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Distilling physical origins of hardness in multi-principal
element alloys directly from ensemble neural network models
D. Beniwal 1, P. Singh2, S. Gupta2, M. J. Kramer 2✉, D. D. Johnson2,3✉ and P. K. Ray 1✉

Despite a plethora of data being generated on the mechanical behavior of multi-principal element alloys, a systematic assessment
remains inaccessible via Edisonian approaches. We approach this challenge by considering the specific case of alloy hardness, and
present a machine-learning framework that captures the essential physical features contributing to hardness and allows high-
throughput exploration of multi-dimensional compositional space. The model, tested on diverse datasets, was used to explore and
successfully predict hardness in AlxTiy(CrFeNi)1-x-y, HfxCoy(CrFeNi)1-x-y and Alx(TiZrHf)1-x systems supported by data from density-
functional theory predicted phase stability and ordering behavior. The experimental validation of hardness was done on TiZrHfAlx.
The selected systems pose diverse challenges due to the presence of ordering and clustering pairs, as well as vacancy-stabilized
novel structures. We also present a detailed model analysis that integrates local partial-dependencies with a compositional-stimulus
and model-response study to derive material-specific insights from the decision-making process.
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INTRODUCTION
Multi-principal element alloys (MPEAs) present unique challenges
including an astronomically large composition space (with more
than 1078 possible alloy compositions1) and a multitude of
interactions arising from mixing four or more principal elements
(N ≥ 4) that cannot be precisely explained or predicted with the
existing thermodynamic and physical models. Ab-initio calculations
can accurately predict the phase stability and physical properties2–4;
however, they are time-intensive when extended to finite tempera-
tures and thus are not well-suited as an exploratory tool. Similarly,
experimental exploration of the composition space becomes
expensive and time intensive. Given these constraints, coupled with
a reasonably large volume of data on these alloys generated over
the past decade, machine learning (ML) based approaches have
rapidly gained traction5–9. A classic shortcoming of ML is that
models with fewer parameters tend to be physically interpretable,
though less accurate, while those with larger number of parameters
tend to be more accurate but lose the interpretability.
Hardness is an important quantity from engineering perspective

as it is a measure of a material’s ability to resist localized plastic-
deformation, scratching, or indentation. Knowledge of hardness
can be critical because high hardness in an alloy is often
associated with reduced ductility that may limit its use10. In the
past few years, ML models have been reported and applied to
MPEAs to predict mechanical properties11–15, thermal properties13

and phase selection16–19. Chang et al.12 implemented an artificial
neural network (ANN), with a single hidden layer and three nodes,
to predict hardness of AlCoCrFeMnNi high-entropy alloys (dataset
size of 91 alloys) using composition-weighted hardness, density
and atomic mass as features. Wen et al.15 explored the hardness of
AlCoCrCuFeNi system (dataset size of 155 alloys) using multiple
ML algorithms (linear/polynomial regression, support vector
machines, decision trees and ANNs) based on elemental
compositions and twenty other material features. While both
these models are quite useful and display good accuracy, they
were trained on datasets spanning eight and six-element

composition space, respectively. This leaves out a significant
number of alloy systems, especially refractory MPEAs, which
cannot be explored reliably using these models. Rickman et al.11

developed a more comprehensive approach employing a
canonical-correlation analysis to predict the hardness of MPEAs
(dataset size of 82 alloys) using seven features built from
elemental and thermodynamic parameters, and further used a
genetic algorithm to search for high-hardness quinary alloys from
a sixteen-element composition-space. While accurate, these
models do not probe deeper into the nature of fit achieved by
ML approach, thereby failing to assess the physical consistency of
learning achieved – a challenge that we seek to address here
through a combination of deconstructed ML predictions coupled
with ab-initio stability analysis.
Single-phase MPEAs can provide fundamental insights into the

correlation between physical and mechanical properties20–22;
however, the multi-phase alloys allow greater flexibility in tailoring
the microstructure leading to improved properties23–27. Also, one
expects discontinuous variations in physical properties as we
move across phase boundaries in multi-phase systems. This
necessitates the development of strategies that can narrow down
the regions of interest by rapidly exploring compositional spaces
to provide approximate, but representative, insights into the
targeted properties. Ideally, the model should also closely mirror
the changes in microstructure assemblages, as well as the
ordering that drives precipitate formation indicated by the phase
transformations and capture the non-linear variation in physical
properties due to change in alloy chemistry. As we develop this
model for MPEA hardness prediction, it is pertinent to ask: (i) What
elemental and thermodynamic variables (or combination thereof)
can best describe alloy hardness? (ii) Can a combination of these
variables, some of which vary linearly, be combined to predict
non-linear response in the system? And, (iii) Is the ML model’s
decision-making process a mere statistical fit or does it capture
some fundamental insights into the physical origins of hardness?
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In this work, we present a ML strategy (Fig. 1) that employs an
ensemble of ANNs, driven by elemental and alloying descriptors, to
rapidly predict and explore the hardness of MPEAs over vast
compositional spaces. ANNs, inspired by biological neural networks,
are capable of learning non-linear relationships and thus excel in
predictive modelling of material properties15,28–30 as they can learn
complex unknown functions from a stream of data31. To address the
high variance of ANNs, we implement a model averaging ensemble
learning technique combining output from 165 trained networks to
give a final prediction. The material descriptors used for training are
shortlisted from an extensive pool of 22 features based on their
fundamental relevance and statistical correlation with respect to
hardness. The model is trained over a dataset32 of 218 MPEAs and is
validated using a test dataset of 58 alloys compiled from recent
literature (these were not included in model training), followed by
experimental validation for TiZrHfAlx system.
The ML model together with density-functional theory (DFT) is

essential to minimize the gap in our understanding of the physical
origin of mechanical response in MPEAs. Therefore, for arbitrary
MPEAs, selected set of compositions were analyzed using DFT33

total-energy and electronic-structure calculations and DFT-based
thermodynamic linear-response theory3,34 to assess chemical
short-range order to capture/identify the physics, including phase
stability, electronic effects, and short-range ordering/clustering
and its relation to ML-predicted hardness. ML models, neural
networks particularly, often face criticism due to their treatment as
a black-box that severely limits the understanding of the decision-
making process. To overcome this, we have developed a
methodology that uses the local partial dependencies and
stimulus-response characteristics of the ML model to reveal the
decision-making process for critical insights as to how the ML

model learns the physical origins of hardness through different
features. Our explainability analysis approach identifies the origin
of hardness at the feature level while the DFT calculations assist in
identification of baselines as to what these origins at feature level
may represent at an atomistic level within the material.

RESULTS
The ML model was trained on databases available in the
literature32. The model was validated using three different
approaches – (a) Direct comparison with discrete hardness
measurements of alloys across different alloy systems. (b)
Validation of model predictions in systems with continuously
varying compositions, where non-linear increases in hardness
have been reported. And (c) experimental validation of model
predictions for the TiZrHfAlx MPEAs. The ML model predictions
have been combined with ab-initio calculations in cases (b) and (c)
for understanding the physics of the process and how well is it
reflected by the ML model.

Database diversity and model validation
A training dataset of 218 unique as-cast alloys, with experimen-
tally measured hardness values, was extracted from the database
compiled by Gorsse et al.32 The data consists of single- and multi-
phase alloys, Fig. 2a, which span a composition space of 22
elements, Supplementary Fig. 1, including 3d-transition-metals,
refractory-metals and select main-group elements. The hardness
values in the dataset span from 109 to 905 HV with the
distribution profile as shown in Fig. 2b. The region above
800 HV is very thinly populated. While there are some outliers

Fig. 1 Overview of the methodology used for extracting origins of hardness. a MPEAs hardness database development and calculation of
alloy features, b training of neural network ensemble, c exploration of hardness over wide compositional spaces, d model interrogation to
extract exact feature contributions along continuous composition pathways, (e) DFT results to probe ordering behaviour and structure
stabilities, f experimental validation over complex alloy systems, and g analyzing the results to establish physical origins of hardness.

D. Beniwal et al.

2

npj Computational Materials (2022)   153 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



lying beyond the 1.5 interquartile range (IQR) in single-phase BCC/
FCC alloys, Fig. 2a, these have not been excluded from the training
as we believe these alloys could be critical for capturing the
underlying physics that may not be apparent in other alloys. The
model was validated using a separate test dataset comprising 58
alloys (Supplementary Table 1) compiled from recent literature.
The test dataset was not used for model training. It spans a
composition space of 15 elements and contains alloys with
hardness ranging from 123 HV to 894 HV, with a mean hardness
value of 459 HV. The test set has a wide hardness distribution, as
seen in Fig. 2c, similar to that of the training set, and this diversity
ensures that the performance of ML model on the test set is a
good representation of its predictive ability.
The ML model, comprising of an ensemble of 165 trained ANNs,

was used to predict the hardness of each alloy present in test set.
Figure 2d shows the prediction results and performance metrics
obtained for the test set. An average percentage error of 18.6% and
mean absolute error of 82.8 HV was obtained on the test set, with
62% (75% if only as-cast alloys are considered) of predictions lying
within 80% accuracy region. The alloys in test set were prepared
with either vacuum arc melting (denoted by black dots) or through
mechanical alloying (MA) plus spark plasma sintering (SPS) route
(denoted by red dots, MA+ SPS). Both the as-cast and (MA+ SPS)
alloys were kept in the test set to highlight the fact that the final
model, trained on only as-cast alloys, is more prone to underpredict
the hardness of alloys made through (MA+ SPS) route. Thus,
although the test set accuracy (~82%) is slightly lower in comparison
with cross-validation accuracy (~87%, Supplementary Table 2), the
model captures the experimentally measured hardness with a
reasonable accuracy.

Prediction of non-linear trends in hardness
Having established a good statistical performance of our model
for discrete alloy compositions, we perform the next step in our
validation, namely exploration of continuously varied composition
space and prediction of non-linear variations in hardness. This
validation can be accomplished only if the model can correctly
identify both the continuous monotonic (near linear) and
discontinuous (non-linear) variation of hardness due to subtle
changes in alloying chemistry. The discontinuity in hardness
values may arise from formation of new phases resulting in
different microstructural assemblage as a result of compositional
variations. The new crystal structures can have significantly
different nearest neighbors (and hence bonding) as well as
completely different slip systems affecting the resistance to
localized plastic deformation. One also expects that significant
incipient ordering, which may arise near phase boundaries as the
composition is varied continuously prior to the actual phase
separation/transformation, may be responsible for controlling the
width of the non-linear jumps in hardness. As shown previously,
hardness depends on the nature of the atomic bonding35,36. The
bond strength is mainly driven by constituent elements and their
properties, such as electronegativity, that control the electronic-
structure behavior37. Thus, we anticipate a dependence of MPEA
hardness on its overall electronic structure. Therefore, comparing
electronic-structure behavior with hardness in the MPEAs should
reveal contributions from electronic mechanism.
Hence, we have explored an MPEA system – AlxTiy(CrFeNi)1-x-y –

that had the adequate microstructural complexity along with
reported experimental hardness values over a range of

Fig. 2 Dataset exploration and model validation. a Statistical distribution of hardness values for eight different type of phase combinations
present in the dataset along with number of alloys, mean hardness, median hardness, 1.5 IQR and 25–75% percentile range for each structure.
b Distribution of hardness values in the training dataset (218 alloys) along with mean, median and 10–90% percentile range of hardness.
c Distribution of hardness values in the test dataset (58 alloys) compiled from recent literature. d Parity plot of hardness predictions obtained
for test dataset along with statistical performance metrics –root mean square error (RMSE), mean absolute error (MAE) and average
percentage error. The shaded area represents an 80% accuracy region and the number at top right corner represents fraction of predictions
with >80% accuracy.
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compositions38,39. We have also investigated the HfxCoy(CrFeNi)1-x-y
system, where Hf content is seen to affect the ordering process.
Notably, Co has a room temperature crystal structure similar to Ti and
is expected to form a solid solution with CrFeNi, while Hf is expected
to exhibit a strong clustering effect. As such, we assessed
HfxCoy(CrFeNi)1-x-y and compared the model predictions with the
experimental measurements reported by Ma and Shek40.
The interest in AlxTiy(CrFeNi)1-x-y system stems from the role of Al in

promoting B2 ordering in a number of systems3,34. Ti does not have
as pronounced an effect on ordering as Al, but Ti-containing systems
do exhibit a large number of intermetallics38,39,41. Figure 3a shows
the contour plot of hardness predictions for the entire composition
range of AlxTiy (CrFeNi)1-x-y system. An inset (in Fig. 3b) shows an
expanded view, where measurements are available. Predicted and
actual hardness values are compared (Fig. 3c) for five Tix(CrFeNi)1-x
compositions (x= 0.0625–0.1666) studied by Gao et al.39 to
investigate the effect of Ti addition. Both the measurements and
the predicted values show a near-linear monotonic increase and
there is an excellent agreement in general trends, although absolute
values are underpredicted. To understand the underlying reason for
the deviation of predicted hardness, we performed phase stability
(Eform) analysis in Fig. 3d, and found that increasing Ti stabilizes the
BCC structure, which mirrors the trends in hardness. This stabilization
is also borne out by the experiments, where increased Ti content led
to a reduction of the FCC phase fraction, as well as increase in the
BCC phase fraction. Additionally, minor amounts of intermetallic
phases begin to form (ε-phase, Ni3Ti at low Ti and the R-phase,
Ni2.67Ti1.33 at higher Ti). Figure 1b indicates that the training dataset
included only a very small amount of intermetallics (1) or multi-phase
mixtures (14) – FCC+ BCC+ IM. Presumably, the data available was
too sparse for greater accuracy. Enhanced Eform strongly correlates
with charge sharing due to increased hybridization among
constituent elements and suggests towards increased bond strength
in Tix(CrFeNi)1-x. The bonding behavior is dependent on local
environment; therefore, we hypothesize that it should directly
impact the local electronic properties, such as short-range order.
The SRO strength of Tix(CrFeNi)1-x, calculated using thermodynamic

linear-response theory34, is shown in Fig. 3e. We found that the SRO
of dominant pairs (Cr-Ni pair at x= 0; and Ti-Ni pair x= 0.0629-0.189)
increases with increasing Ti. The stronger SRO also indicates
increased concentration fluctuations, which directly correlates with
stronger bonding character arising from increased hybridization (see
Supplementary Fig. 8 & 9). This bonding/hybridization effect is an
aspect that has not been considered in the ML model directly due to
a paucity of data on which the model could be trained. Nonetheless,
the model does include the formation enthalpy, as estimated by
Miedema’s semi-empirical model as a feature, which is expected to
correlate with bonding. At this stage, we note that Miedema’s model
provides a reasonable agreement with experimental measurements
of formation enthalpies but it does not seem to capture the effect of
Ti adequately. As a result, the elemental descriptors for Ti in
Miedema’s model must be adjusted and this is another potential
source of error.
As Al is added (with corresponding decrease in the amount of

Ti) and we move from the quaternary TixCrFeNi to the quinary
AlxTiy(CrFeNi)1-x-y, the accuracy of the model is seen to improve
with excellent agreement between experimental measurements
and ML predictions, as seen in Fig. 3f. Significantly, the ML model
is able to predict the non-linear increases in hardness as a function
of composition. A comparison with experiments38 and prior phase
stability calculations18 indicates that Al addition results in a
structural change, with the simple FCC structure transforming to a
three-phase mixture (FCC+ BCC+ Intermetallic). We investigated
this further here. We performed DFT calculations for phase
stability4 (Fig. 3g) and short-range order (SRO) of MPEAs34,42, in
particular the strength of dominant pairs (Fig. 3h). Our DFT
calculations (which embody quantum mechanics) provide robust
Eform prediction in MPEAs4,43. Clearly, the trends in Eform and SRO
pair strength match with hardness in Fig. 3f, i.e., our model is able
to capture the electronic-structure-driven features yielding a non-
linear change in hardness. The possible reason for small or no
error in hardness of AlxTiy(CrFeNi)1-x-y comes from the fact that
SRO contribution is very weak compared to CrFeNiTix, and the
relative amount of Ti is lower in comparison to the quaternary

Fig. 3 ML predictions of hardness and corresponding formation enthalpy and SRO obtained from DFT calculations. a Predicted hardness
contours for AlxTiy(CrFeNi)1-x-y. b Inset shows the hardness contours in Al-poor and Ti-poor regions, along with composition trajectories along
which hardness measurements and predictions are compared. c Experimental and ML-predicted hardness for Tix(CrFeNi)1-x with a 90%
prediction-interval (PI). d Formation energy of the BCC MPEA and e Pairwise SRO in Tix(CrFeNi)1-x. f Experimental and ML-predicted hardness
for AlxTiy(CrFeNi)1-x-y with a 90% prediction-interval (PI). g Formation energy of the BCC solid solution and h Pair SRO and dominant ordering
pairs in AlxTiy(CrFeNi)1-x-y.
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alloy; hence, errors associated with Miedema’s calculation of
formation enthalpies is minimized.
The hardness contours for the Hf-Co-(CrFeNi) system are shown in

Fig. 4a, where Fig. 4b gives an expanded view of the region
investigated experimentally by Ma and Shek40. The model predicts a
strong dependence of hardness on the Hf content, as the predicted
hardness contours in Fig. 4a are almost entirely dictated by the
amount of Hf present in the system. The predictions accurately follow
the experimental hardness40 values shown in Fig. 4c. The hardness
variation in this system is relatively linear. The Eform in Fig. 4d clearly
shows that Hf destabilizes the FCC phase. Stability predictions show
good agreement with experiments as the hypoeutectic microstruc-
tures and Laves phases increase with increasing %Hf 40. With the
addition of Hf, the Hfx(CoCrFeNi)1-x MPEAs transformed from a single-
phase FCC structure at x= 0 to (C15 Laves+ FCC phases) at x= 0.09.
Hypoeutectic microstructures were obtained from x= 0.024–0.069
and a fully eutectic structure with lamellas of FCC and C15 Laves
phase was found at x= 0.0940. This result raises a question whether
the intermetallic phase contributes significantly to the hardness in
the hyper-eutectic region. The other possibility would be enhanced
contributions to hardness due to ordering or clustering in the solid
solution phase itself. To explore this aspect, we calculated the SRO
pair strength using DFT. The SRO pair strength in Fig. 4e is even more
interesting as Hfx(CoCrFeNi)1-x at x= 0 shows weak ordering behavior
with SRO pair strength of 2.51 Laue (Cr-Ni pair) but adding Hf (x> 0)
promotes clustering (clustering is often related to unstable density of
states at the Fermi-level43, see Supplementary Fig. 10). The clustering
strength of dominant Hf-Cr pair (21–29 Laue) shows monotonic
increase with increasing %Hf. Clustering in Hf-Cr pairs suggests that
Hf does not thermodynamically prefer to sit around Cr, i.e., Hf
promotes phase separation. In some cases, the presence of multiple
phases in MPEAs improves hardness as the multiple phases with
different grain sizes and grain orientation can strengthen the alloy.
Thus, it is possible that the Hf-Cr clustering drives the eutectic phase
formation and eventually contributes to enhanced hardness through
the formation of second phase intermetallics.

Experimental validation in the Al-Ti-Zr-Hf alloy system
While the AlxTiy(CrFeNi)1-x-y and HfxCoy(CrFeNi)1-x-y systems
provided a study in contrast displaying ordering and clustering
tendencies, respectively, in neither of these two systems were
defects (like vacancies) noted to play a prominent role. However,
we recently discovered the formation of a vacancy-stabilized
phase in the Alx(TiZrHf)1-x system, where values of x > 0.125
promote the formation of a new type gamma-brass (4-vacancy

ordered) phase3. Such phases were absent from the training
dataset and, therefore, the ML model is not necessarily expected
to give accurate predictions. Nonetheless, this creates an
opportunity for understanding whether the vacancies play a
significant role in the hardness. Furthermore, it should be noted
that the crystal structure of ternary TiZrHf is hcp, which is also
absent from the training dataset. Hence, we choose to measure
the hardness in the Alx(TiZrHf)1-x system to test the limits of the
ML model.
The model was observed to underpredict the hardness by a

maximum of 18% across the compositions studied. Nonetheless,
the model was able to capture the trends in hardness quite
accurately. Figure 5a shows the predicted hardness contours in the
AlxTiy(ZrHf)1-x-y system, while Fig. 5b shows the comparison of
predicted and experimentally measured hardness. The values are
significantly under-predicted by the ML model, which is indicative
that the quantitative predictions by model may be limited in cases
where significant vacancy-ordering or occurrence of the hcp
structure occurs. This in itself is not a surprising result since the
MPEAs database used for training the model consists largely of
cubic solid solution alloys with few multi-phase alloys with a
constituent intermetallic phase. It is, however, interesting to
observe that the model still predicts the general trends in hardness.
In Fig. 5c, we plot alloy phase stability and overall, a

monotonous change in Eform was found except a jump at
Al= 0.0749 atomic faction. The similar jump was also observed
in hardness in Fig. 5b, i.e., the ML model is able to capture the
electronic and size effect through valence-electron count and
atomic-radii, respectively. The reason for jump in hardness is
obvious as alloy undergoes a phase transformation (hcp→ bcc) at
Al= 0.0749; however, it still does not explain why ML model
underestimates the hardness by 15–20%. Similar to Tix(CrFeNi)1-x,
the enhanced Eform in Alx(TiZrHf)1-x can well correlate to improved
bond strength that can directly impact the local properties, such
as short-range order. In Fig. 5d, we plot DFT-derived SRO pair
strength of dominant pairs in BCC phase. At Al= 0, the clustering
in Ti-Hf pairs is the dominant mode, which suggests that Ti and Hf
want to phase separate and form a two-phase region. Moreover,
adding Al stabilizes the bcc phase, as shown in Fig. 5c. For Al > 0,
the Alx(TiZrHf)1-x shows ordering and Al-Hf is the dominant SRO
pair. In going from clustering mode for Al= 0 to ordering mode
for Al > 0 in Fig. 5d, a jump in SRO pair strength and hardness is
seen in Fig. 5b at same Al atomic fraction. Recently, Singh et al.3

studied Alx(TiZrHf)1-x MPEAs and found that vacancies stabilize the
BCC phase at higher Al content, whereas competing (BCC/HCP)

Fig. 4 ML predictions of hardness and corresponding DFT-predicted formation enthalpy and SRO. a Predicted hardness contours for
HfxCoy(CrFeNi)1-x-y system, with b showing an expanded view of the compositions from experiments by Ma and Shek40. c Experimental and
ML-predicted hardness for Hfx(CoCrFeNi)1-x alloys with a 90% prediction-interval (PI). d DFT formation energies showing the relative stabilities
of the BCC and FCC structures. e DFT SRO and the main ordering and clustering pairs present.
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phases were found in Al-poor region. The abrupt change in
Alx(TiZrHf)1-x densities with 7.45 at.% vacancies matches with X-ray
measured density in Fig. 5e3. Clearly, the ANN model is able to
capture the trends of experiments and electronic features but
underpredicts the hardness. In Alx(TiZrHf)1-x, both SRO and
vacancies have significant contribution on alloy properties,
however, the ML model was not trained with these quantities.

Interrogating the ML decision-making process
The results presented thus far (Figs. 3–5) highlight the accuracy of
ML model along with its ability to predict non-linear hardness
variations associated with phase transitions in a variety of MPEAs.
But this still leaves two fundamental questions. What is the
decision-making process followed by the ML model? Are these
decisions purely statistical in nature or do they capture the
fundamental physics that can lead to insights into the physical
origins of hardness? To address these questions, we have probed
the nature of the fit by performing an analysis based on the local
partial dependencies and stimulus-response characteristics of the
model that exposes the exact contribution of each feature towards
the predicted hardness over continuous composition variations.
Notably, our methodology does not just rank the features based on
their perceived or indicative importance, but gives directly the exact
quantitative contribution of each feature towards decision-making.
Also, the integration of feature contributions with compositional-
stimulus and model-response study ensures that the causality for
model understanding is not some arbitrary change in feature values
but instead the alloy composition which is the direct point-of-
control in alloy design. We have considered a differential form of
the neural network i.e., if the hardness (HVx), at any composition x,
is a function of n features (Fx1 ; F

x
2 ; ¼ ; Fxn), then

d HVxð Þ ¼ ∂ HVxð Þ
∂Fx1

� �
dFx1 þ

∂ HVxð Þ
∂Fx2

� �
dFx2 þ ¼ þ ∂ HVxð Þ

∂Fxn

� �
dFxn

(1)

The neural network is treated as a non-linear function that scales,
e.g., ten alloy features (Fx1; F

x
2 ; ¼ ; Fx10) to predict a hardness value

(HVx) at given alloy composition (x). The function that represents
decision-making process of a neural network is extremely complex
as it involves thousands of scaling parameters along with a large
number of non-linear activation units (both sigmoid and rectified
linear units). Further, we have used an ensemble approach,
wherein 165 independent neural networks contribute to the final
decision-making i.e., 165 such functions contribute to a single

prediction. Thus, a direct understanding of the decision-making
process is almost impossible and requires formulation of
approaches that can indirectly obtain some meaningful insights
through systematic stimulus-response observations. An important
point to keep in mind is that any change in prediction (HVx) with
respect to a feature (Fxi ) depends on the values of all the other
features. Thus, whenever we want to probe the stimulus-response
characteristics of our model, we will have to choose a baseline
composition about which the change in hardness is calculated.
The approach detailed above is exemplified here for Alx(Cr-

FeNi)1-x, see Fig. 6a. To systematically study contribution of each
feature towards hardness prediction, we start by taking x= 0 as
the baseline composition and calculate all the normalized features
(Fx¼0

1 ; Fx¼0
2 ; ¼ ; Fx¼0

10 ) at this composition. Predicted hardness
(HVx=0) is obtained from ML model and this acts as the baseline
hardness value. Now, as stimulus, a small amount of Al (Δx= 0.01)
is added to the alloy in steps (n) and the corresponding hardness
contribution of each feature i.e., ΔðHVÞFix!xþ0:01 is calculated for
each step using Eq. (1). Thus, after step N (i.e., at x= 0.01*N), the
cumulative hardness contribution of any feature Fi, with respect to
baselines hardness value, can be expressed as:

HVFiN ¼
XN
n¼1

ΔðHVÞFix:0!0:01�n (2)

The overall hardness after any step N (i.e., x = 0.01*N) can be
expressed as the sum of baseline hardness (HVx= 0) and all the
feature contributions (HVFiN ; i ¼ 1; 2; ¼ ; 10).

Overall Hardness ¼ HVx¼0 þ
X10
i¼1

HVFiN (3)

The hardness contribution of each feature and overall hardness
variation for Alx(CrFeNi)1-x, Tix(CrFeNi)1-x, Hfx(CoCrFeNi)1-x, and
Alx(TiZrHf)1-x MPEAs is shown in Fig. 6. The reasonably good match
between the predicted (ML) and calculated (Eq. 3) hardness
establishes the accuracy of our methodology (see Supplementary
Fig. 4) indicating that the calculated feature contributions are an
accurate representation of the decision-making process followed
by ML model. The non-linear decision making of the ML model is
evident through the non-linear contribution of select features to
hardness. Additionally, it appears that the origin of non-linear
response arises due to a combination of features, some of which
result in near-linear response while the others serve to classify the
structure of the system in almost a step-like manner, which
introduces the non-linearity. For example, the VEC, that acts as a

Fig. 5 ML hardness predictions and corresponding DFT-predicted formation enthalpy and SRO. a Predicted hardness contours for
AlxTiy(ZrHf )1-x-y system. b Experimental and ML-predicted hardness for Alx(TiZrHf )1-x alloys with a 90% prediction-interval (PI). c DFT energy
calculations shows the relative stabilities of the BCC and HCP structures. d DFT SRO pairs show the ordering and clustering tendencies. e DFT
and XRD densities compared for the HCP, BCC (vacancy-stabilized) and disordered BCC (without vacancy) phases.
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classifier for phase selection (FCC and/or BCC), seems to plateau
over a range where further variation in VEC does not affect
structural changes.

DISCUSSION
The explainability analysis of the decision-making process of ML
model, in tandem with first-principles DFT calculations, conclu-
sively shows that the model is cognizant of the underlying physics
such as relative phase stability, phase transitions, SRO and solid-
solution strengthening. There are four key insights obtained from
the breakdown of ML model. Firstly, the hardness contribution of
VEC is strikingly different in Alx(CrFeNi)1-x, Tix(CrFeNi)1-x and
Hfx(CoCrFeNi)1-x MPEAs even though the VEC varies almost
identically. The ML model gives significant importance to VEC in
Alx(CrFeNi)1-x in the composition range where FCC→ BCC phase
transition is expected based on experimental observations38,44. In
Tix(CrFeNi)1-x, VEC contribution is lower, in line with the lower BCC
stability obtained from Ti addition as compared to Al, as seen in
Fig. 3d, g. In contrast, addition of Hf in Hfx(CoCrFeNi)1-x does not
induce this FCC→ BCC transition40 and the VEC contribution
towards predicted hardness in ML model is also negligible. This is
significant as FCC→ BCC transitions in MPEAs have been linked to
VEC in past4,45,46 and the hardness of BCC structures is
significantly higher; and thus, it appears that the ML model has
successfully learned these nuances that are critical for accurate
hardness prediction.
Secondly, the contributions of chemical mixing enthalpy

(ΔHchem) and asymmetry in covalent radius (δcov) toward hardness
prediction are quite significant and follow each other closely
(except for Alx(CrFeNi)1-x where the value of δcov changes only
slightly with Al addition, thereby resulting in its negligible
contribution to hardness). The hardness contributions of ΔHchem

and δcov in ML model are strongly linked to the ordering
tendencies, as they are negligible at low SRO values but kick in
suddenly as SRO increases beyond ~4–5 Laue; this happens at

~10 at.% Al in Alx(CrFeNi)1-x, ~4 at.% Ti in Tix(CrFeNi)1-x and ~3 at.%
Al in Alx(TiZrHf)1-x, as seen from Figs. 3e, h, 5d and 6a, b, d. Also,
while both ΔHchem and δcov contributions follow ordering
tendencies, δcov appears to be considerably more dominant
where intermetallic formation occurs, as seen for Tix(CrFeNi)1-x and
Hfx(CoCrFeNi)1-x systems in Fig. 6b, c, both of which exhibit strong
intermetallic formation39,40. The contributions to hardness from
ΔHchem and δcov also appear to be sensitive to phase transforma-
tions as their slopes change significantly wherever phase
transitions appear. In Alx(TiZrHf)1-x, Fig. 6d, this coincides with
HCP→BCC transition as Al increases from 7.7 to 14.2 at.%, as seen
in Fig. 5b, and in Tix(CrFeNi)1-x, the two non-linear jumps in ΔHchem

and δcov hardness contributions, as seen in Fig. 6b, coincide with
the formation of ε-phase (Ni3Ti, HCP) at low Ti concentrations and
a metastable R-phase (Ni2.67Ti1.33) at higher concentrations39. This
insight is significant as the short-range order and the nature of
metallic bonds have been linked to intermetallic formation and
mechanical properties in previous studies36,47. The ML model
appears to be able to capture these dependencies quite
accurately through variations in ΔHchem and δcov.
The third insight is from the hardness contributions from

asymmetry in Young’s Modulus (δE), which appear to be more
direct wherein a larger increase in δE manifests as a more significant
increase in hardness; as can be seen for Alx(CrFeNi)1-x which shows
the highest increase in δE among the systems studied and
consequently exhibits highest contribution of δE towards ML
predicted hardness. But, note that the hardness contribution of δE
is not linear with respect to feature value and appears to follow
similar trends as ΔHchem and δcov, which are linked to ordering and
phase transformations. This is along expected lines, because the
Young’s modulus can be calculated in principle from the interatomic
potential-energy (U) vs. separation (r) curve, where the force
F ¼ �∂U=∂r. At constant pressure and negligible volume changes,
δU � dH. A larger δE would indicate the presence of a pair of atoms
where one species has a higher bond strength (and hence higher
stiffness or larger Young’s modulus) and the other has a lower bond

Fig. 6 Visualizing the decision-making process of ML model. Contribution of different features toward ML hardness prediction in:
a Alx(CrFeNi)1-x, b Tix(CrFeNi)1-x, c Hfx(CoCrFeNi)1-x, and d Alx(TiZrHf )1-x alloy systems. At any composition (x), the cumulative hardness
contribution of each feature is equal to the vertical distance between that feature contribution plot and the baseline hardness value
(calculated at x= 0). At any x, the summation of baseline hardness and all feature contributions will result in overall hardness. e Feature
variations with respect to composition for alloy systems shown in a–d. Normalized feature values have been plotted here. Feature notations:
VEC-Valence electron concentration, δcov-asymmetry in covalent radius, ρ-average density, δE-asymmetry in Young’s modulus, δG-asymmetry
in shear modulus, ΔHchem-chemical enthalpy of mixing, ΔHel-elastic enthalpy of mixing. Features that had negligible contribution to hardness
prediction over these composition ranges have not been included in the plots.
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strength. It has been observed empirically for minerals that higher is
the localization of the electron density, higher is the bond strength.
In Miedema’s model, the value of ΔHchem is a function of the
difference in the Wigner-Seitz cell boundary electron density and
will likely predict a higher value of ΔHchem for the atomic species
pair described above.
Finally, the elastic mixing enthalpy (ΔHel) increases mono-

tonically with respect to composition (x) in all systems studied
here, but its contribution to hardness prediction shows striking
differences and shifts from negative to negligible to strongly
positive contribution as we move from Alx(CrFeNi)1-x to
Tix(CrFeNi)1-x to Hfx(CoCrFeNi)1-x system. Addition of Hf to
CoCrFeNi causes a significant increase in ΔHel and the Hf-Cr
pair has a strong clustering tendency, as shown in Fig. 4e,
indicating that Hf does not prefer sitting next to Cr. Recently,
Roy et al.48 have demonstrated that lattice distortion can be
used for estimating solid-solution hardening in high-entropy
alloys, where the solute-atom dislocation interaction energy was
calculated as a function of shear modulus, solute-
atom–dislocation-core distance and local strain. The distance
from dislocation core is influenced by atomic size (i.e., molar
volume) with smaller atoms segregating easily to dislocation
cores and the local strain is influenced by the radius asymmetry.
ΔHel captures these nuances to some extent as it reflects both
the local distortion and the bonding characteristics. Figure 6c
shows that the hardness increase predicted by ML model at low
Hf concentration (<3 at.%) originates almost entirely from ΔHel

contribution, indicating that the ML model is able to correctly
predict the hardness variations accompanying phase separation
processes driven by a combination of weak ordering parameter
and high elastic strain energy.
In summary, our machine-learning (ML) framework identifies

in the decision-making process the essential feature sets, non-
linear responses, and the underlying correlated physics – here,
for hardness in complex multi-principle-element alloys (MPEAs).
Our ML model utilizes an ensemble of 165 independent neural
networks that are driven by physical features to predict the
hardness of MPEAs; wherein each network is trained on a
diverse dataset using elemental and alloying descriptors. The
model successfully predicts hardness variations in a wide variety
of MPEAs and closely follows the ordering behaviour and phase
transitions observed from first-principles calculations. The
decoding of ML model, achieved through calculation of exact
hardness contributions of different features, indicates that the
underlying physics is being captured through predictors of
atomic-interactions (such as formation enthalpy and bonding
characteristics) and local-lattice distortion (such as size-asym-
metry, elastic-enthalpy and strain-energy) along with a phase
classifier (VEC). Our proposed ML framework presents a
promising way of efficiently exploring wide compositional
spaces in MPEAs. The methodology developed for decoding
the ML model can be extended to any ML model, irrespective of
algorithm used, and can thus prove immensely useful in
bringing out fundamental insights from both existing as well
as future ML models.
While the ML model is generally successful, it appears that

small discrepancies with the experimental measurements stem
from: (i) discrepancies in experimental and calculated enthalpies
that can become significant for systems containing elements
prone to multiple oxidation states such as Ti – an artifact that is
carried over from Miedema’s approach, and (ii) lack of explicit
information on crystal structure and SRO parameters, neither of
which is known without a priori experiments and/or DFT
calculations. Improvements in the proposed model will, there-
fore, require accurate prediction of short-range order para-
meters and crystal structures from elemental properties and
improved description of thermodynamic interactions. For
example, it is well known that the short-range order in

disordered alloys may affect mechanical response49, therefore,
it is important for future models to effectively capture such
effects on material properties.

METHODS
Feature engineering and model architecture
We explored a set of 22 features comprising of 18 elemental and 4 alloying
descriptors. The features have been classified as-such to highlight two
different characteristics of an alloy: (a) the elemental descriptors represent
alloy properties that may be a direct extension of the properties possessed
by component elements, and (b) the alloying descriptors represent
changes that occur when different elements interact with each other
during alloy formation. Supplementary Fig. 2 lists these features along with
the expressions used to calculate them and the Pearson’s correlation
coefficient for each feature as a measure of its linear association with
hardness. The elemental descriptors (S. No. 1–18) are characteristic of the
elemental composition of the alloy and were calculated as either
composition-weighted average or as an asymmetry-measure over the
component elements. The chemical and elastic enthalpies of mixing
associated with alloy formation were calculated using Miedema’s
model50–53. The configurational entropy depends only on the relative
amount of constituents while being independent of their identity, and has
been shown to be the primary stabilizing factor for disordered phases in
HEAs54. YZ parameter represents a thermodynamic parameter developed
by Yang and Zhang55 that was shown to be a good descriptor of the
phases present in MPEAs. Supplementary Fig. 3 lists the ten shortlisted
features that were used for training the ANNs and also visualizes the
variation of hardness with each feature along with the linear regression
lines and R2 values. For a detailed discussion on feature selection, readers
may refer to Supplementary Methods.
Feed-forward back-propagation ANNs with twelve different architec-

tures (Supplementary Table 3) were trained using ten feature-sets
(Supplementary Table 4) with Vickers hardness as the target value. For
three feature-sets, a multiple linear regression was also performed to act as
a baseline measure of ANN performance. These ANNs (ANN1, ANN2, …,
ANN12) were used with the aim to ascertain if the depth of neural network
will be significant in controlling the model performance. This was of
specific interest since a non-linear relationship was observed between the
features and hardness, and deep neural networks have been conclusively
shown to perform better at learning non-linear relationships56. The
number of layers in the neural networks used in this work range from
two in ANN1 to seven in ANN12.
Since the hardness prediction is a regression problem, the output layer

in all ANN architectures employs rectified linear unit (ReLU) activation
function. For the hidden layers, we have used a combination of sigmoid
and ReLU activation functions. The hardness of an alloy is a strong function
of its crystal structure and the same can also be seen in Fig. 2b where the
mean hardness value increases as we move from FCC to BCC crystal
structure and the presence of intermetallic phases also hardens the alloy.
This strong dependence indicates that the neural network may make
accurate hardness predictions only if it is capable of classifying the alloy
crystal structure based on input features. Past research has shown that it is
possible to predict the phases present in MPEAs using the thermodynamic
descriptors included in our feature sets46,51,57. Thus, we believe that hidden
layers with sigmoid activation functions may be able to learn such
correlations without explicitly training the network for crystal structure
classification. This belief was strengthened by test runs wherein ANNs with
combination of ReLU and sigmoid hidden layers performed considerably
better than those with only ReLU hidden layers.

Machine learning model training
The standard practices followed while training all the models have been
elucidated here. To ensure equal importance to all features during the training
and for good convergence, the range of each feature was rescaled to [0, 1]
range using min-max normalization. For every training process, five-fold cross
validation was used and thus the training-set to testing-set size ratio was
always 80:20. Each cross validation was independent of the others i.e., trained
weights or initialized parameters were not carried forward. All performance
results are from models trained on the randomized data with same seed to
ensure uniformity of training/test sets between all models. This allows fair
comparison of performance between models while ruling out any bias due to
dataset. Python 3.8.1 and associated open-source libraries have been used for
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developing all the models reported here. We have used pandas|1.0.3 and
numpy|1.18.2 for data processing, scikit-learn|0.22.2 and statsmodels|0.11.1 for
linear regression and statistical analysis, and tensorflow|2.2.0rc2 and keras|
2.3.1 for implementation of ANNs. All ANNs were trained using mean absolute
error (MAE) loss function and Adam optimizer with a learning rate of 0.02. The
performance of each ANN was calculated using only the cross-validation
results, i.e., for each alloy, only that prediction was considered when it was
part of the validation set and thus did not participate in the training process.
For any given training process, the predictions of each validation set were
recorded and statistical analysis (R2, RMSE, MAE and average percentage error)
was done on the combined predictions from all validation sets. Averaging of
statistical scores from validation sets was not done as it would bring in bias by
giving more/less importance to a particular validation set. The cross-validation
performance for each trained model is detailed in Supplementary Table 2 and
the effect of model architecture and feature set has been visualized in
Supplementary Fig. 5 & 6.

Predictions using ensemble model
The final ML model consists of an ensemble of 165 trained ANN models
which were selected based on their cross-validation performance scores. A
model averaging technique is used wherein the final prediction is
calculated as an average of the 165 predictions (one from each trained
model present in the ensemble). The ML model developed here requires
only a single user input viz. name of the alloy (for e.g., AlCo2CrFe0.5Ni) for
predicting the hardness as the composition and features required by each
ANN are calculated automatically by supporting scripts.
We developed a methodology for generating hardness predictions

(ternary contour plots in Figs. 3, 4 & 5) over vast compositional spaces by
reducing the compositional degree of freedom in MPEAs through clubbing
of elements into binary or ternary components. For example, in Fig. 3a,
AlTiCrFeNi system is broken into three components – Al, Ti and an
equiatomic ternary (CrFeNi). This allows representation of MPEAs composi-
tion space on a ternary plot. The first step is to create alloy compositions
spaced by 1 atomic %, thereby leading to 5151 unique compositions. The
ML model is used to predict the hardness at each of these compositions and
the results are plotted as a predicted hardness contour on a ternary plot.

Density functional theory calculations
The density-functional theory (DFT) based Korringa-Kohn-Rostoker (KKR)
Greens’ function method combined with the coherent potential
approximation (CPA) was used to calculate total energy of arbitrary
solid-solution alloys33. The KKR-CPA performs configurational averaging
simultaneously with charge self-consistency, which properly includes
alloy-induced Friedel impurity-charge screening. For DFT, we used the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional for
solids58. We employed a site-centered, spherical-harmonic basis that
includes s, p, d, and f -orbital symmetries (i.e., lmax= 3) in all calculations.
The self-consistent charge density was obtained from the Green’s
function using a complex-energy contour integration and Gauss-
Laguerre quadrature33 (with 24-point semi-circular mesh enclosing the
bottom to the top of the valence states). An equally spaced k-space
mesh of 24 × 24 × 24 was used for Brillouin zone integrations. The core
electrons were treated fully relativistically (includes spin-orbit coupling),
while semi-core/valence electrons were treated scalar relativistically (i.e.,
neglecting spin-orbit coupling).

Linear-response theory for short-range order
Thermodynamic linear-response theory was used to calculated Warren-
Cowley SRO parameters34, i.e., αijμν , where μv denote elements pairs in the
alloys and ij are lattice sites in the crystal. For a homogeneous solid-solution
alloy with a set of compositions fciμg, the SRO dictates pair probabilities
Pijμν ¼ ciμc

j
ν 1� αijμν

� �
that potentially can affect chemical short-range order4,

as well as mechanical behavior47. For a dominant k-space wavevector k ¼ ko ,
the SRO diverges at the spinodal temperature (Tsp) due to absolute instability
in the correlated fluctuations, i.e., α�1;s;s0

μν (ko ;Tsp)= 0 (where s,s’ denote the
independent sublattice in the structure), and provides an estimate for SRO
and the order-disorder or miscibility temperature34. This first-principles theory
of SRO is based on the electronic structure of the alloy; therefore, it directly
embodies underlying electronic and alloying effects (like band-filling,
hybridization, atomic-size, or Fermi-surface nesting43).

Experimental method
The Alx(TiZrHf)1-x with x = 0–0.25 atomic fraction was synthesized by arc-
melting on a water-cooled copper hearth in an ultra-high purity argon
atmosphere using elemental chunks (Alfa Aesar, purity > 99.8%). Samples
were melted, flipped and re-melted multiple times to ensure homo-
geneity. X-ray diffraction and subsequent scanning electron microscopy
(SEM) showed the formation of a homogeneous alloy (Supplementary
Fig. 7). The Vickers microhardness testing was performed on a Wilson
Instruments Tukon hardness tester using an indenter with a square
pyramid shape. The micro-hardness tests employed a constant 500 g load
with a hold time of 10 s. The indentation size was measured using an
optical microscope, and a look up table is used to determine the Vickers
hardness value. The samples that were prepared for SEM analysis
(polished with 1 micron diamond slurry) were also used for the hardness
test. Micro hardness tests were performed 1 mm apart with 3 test
measurements on each sample.

DATA AVAILABILITY
The training dataset used for the development of machine learning model is
available at https://doi.org/10.1016/j.dib.2018.11.11132. The processed training
dataset with normalized feature values is available at https://github.com/
Dishant1389/IDEAs-ML-HEAs-Hardness-Prediction.git. The test dataset of 58 alloys
compiled for this work is available in the Supplementary Table 1.

CODE AVAILABILITY
The code used for training of artificial neural networks is available at https://
github.com/Dishant1389/IDEAs-ML-HEAs-Hardness-Prediction.git. The code for
model interrogation (using local-partial-dependencies and stimulus-response studies)
may be made available by the corresponding author upon reasonable request.
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