM group with both low and high voltages. In order to validate
such voltage performance extracted from the neural network, we
calculate and project the median voltage (Vi) for each element
(under the oxygen-coordination environment) on the elemental
periodic table as shown in Fig. 3c. As can be seen, it is quite similar
to the t-SNE analysis, but with more details. The elements in the
main group have high-median local voltage except for the alkali
metal elements, which have low voltages. For the TMs, the early
TMs mainly have relatively low-median local voltages, while the
late TMs perform reversely. Such a relationship of local voltages
with elements probably provides a promising strategy to design
electrodes of batteries with a high voltage through the elemental
replacement, such as to replace an early transition metal, Ti, by a
late transition metal, Cu, which can significantly increase the
cathode voltage from 1.32 V of NaTiPO4F to 5.52 V of NaCuPO4F
for Na-ion batteries49. Although, a high-voltage cathode often
experiences a poor reversibility in the experiment, which should
be taken into consideration in actual selection of cathode
materials in the experiment.
Interestingly, the PCA of the elemental features (Fig. 3a) also

performs similar element-voltage relations with that of the local
voltage of oxygen-coordination environment analysis. For exam-
ple, the elements with the low local voltages occupy the left and
right parts (two regions shaded ion blue in Fig. 3a), while the
middle area shaded in orange is mostly occupied by the elements
with the high local voltages. This means that instead of extracting
from the late convolutional layers (Fig. 1), the voltage information
has already been learned in the early layer in our neural work. The
oxygen-coordination environment and the covalent radius shows
a similar trend with respect to the element (Supplementary Fig. 4),
in line with the previous element representation analysis. More-
over, the local voltage of each element (Fig. 3c) is not only
connected with the elemental properties, such as the electro-
negativity, but also affected by its oxygen-coordination environ-
ment, which are not available from conventional ML.
The p-orbital elements and late transition metal elements prefer

to accept electrons, resulting in the reduction reaction. These
characters make crystals with these elements have large chemical
potentials and thus high voltages. The alkali metals and the early
transition metals are easy to lose their electrons and get oxidation.
Thus, electrode materials with these elements under the oxygen
environment would have small chemical potentials and low
voltages. The alkaline-earth metal ions prefer to attract electrons
because of the electrostatic force between the cation and the
electrons, and thus, the existence of these bivalent cations would
make the cathodes have large chemical potentials and high
voltages.

Transfer learning of multivalent metal-ion batteries
In this section, we will address the aforementioned problem that it
is hard to get high-performance DL models for multivalent MIBs
because of data scarcity, for example, only 149 Al-ion samples.
Multivalent MIBs have the similar mechanism with LIBs, which
allows us to reuse the pre-trained DL model on LIBs to multivalent
MIBs. Here, we integrate the layer-freezing TL method45, which

would only fine tune the last two fully connected layers, into our
deep-neural network (see in Fig. 1) to predict the voltages of Mg-,
Ca-, Zn-, and Al-ion battery electrodes. For comparison, two
conventional ML models and one DL model trained from LIBs
(named Li-model) are also used on multivalent MIBs. Thus, the DL
model, CGCNN, and the two conventional ML models are not only
used for the Li-ion battery voltage prediction, but also the
multivalent MIBs, while the TL model is only used for the
multivalent MIBs. The overview of the architecture for these
models are shown in Supplementary Fig. 1. Figure 2b–e show the
model error, MAE, for voltage prediction using the conventional
ML model, Li-model, and TL model. As can be seen, the Li-model
and conventional ML models have very similar MAEs, which are
much larger than those predicted by the TL model. It demon-
strates that the prediction accuracy from small data has really
been largely improved by the TL technique, especially for the Zn
and Al-ion battery electrodes, whose voltage predictions have
been significantly improved by 1.67 V and 1.03 V, respectively.
Moreover, Fig. 2b–e show that the predicted and the correspond-
ing target voltage datasets have similar normal distributions,
indicating that the datasets are reasonable, and the predictions
are accurate. It is worth noting that the Li-model can provide a
relatively good prediction for Na- and K-ion batteries (Supple-
mentary Table 2) because Li-, Na-, and K-ions are all monovalent
and having similar performances in electrodes35. However, our TL
model still can further improve the performance in predicting
monovalent MIBs (Supplementary Table 2). The MODNet16 and
CrabNet17,18 are another two neural network models commonly
used for the small dataset. We train these two models on the
electrode voltages of Al- and Mg-ion battery datasets for
comparation. Our results show that the MODNet has higher MAEs
than the CGCNN TL with the MAE of 0.63 and 0.47 V for Al- and
Mg-ion batteries, respectively. It is found that the CrabNet is highly
overfitting for predicting voltages of electrode materials. It is
because the MAE of the training set for Mg-ion batteries is only
0.13 V, but 0.36 V for the validation set. Besides, the CrabNet
model is time consuming compared with TL because it is an
attention-based model.
We validate our model by comparing it with the machine

learning and available experimental results as shown in Fig. 4. As
can be seen, our model outperforms the conventional ML model
in predicting the electrode voltage for multivalent Mg-, Ca-, Zn-,
and Al-ion batteries. Therefore, the voltages predicted by the TL
model are more reliable to guide experiments in finding
appropriate electrode materials for improving the performance
of future multivalent MIBs. To help the battery community, we
thus implemented our model into a publicly available online tool
kit that can be used for quickly pre-checking and screening the
voltage of any electrode with the crystal structure only.
Finally, we predict the voltages of 1637 materials for Al-ion

(613), Ca-ion (278), Mg-ion (369), and Zn-ion (377) battery
electrodes in Supplementary Tables 3–6, which are not available
in Materials Project database. Within the 1637 materials, 113/613
of Al-ion, 128/278 of Ca-ion, 107/369 of Mg-ion, and 4/377 of Zn-
ion battery electrode materials have an average voltage higher
than 3.0 V as the potential candidates. It is worth noting that only
around 1% cathode materials for Zn-ion batteries have the
average voltage of 3.0 V or above. It means that finding a high-
voltage electrode material for Zn-ion batteries would be a
challenge. As a general design rule, our results of local voltages
of each element (Fig. 3a) indicate the relationship between crystal
elements and corresponding electrode voltages. Such element-
voltage relationship may provide a promising strategy to design
high electrode voltages by the elemental replacement for Zn-ion
batteries.
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Online artificial intelligence tool kit for voltage prediction
A web tool, provided for the voltage prediction for both
multivalent and monovalent MIB electrodes, is publicly available
online (http://batteries.2dmatpedia.org/). The voltage of a crystal
can be obtained within a few seconds, with the crystal structure or
the material ID in the MP and type of metal ion as inputs. The
voltages for LIBs are predicted by the interpretable DL model and
others are predicted by the deep TL model.
In summary, we develop an interpretable TL model to

accurately predict the electrode voltages for MIBs (especially the
multivalent batteries with very small data) and explain the
underlying physical pictures as the important features for the
voltage prediction by visualizing the vectors in layers in the neural
network. The prediction with our model is much accurate in
comparison with the conventional ML models and validated by
the reported experimental results. The high-performing and
interpretable DL models with the booming growth of battery
materials data would greatly benefit the battery community that
can be used for AI-enabled high-speed materials screening and
rational design of electrodes of MIBs, such as substituting high
local voltage elements (Fig. 3c) in a crystal to improve its voltage
and energy density.

METHODS
Training datasets
The data are extracted from the MP database38,50 accessed through the
application programming interface (API) implemented in pymatgen51. The
database contains a total number of 4401 intercalation-based battery
electrode materials, in which, 2291 entries are electrode materials for LIBs,
and 393, 484, 385, 149, 328, and 125 instances for the Mg-, Ca-, Zn-, Al-, Na-,
and K-ion battery, respectively (Supplementary Table 1). Before training,
outliers and inconsistent data are removed, and 2190, 387, 471, 378, 149,
287 and 125 instances are kept to train the model for Li-, Mg-, Ca-, Zn-, Al-,
Na-, and K-ion battery electrode materials, respectively.

Machine-learning model
The conventional support vector regression (SVR) and kernel ridge
regression (KRR) models are used in this work to predict the electrode
voltages. They produce quite similar voltages for both multivalent and
monovalent MIBs (Supplementary Fig. 5).

Deep-learning model
Our DL models are mainly based on the CGCNN4. The CGCNN model
presents a periodic crystal structure into a multigraph G. Each atom in a
structure is represented by a node i in G, which is represented by the
atomic feature vector vi. The vector is then transformed into a 64-
dimensional vector in the embedding layer. The nearest 12 neighbors for
each atom are also considered in the CGCNN model and the chemical
bond of the neighboring atom i and j is expressed as an edge (i, j)k in G,
which is represented by vector u(i, j)k. The subscript k indicates the kth edge
between note i and j because of the periodicity of the crystal19. Then, the
atom and bond features are input of convolutional layers using a
convolution function designed in the following equation.

vðtÞi ¼ vðt�1Þ
i þ

X

j;k

σ zðt�1Þ
ði;jÞk W

ðt�1Þ
f þ bðt�1Þ

f

� �
� g zðt�1Þ

ði;jÞk W
ðt�1Þ
s þ bðt�1Þ

s

� �h i

(1)

where zðtÞði;jÞk ¼ vðtÞi � vðtÞj � u i;jð Þk is a neighbor feature vector, and �
denotes the concatenation of vectors of the atomic and bonding feature of
neighboring atoms of the ith atom. The � denotes element-wise
multiplication, σ is a sigmoid function, and g is a non-linear activation
function. W and b denote weights and biases of the neural networks,
respectively. Behind three convolutional layers, the output vectors are then
fitted into a pooling layer to create an overall feature vector. We, then, fully
connect the resulting vector through a hidden layer, which is followed by a
linear transformation to scalar values.
In the CGCNN model, only elemental and structural features of the

electrode crystals are used, because our training datasets retrieved from
Materials Project database are on the basis of DFT calculations. The
average voltage in Materials Project is calculated by Supplementary
Equation (3). Only the internal energy difference between the crystals

CML

MgMn2O4

MgFeSiO4

MgTiSe2

MgTi2S4

CaCoO2
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Al\Graphine
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Fig. 4 Comparing the predicted voltages with the TL and conventional ML models with the available experimental values. aRef. 58.
bRef. 59. cRef. 60. dRef. 61. eRef. 62. fRef. 63. gRef. 64. hRef. 50. iRef. 65. jRef. 66.
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before and after discharge is used to obtain the average voltage as an
approximation, the details of which can be found in SI. It has been
reported that the calculated voltages with such approximation are
comparable to the experimental results. For example, the calculated
average voltage of olivine LiFePO4 and LiNiPO4 is about 3.2 and 4.9 V,
respectively, which are consistent with the experimental results of 3.4 and
5.1 V, respectively52–55. The calculated voltage curves for RuO2, SnO2, and
SnS2 have the similar voltage curve change trend as those measured in
experiments56.

Interpretability and visualization of deep-neural network
Ante-hoc and post-hoc are two commonly used interpretation models. Ante-
hoc model would open the black-box and to gauge how a certain neural
network is about to contribute to its predictions. Post-hoc only pries about the
model from the outside of the model57. In the CGCNN network4, the output
vectors of each layer are available for public, the ante-hoc could be used to
probe the whole model. In this work, the element and the local environment
representations, who are endured from embedding and the convolutional
layers in the model respectively (Fig. 1), are mapped by two dimensions for
visualizing the feature vectors in the layers. The local voltages are also explored
to evaluate the contribution of each atom to the crystal voltage.
Element representations completely depend on the type of elements in

the crystal. In the CGCNN model, the ith atom is a node i in the multigraph
representation G. The node stores a 92-dimensional vector vi, which
include all the elemental information, for instance atom covalent radius,
valence electrons in each atom orbital. Then, the vector vi is put into the
embedding layer and converted into a 64-dimensional vector vð0Þi . In order
to visualize the features in the embedding layer, the elemental
representation vector vð0Þi are dragged out from the model. However, it
cannot be directly visualized due to the large dimension of the vector.
Thus, we adopt the PCA analysis to reduce the elemental representation
into a two-dimensional plane.
Local environment representations depend on both the element type and

their neighbors in crystal. After the three convolutional layers in the
CGCNN model, a 64-dimensional vector vð3Þi , who represents the local
environments of atom i and contains the information of both the atom and
their neighbors, is obtained. In our work, only the vectors with the local
oxygen-coordination environments, in which the working atom must have
at least two oxygen atoms as neighbors, are dragged out for visualization.
It is because cooperation among the same environment is more
reasonable, and the oxygen-coordination environment is the commonest
in the electrode materials dataset of MIBs. The local oxygen environment
vector vð3Þi is then reduced into two dimensions with the PCA and t-SNE
method in order to have a clear visualization about what information has
been learned in the convolutional layer.
Local voltage representation is derived from the local oxygen-

coordination environment vectors and represents the contributions of
each atom to the voltages of the crystal. A linear transformation is
performed to map vð3Þi to the local voltage Vi,

Vi ¼ vð3Þi W l þ bl (2)

where Wl and bl denote weights and biases. These two parameter vectors
are trained solely during the model visualization process. The voltage of
the crystal is predicted using the average of the local voltage V ¼ 1

n

P
i
Vi

where n is the number of atoms in the crystal. The large local voltage of an
atom means that electrode materials with such atom may have a larger
voltage. The local voltage of elements in the oxygen-coordination
environment is a specific local voltage for the atom, having at least two
nearest neighboring oxygen atoms in the crystal. The oxygen-coordination
environment is considered specially in this work because there are a large
number of oxides in the electrode materials, which may make our models
more explainable from such local environment.

Transfer learning
TL is an effective DL model for the prediction with insufficient datasets and
is expected to speed up and improve the performance of the convolution
neural network. There are two major TL scenarios for loading parameters
from previous neural networks. One is to fine tune the convolution
network. Herein, the parameters of the target network are initially loaded
with a pre-trained network. Thereafter, all the parameters are optimized
just as usual. The other one is to set the convolutional network as fixed
feature extractor. This method freezes the weights of the earlier layers and
only the last few fully connected layers are trained. In this study, the

second TL method is used for the voltage predictions of multivalent MIBs
and monovalent Na- and K-ion batteries. Only parameters in the last two
fully connected layers in the CNN structure are optimized in the TL model,
which are the hidden layer and the output layer (Fig. 1 orange box).

DATA AVAILABILITY
All battery data and experimental data are available in Supplemental Materials and
GitHub. The data for all figures and extended data figures are available in
Source Data.

CODE AVAILABILITY
Models and codes are available at https://github.com/mpeshel/Interpretable_
AI_for_battery.git.

Received: 21 February 2022; Accepted: 29 July 2022;

REFERENCES
1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657

(2008).
2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a

battery of choices. Science 334, 928–935 (2011).
3. Tarascon, J.-M. & Armand, M. In Materials for Sustainable Energy: A Collection of

Peer-Reviewed Research and Review Articles from Nature Publishing Group (ed.
Dusastre, V.) 171–179 (World Scientific Publishing Co., 2010).

4. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16,
16–22 (2017).

5. Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power
Sources 195, 2419–2430 (2010).

6. Taylor, S. R. Abundance of chemical elements in the continental crust: a new
table. Geochim. Cosmochim. Acta 28, 1273–1285 (1964).

7. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).

8. Davies, A. et al. Advancing mathematics by guiding human intuition with AI.
Nature 600, 70–74 (2021).

9. Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the
fractional electron problem. Science 374, 1385–1389 (2021).

10. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles
prediction of redox potentials in transition-metal compounds with LDA+U. Phys.
Rev. B Condens. Matter Mater. Phys. 70, 235121 (2004).

11. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal
machine learning framework for molecules and crystals. Chem. Mater. 31,
3564–3572 (2019).

12. Choudhary, K. & DeCost, B. Atomistic line graph neural network for improved
materials property predictions. NPJ Comput. Mater. 7, 185 (2021).

13. Hu, J. et al. MaterialsAtlas.org: a materials informatics web app platform for
materials discovery and survey of state-of-the-art. NPJ Comput. Mater. 8, 65 (2022).

14. Chen, C. & Ong, S. P. AtomSets as a hierarchical transfer learning framework for
small and large materials datasets. NPJ Comput. Mater. 7, 173 (2021).

15. Schutt, K. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Muller, K. R.
SchNet-a deep learning architecture for molecules and materials. J. Chem. Phys.
148, 241722 (2018).

16. De Breuck, P.-P., Hautier, G. & Rignanese, G.-M. Materials property prediction for
limited datasets enabled by feature selection and joint learning with MODNet.
NPJ Comput. Mater. 7, 83 (2021).

17. Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally
restricted attention-based network for materials property predictions. NPJ Com-
put. Mater. 7, 77 (2021).

18. Wang, A. Y.-T., Mahmoud, M. S., Czasny, M. & Gurlo, A. CrabNet for explainable
deep learning in materials science: bridging the gap between academia and
industry. Integr. Mater. Manuf. Innov. 11, 41–56 (2022).

19. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018).

20. Xie, T. & Grossman, J. C. Hierarchical visualization of materials space with graph
convolutional neural networks. J. Chem. Phys. 149, 174111 (2018).

21. Back, S. et al. Convolutional neural network of atomic surface structures to pre-
dict binding energies for high-throughput screening of catalysts. J. Phys. Chem.
Lett. 10, 4401–4408 (2019).

X. Zhang et al.

6

npj Computational Materials (2022)   175 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://github.com/mpeshel/Interpretable_AI_for_battery.git
https://github.com/mpeshel/Interpretable_AI_for_battery.git


22. Karamad, M. et al. Orbital graph convolutional neural network for material
property prediction. Phys. Rev. Mater. 4, 093801 (2020).

23. Lam Pham, T. et al. Machine learning reveals orbital interaction in materials. Sci.
Technol. Adv. Mater. 18, 756–765 (2017).

24. Park, C. W. & Wolverton, C. Developing an improved crystal graph convolutional
neural network framework for accelerated materials discovery. Phys. Rev. Mater. 4,
063801 (2020).

25. Zhang, Y. et al. Identifying degradation patterns of lithium ion batteries from
impedance spectroscopy using machine learning. Nat. Commun. 11, 1706 (2020).

26. Swift, M. W., Swift, J. W. & Qi, Y. Modeling the electrical double layer at solid-state
electrochemical interfaces. Nat. Comput. Sci. 1, 212–220 (2021).

27. Chen, C., Zuo, Y., Ye, W., Li, X. & Ong, S. P. Learning properties of ordered and
disordered materials from multi-fidelity data. Nat. Comput. Sci. 1, 46–53 (2021).

28. Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

29. Lu, S., Zhou, Q., Guo, Y. & Wang, J. On-the-fly interpretable machine learning for
rapid discovery of two-dimensional ferromagnets with high Curie temperature.
Chem 8, 769–783 (2022).

30. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of
electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

31. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active
machine learning. Nature 581, 178–183 (2020).

32. Chen, D. et al. Automating crystal-structure phase mapping by combining deep
learning with constraint reasoning. Nat. Mach. Intell. 3, 812–822 (2021).

33. Lee, X. Y. et al. Fast inverse design of microstructures via generative invariance
networks. Nat. Comp. Sci. 1, 229–238 (2021).

34. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials
property prediction methods: the Matbench test set and Automatminer refer-
ence algorithm. NPJ Comput. Mater. 6, 138 (2020).

35. Joshi, R. P. et al. Machine learning the voltage of electrode materials in metal-ion
batteries. ACS Appl. Mater. Inter. 11, 18494–18503 (2019).

36. Moses, I. A. et al. Machine learning screening of metal-ion battery electrode
materials. ACS Appl. Mater. Inter. 13, 53355–53362 (2021).

37. Sarkar, T., Sharma, A., Das, A. K., Deodhare, D. & Bharadwaj, M. D. A neural
network based approach to predict high voltage Li-ion battery cathode materials.
In 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS) 1–3
(IEEE, 2014).

38. Jain, A. et al. Commentary: the materials project: a materials genome approach to
accelerating materials innovation. APL Mater. 1, 011002 (2013).

39. Shao, L., Zhu, F. & Li, X. Transfer learning for visual categorization: a survey. IEEE T.
Neur. Net. Lear. 26, 1019–1034 (2015).

40. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and
applications of machine learning in solid-state materials science. NPJ Comput.
Mater. 5, 83 (2019).

41. Lee, J. & Asahi, R. Transfer learning for materials informatics using crystal graph
convolutional neural network. Comp. Mater. Sci. 190, 110314 (2021).

42. Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical
concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).

43. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision (ECCV) 818–833 (Springer Interna-
tional Publishing, 2014).

44. Hotelling, H. Relations between two sets of variates. Biometrika 28, 321–377
(1936).

45. Pearson, K. On lines and planes of closest fit to systems of points in space. Philos.
Mag. 2, 559–572 (1901).

46. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine
learning framework for predicting properties of inorganic materials. NPJ Comput.
Mater. 2, 16028 (2016).

47. Ward, L. et al. Including crystal structure attributes in machine learning models of
formation energies via Voronoi tessellations. Phys. Rev. B Condens. Matter Mater.
Phys. 96, 024104 (2017).

48. Maaten, L. V. D. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008).

49. Louis, S. Y. et al. Accurate prediction of voltage of battery electrode materials
using attention-based graph neural networks. ACS Appl. Mater. Inter. 14,
26587–26594 (2022).

50. Jain, A. et al. A high-throughput infrastructure for density functional theory cal-
culations. Comp. Mater. Sci. 50, 2295–2310 (2011).

51. Ong, S. P. et al. The Materials Application Programming Interface (API): a simple,
flexible and efficient API for materials data based on REpresentational State
Transfer (REST) principles. Comp. Mater. Sci. 97, 209–215 (2015).

52. Dong, G., Wei, J., Zhang, C. & Chen, Z. Online state of charge estimation and open
circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding
method. Appl. Energy 162, 163–171 (2016).

53. Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R. & Fowler, M. Experimental and
simulated temperature variations in a LiFePO4-20 Ah battery during discharge
process. Appl. Energy 180, 504–515 (2016).

54. Nasir, M. H., Janjua, N. K. & Santoki, J. Electrochemical performance of carbon
modified LiNiPO4 as Li-Ion battery cathode: a combined experimental and the-
oretical study. J. Electrochem. Soc. 167, 130526 (2020).

55. Zhang, Y., Pan, Y., Liu, J., Wang, G. & Cao, D. Synthesis and electrochemical studies
of carbon-modified LiNiPO4 as the cathode material of Li-ion batteries. Chem. Res.
Chin. Univ. 31, 117–122 (2015).

56. Hassan, A. S., Moyer, K., Ramachandran, B. R. & Wick, C. D. Comparison of storage
mechanisms in RuO2, SnO2, and SnS2 for lithium-ion battery anode materials. J.
Phys. Chem. C. 120, 2036–2046 (2016).

57. Buhrmester, V., Münch, D. & Arens, M. Analysis of explainers of black box deep
neural networks for computer vision: a survey. Mach. Learn. Knowl. Extr. 3,
966–989 (2021).

58. Yokozaki, R., Kobayashi, H. & Honma, I. Reductive solvothermal synthesis of
MgMn2O4 spinel nanoparticles for Mg-ion battery cathodes. Ceram. Int. 47,
10236–10241 (2021).

59. Orikasa, Y. et al. High energy density rechargeable magnesium battery using
earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).

60. Gu, Y., Katsura, Y., Yoshino, T., Takagi, H. & Taniguchi, K. Rechargeable
magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized
electronic structure. Sci. Rep. 5, 12486 (2015).

61. Sun, X. et al. A high capacity thiospinel cathode for Mg batteries. Energy Environ.
Sci. 9, 2273–2277 (2016).

62. Park, H., Cui, Y., Kim, S., Vaughey, J. T. & Zapol, P. Ca cobaltites as potential
cathode materials for rechargeable Ca-ion batteries: theory and experiment. J.
Phys. Chem. C. 124, 5902–5909 (2020).

63. Shiga, T., Kondo, H., Kato, Y. & Inoue, M. Insertion of calcium ion into prussian
blue analogue in nonaqueous solutions and its application to a rechargeable
battery with dual carriers. J. Phys. Chem. C. 119, 27946–27953 (2015).

64. Shoji, T. & Yamamoto, T. Charging and discharging behavior of zinc—manganese
dioxide galvanic cells using zinc sulfate as electrolyte. J. Electroanal. Chem. 362,
153–157 (1993).

65. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520,
325–328 (2015).

66. Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of
aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015).

ACKNOWLEDGEMENTS
The authors thank Dr. Zeng Minggang and Dr. Xu Lei for their helpful discussion. This
work was supported by MOE, Singapore Ministry of Education (No. MOE2019-T2-2-
030, No. R-723-000-029-112, and No. R265-000-691-114), conducted at the National
University of Singapore. The authors gratefully acknowledge the Center of Advanced
2D Materials (NUS), NSCC (Singapore) for providing computational resources, and the
China Scholarship Council for financial support.

AUTHOR CONTRIBUTIONS
L.S. and X.Z. conceived the work. X.Z. designed the model, conducted the
experiment, and took the lead in writing the manuscript with input from all authors.
J.Z. and J.L. gave scientific and technical advice throughout the project and helped
with interpretation of data. The project was supervised by L.S. All authors provided
feedback and contributed to the discussion and analyses of the data.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-022-00858-9.

Correspondence and requests for materials should be addressed to Jing Lu or
Lei Shen.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

X. Zhang et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   175 

https://doi.org/10.1038/s41524-022-00858-9
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

X. Zhang et al.

8

npj Computational Materials (2022)   175 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Interpretable learning of voltage for electrode design of�multivalent metal-ion batteries
	Introduction
	Results and discussion
	Deep learning of Li-ion batteries
	Interpretability and visualization of the DL model
	Transfer learning of multivalent metal-ion batteries
	Online artificial intelligence tool kit for voltage prediction

	Methods
	Training datasets
	Machine-learning model
	Deep-learning model
	Interpretability and visualization of deep-neural network
	Transfer learning

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




