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Identification of high-dielectric constant compounds from
statistical design
Abhijith Gopakumar 1, Koushik Pal 1 and Chris Wolverton 1✉

The discovery of high-dielectric materials is crucial to increasing the efficiency of electronic devices and batteries. Here, we report
three previously unexplored materials with very high dielectric constants (69 < ϵ < 101) and large band gaps (2.9 < Eg(eV) < 5.5)
obtained by screening materials databases using statistical optimization algorithms aided by artificial neural networks (ANN). Two
of these new dielectrics are mixed-anion compounds (Eu5SiCl6O4 and HoClO) and are shown to be thermodynamically stable
against common semiconductors via phase diagram analysis. We also uncovered four other materials with relatively large dielectric
constants (20 < ϵ < 40) and band gaps (2.3 < Eg(eV) < 2.7). While the ANN training-data are obtained from the Materials Project, the
search-space consists of materials from the Open Quantum Materials Database (OQMD)—demonstrating a successful
implementation of cross-database materials design. Overall, we report the dielectric properties of 17 materials calculated using ab
initio calculations, that were selected in our design workflow. The dielectric materials with high-dielectric properties predicted in
this work open up further experimental research opportunities.

npj Computational Materials           (2022) 8:146 ; https://doi.org/10.1038/s41524-022-00832-5

INTRODUCTION
Dielectric materials are among the most vital components for
microelectronic device manufacturing. They are used in memory
devices, capacitor-based energy storage, field-effect transistors,
etc1–3. The dielectric constant (denoted here as ϵ), more
commonly referred to as the relative permittivity, is the factor
by which the electric field strength decreases inside a material
compared to the vacuum when it is placed near a finite electric
charge. The ϵ values of commonly used dielectric materials range
between 20 and 301,4,5—for example, Ta2O5 (ϵ ~ 23–27,
Eg= 4.2 eV)1,2,6,7 and TiO2 (ϵ= 27, Eg= 3.5 eV)1,2,8. There is a high
demand to find novel materials with high ϵ to increase the device
performance and reliability. Typically, ϵ and Eg are inversely
related2,9 in a compound. As a result, although several materials
are reported to have even larger ϵ values, they often have a small
Eg9–12, making the dielectric vulnerable to leakage currents under
exposure to large electric fields1,2. Therefore, compounds with
high ϵ and large band gaps are preferred while designing charge
storage applications and microelectronic devices.
One of the methods to find high-ϵ compounds is to calculate

the dielectric constants and band gaps of a large number of
compounds that are available in large materials databases such as
the Open Quantum Materials Database (OQMD)13,14, Materials
Project (MP)15, etc using ab initio methods such as density
functional theory (DFT). However, since the accurate calculation of
dielectric properties using density functional perturbation the-
ory16 (DFPT) is computationally very expensive, it would be
practically unfeasible to estimate the dielectric constants of tens of
thousands of materials available in those databases using high-
throughput methods. In this work, we employ an advanced
screening strategy to identify compounds with better dielectric
properties. Thus, the goal of this work is to find dielectric materials
with large values for both ϵ and Eg by screening materials
databases but at the expense of conducting as few DFPT
calculations as possible. To accomplish this task, we have
employed a materials design strategy comprised of statistical

optimization models and DFPT calculations on a small set of
compounds. While our training set consists of a small amount of
data (dielectric constants) from the MP, the search-space contains
a vast set of compounds available in the OQMD.
Several online data repositories exist today that are dedicated

to hosting large sets of open-sourced inorganic crystal structure
data generated from high-throughput (HT) DFT calculations such
as the MP15, OQMD13,14, and AFLOWLib17 among others18,19. The
design and discovery of novel materials using statistical modeling
has become an active research area20–22 in recent times, largely
attributed to the availability of such HT datasets. Recently,
multiple studies have reported HT-generation of dielectric data
and subsequent analysis9,23,24. For example, Morita et al.
reported25 machine learning modeling of data from MP11,12,15 to
assess the reliability of the theoretical models currently available
to describe the dielectric properties of crystals.
In this work, we use the MP dataset of 1864 dielectric

tensors11,12 to train statistical models and subsequently identify
dielectrics from the set of stable materials in the OQMD. Thus the
MP data forms the training-data and the set of materials from
OQMD forms the search-space for the materials design. This work
is a successful demonstration of the scenario where the data
obtained from multiple sources can be utilized to discover new
compounds. The negligible difference found between the
representation vectors, which are also called as feature vectors
in machine learning, generated for equivalent materials in MP and
OQMD made the cross-database design possible in this work.
Overall, we conducted three design cycles which required us to
perform dielectric calculations for just 17 materials using DFPT. We
report the dielectric constant values of all the 17 materials among
which three of them (HoClO, Eu5SiCl6O4, and Tl3PbBr5) have very
large ϵ (69 < ϵ < 101) and Eg (2.9 eV < Eg < 5.5 eV) values making
them part of the Pareto front of the known data, and four other
materials (Sr2LuBiO6, Bi5IO7, Bi3ClO4, and Bi3BrO4) have moderately
large ϵ (20 < ϵ < 40) and Eg (2.3 eV < Eg < 2.7 eV) values.
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RESULTS
Materials design strategy
Our objective is to find large band gap materials with optimal
dielectric constants. Since the dielectric tensor of a compound has
nine components, the optimization of all nine components leads
to a nine-objective optimization problem which is difficult to solve
with training-data of size ~2000. Thus, we specifically optimize the
largest eigenvalue of the dielectric tensor, referred to from here
onward as ϵ, via statistical modeling through the materials design
workflow, as depicted in Fig. 1. The workflow is similar to the
strategies that have been previously reported in literature26,27,
where each design cycle consists of three steps—data processing,
statistical modeling, and ab initio DFPT calculations. The largest
eigenvalue of the total dielectric tensor is chosen as the property
to be optimized because that is the highest possible dielectric
behavior from a single crystal when it is aligned perfectly along
the corresponding direction between two metallic plates. The
total dielectric tensor is calculated as the sum of ionic and
electronic dielectric tensors. The good agreement between
dielectric tensor eigenvalues obtained from MP’s DFPT HT
framework and experimentally measured dielectric constant
values was reported by Petousis et al.28. We preferred the largest
eigenvalue over the average of eigenvalues because the latter
value may severely underestimate the highest possible dielectric
behavior from a single crystal (Supplementary Fig. 1), even though
it is a popular choice to estimate the polycrystalline dielectric
constant12,28. The new data produced from DFPT calculations at
the end of each cycle is fed into the next design cycle. In the first
step, we collected the relevant data from the MP database
(training-data) and OQMD (search-space). All materials in the
training-data have a known value for ϵ and Eg, while the materials
in the search-space have known values of Eg but their ϵ values are
unknown. In the second step, Modeling, we created an ensemble
of artificial neural network (ANN)29 models, fit on the training-data,
which learn to predict the ϵ value of materials when their crystal
structures and Eg values are known. Using this ANN ensemble, we
predicted the ϵ of each material in the search-space. Since the
prediction was done from an ensemble, the results were a
distribution of ϵ values for each material, contrary to the usage of

a single ANN model where a single prediction value is obtained.
The trained ANN ensemble was used to predict the ϵ-distributions
of 11,102 stable non-metallic materials in the search-space,
obtained from the OQMD.
Further, the predicted distribution of ϵ was input into the

Efficient Global Optimization (EGO)26 algorithm. EGO takes into
account the distribution’s mean and standard deviation to rank
the materials in search-space based on their potential to increase
the chances of finding high-ϵ materials in this workflow within as
few design cycles as possible. In this work, the optimization in
dielectrics refers to the identification of dielectrics with large ϵ
values. The reason for employing an EGO algorithm to explore the
search-space is to account for the uncertainty in ANN model
predictions when the available training-data may not have
sampled the material space uniformly. The advantages of EGO-
based optimization in materials design were first reported and
benchmarked by Balachandran et al.26,30,31. In this work, we used
the EGO algorithm to select the best candidates that are either
predicted to have a high ϵ value or have a large uncertainty in
their ANN-ensemble predictions. Materials that belong to the
latter category are from the regions of materials yet to be sampled
by the training-data. The DFPT characterization of such materials is
expected to increase the reliability of ANN-ensemble predictions
after each design cycle and eventually lead to better optimization
of dielectrics during the course of this work.
The metric that is used to rank the materials is called expected

improvement, or E(I). More details on how the E(I) is calculated, are
provided in the “Methods” section. A few (5–6) materials were
selected in this step with the highest values of E(I) and carried onto
the next step—DFPT calculations. In this final step, the dielectric
tensors of the selected materials were calculated using DFPT
calculations. If DFPT results show that any of the materials have a
high value of Eg and ϵ, we stop the design workflow at that point.
Otherwise, a new design cycle is started after transferring the
newly computed ϵ values and the corresponding materials to the
training-data from the search-space. With an increased size of
training-data, the ANN ensemble is expected to have less
uncertainty in ϵ predictions in the new design cycle. The design
cycle was repeated with feedback three times in total in this work
until three materials with very large values for Eg and ϵ were found.

Data
A dataset containing information about crystal structures,
chemical compositions, band gap energy values, and dielectric
tensors of 1864 stable materials was obtained from the MP11,12,15

data repository. This dataset was used to generate the training-
data. The target property, ϵ, was obtained for each material in this
database from its calculated dielectric tensor. Another dataset
consisting of 11,102 stable, non-metallic materials containing
information about crystal structures, chemical compositions, and
band gap energy values was obtained from OQMD13,14. This
OQMD dataset was used to generate the search-space in which
the search to find dielectrics was conducted. The dielectric tensor
data of all crystals included in the search-space were unknown at
the beginning of this work.
The materials need to be represented as vectors of uniform

length in order to be input into a statistical model. We generated
the material representations using the Magpie32 crystal property
generator tool. Magpie generates a set of physical features (such
as the mean electronegativity of constituent atoms, average
coordination number inside the unit cell, etc.) from a given
chemical composition and crystal structure. Within Magpie, the
crystal’s structure-related features are generated by building
Voronoi tessellations inside the crystal and finding the nearest
neighbors of each individual atom33. Magpie generated 271 input
features that include 145 composition-based, and 126 structure-
based features to represent each material. In addition to these, the

Fig. 1 Materials design workflow used in this work. The three
parts of the design workflow shown here together complete a single
design cycle. The newly computed DFPT results from a design cycle
are fed back into the training-data for the next design cycle. Since
the dielectric tensor of a crystal is of shape 3 × 3, optimizing all nine
components of the dielectric tensor leads to a nine-objective
optimization problem. Thus, we specifically optimize the largest
value of dielectric constant (ϵ) among all crystallographic directions,
also referred to as the target property hereinafter. This scalar value is
quantified as the largest eigenvalue of the total dielectric tensor. The
training-data in this work consist of nearly 2000 compounds from
the MP for which ϵ and Eg were known and the training-data came
from the OQMD, for which only Eg were known at the beginning of
this work.
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material’s DFT Eg value was also added as an extra feature to the
representation vector since it is already known for all materials in
both MP and OQMD datasets. The addition of Eg increased the size
of the representation vector to 272, which was generated for each
material in training-data and search-space. The input feature-
vector size was further reduced to 100 using the widely-used
feature reduction techniques such as principal component
analysis and model-based selection, implemented in the Scikit-
learn python library34. The set of material representation vectors
of training-data and the search-space, in addition to the target
values associated with the training-data, completes the first step
of materials design as depicted in Fig. 1. The size of the training-
dataset increases after each design cycle as a result of conducting
DFPT calculations on new materials from the search-space.
Statistical modeling utilizing data from multiple computational

material databases is prone to errors arising from the differences
in the DFT parameters used at each database’s high-throughput
calculation strategy. Here, we have investigated the difference in
Magpie-generated features for equivalent materials in OQMD and
MP, cross-referenced based on their associated Inorganic Crystal
Structure Database35 (ICSD) Collection Codes. In total, 1717 out of
1864 materials in training-data had an ICSD Collection Code
associated with them. The crystal structures from OQMD
corresponding to all the 1717 ICSD materials were obtained, and
their Magpie-generated features were compared against that of
the structures obtained from MP as a part of the training-data. The
results, as plotted in Fig. 2a, show negligible (≤2%) relative
difference in 263 out of a total of 271 Magpie features, while the
other eight features have low relative differences (≤7%). All 145
composition-based features are computed to be identical across
the databases, as expected. The finite difference in some of the
structure-based features originates because of the difference in
the accuracy of crystal structural minimization across databases.
Band gap, which joins the Magpie features to form the final
material representation vector, was also compared between
OQMD and MP for the 1717 equivalent materials, as shown in
Fig. 2b. Band gap values showed a mean and median absolute
deviation of 0.1 eV and 0.0 eV respectively, pointing toward a
negligible difference between the calculations of band gap for
materials included in the training-data across OQMD and MP.
Overall, the materials representation vector considered in this
design is generated in a cross-comparable manner across OQMD
and MP structures with very low errors.
The ϵ values in the training-data obtained from MP are

predominantly concentrated in the range of 0 to 25, making it
difficult to model the data reliably for materials with large ϵ due to a

possible bias toward smaller values. Less than 5% of the materials in
the training-data have ϵ > 50. The median of ϵ values in the MP
dataset is 12.2 while the mean and standard deviation are 20.2 and
42.8 respectively. The distribution of ϵ in training-data is shown in
Supplementary Fig. 2. The large spread of ϵ values is decreased
upon a log-scale transformation, as shown in Fig. 3a. A smaller
spread of target values helps stabilize the machine learning model
during the training by reducing the probability of excessive changes
in internal parameters, such as the weights in an ANN. We also
analyzed the correlation between ϵ and Eg values for the materials in
the training-data, and it is given in Supplementary Fig. 3.
The original dataset downloaded from MP listed BeO (MP ID:

mp-1794) as having large ab initio computed values for ϵ(=312)
and Eg(=8.2 eV). This large value of ϵ is possibly caused by the
improper relaxation of the primitive cell of BeO in MP that leads to
a large volume change. Hence, the succeeding calculations on this
compound such as DFPT may be incorrect. We conducted a
separate DFT cell-relaxation and DFPT calculation for BeO using
VASP starting with the MP’s initial structure and find that the
computed ϵ value for the correctly relaxed structure is 4—well in
agreement with the previously reported values in literature36. This
compound was removed from the training-data before proceed-
ing further. We looked up other materials in training-data with
very high ϵ and smaller Eg individually and confirmed that they did
not have a large cell-volume change upon relaxation in MP.

Statistical modeling
The predictions from trained machine learning models, such as
ANNs, are often prone to errors arising from the insufficient
sampling of material space by training-data. We needed to
quantify the uncertainty associated with the ϵ value predictions
even though the available ANN algorithms explicitly do not
provide that value from a single ANN model. So we created an
ensemble of ANNs, each of which was trained on a randomly
chosen subset of the training-data, and has different architectures
and internal parameters. An ANN ensemble containing 2000
independent ANN models was created and trained at each design
cycle. Each ANN in the ensemble predicted a single ϵ value upon
inputting a material-representation vector, resulting in a distribu-
tion of 2000 predicted ϵ values for each material in the search-
space. The standard deviation of each of the predicted ϵ-
distribution was defined as the uncertainty of ANN modeling for
the corresponding material.
Further, a statistical single-objective optimization algorithm,

called EGO26,37–40, was used in this work to evaluate the ϵ-
distribution and quantify a measure of probable optimization

Fig. 2 Comparison of material representation vectors between the OQMD and MP structures. The difference in material representation
vectors of the structures obtained from OQMD and MP for 1717 materials. a Mean absolute difference in the Magpie-generated
representational feature vectors on structures obtained from the MP and OQMD for 1717 materials in the training-data. Crystal structures of all
1717 materials were first obtained from MP as a part of generating training-data, and further cross-referenced to find their equivalent
structures in OQMD based on their ICSD Collection Codes. ICSD Collection Codes were not available for the rest of the 143 materials in the MP
training-data. b Difference in band gap values of 1717 materials from training-data that have a corresponding structure entry in MP and
OQMD, which are cross-referenced based on their ICSD Collection Codes.
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associated with each material in the search-space. EGO is not a
method to model the data and predict ϵ. Instead, EGO is an
algorithm to select the best candidates from a given search-space,
based on their ϵ-distributions predicted by the ANN ensemble, in
order to discover as many high-ϵ materials from as few design
cycles as possible. Here, the desired optimization is the
maximization of ϵ among all the materials in the search-space.
The quantified measure of predicted optimization in EGO is called
expected improvement, denoted as E(I). Conceptually, the E(I) of a
material in search-space is the quantified probability with which a
DFPT calculation of ϵ for that material will lead to the identification
of high-ϵ material in the design workflow within as few design
cycles as possible. Figure 3a shows the results from an ANN model
validation as a part of model training during the second design
cycle. The values of E(I) computed for the same validation data
split from the training-data are shown in Fig. 3b. A simplified
illustration of E(I) with the help of an example is given below.

Example illustration of E(I)
Suppose the predicted ϵ-distribution belonging to a material
M1 in the search-space has a large standard deviation. Then it is
highly probable that the material M1 belongs to a part of the
material representation vector space which was not sampled
very well in the training set. Computing the ϵ of M1 using DFPT
and feeding back that information to the training-data will lead
to better ANN modeling in the subsequent design cycles. Thus,
M1 will have a large value of E(I). Now consider another
material M2 in search-space with a large mean and a small
standard deviation for its predicted ϵ-distribution. The material
M2 belongs to a part of the material representation vector
space that was sufficiently sampled by the training-data. So it is
highly probable that M2 will turn out to be a high-ϵ material
upon DFPT calculations. Because of that, M2 will also have a
large value of E(I).
In EGO, the calculation of E(I) for a general optimization

problem proceeds as follows (also shown in Fig. 4).

Let Y be the target property to be maximized and φ(Y) be the
predicted distribution of Y for a given search-space material. The
value, φ(Y= y) is the probability when the value of Y is y. The
largest value of the target property in the training-data is denoted
as ymax

t . The EGO algorithm, as formulated by Jones et al.38,
computes the expected improvement, E(I), as:

EðIÞ ¼
Z 1

ymax
t

ðy � ymax
t Þ φðY ¼ yÞ dy (1)

As mentioned in Balachandran et al.26, if the predicted distribution
is approximated as a normal (i.e., Gaussian) distribution with a

Fig. 4 The optimization algorithm. The value ymax
t represents the

currently available highest value of ϵ among all materials in the
training-data. μ and σ represent the mean and standard deviation of
the ANN-ensemble predicted distribution of ϵ for a material (blue
dot) in the search-space. Within the predicted distribution, which is
assumed as a normalized Gaussian function here, the region above
ymax
t represents the region of improvement—as shown in green. If
the ab initio DFPT calculation determines that the material's ϵ value
exists within the green-shaded region, it will be considered as an
improvement over the current best value ymax

t in training-data.

Fig. 3 Results from statistical modeling. a ANN model validation on a test set of 373 materials split from the training-data. We used an
ensemble of ANNs to predict a distribution of values for each material. This particular model-fit plot is taken from a single ANN model that was
part of the ensemble in design cycle 2. The 373 materials plotted here were not seen by this particular ANN model at any stage during the
training. These predictions are made only for this particular ANN model to show its learning capabilities, and it is not part of the design
workflow that we created. In the design workflow, each ANN model in the ensemble is exposed only to a unique subset of the full MP training-
data, excluding 373 randomly chosen materials. Further, in the design workflow, this trained ANN model is used to predict the dielectric values
of only the search-space materials from OQMD, not the 373 unseen materials from the MP dataset. The model was trained to predict log2ðϵÞ
because the ϵ values were highly non-uniform in the training-data with most of the values below 25, making some of the very large values
outliers. A log-scale transformation of ϵ reduced the numerical difference between the largest ϵ value and the median, making the former less
of an outlier in ANN modeling. The model fit shown in this plot has an R2 score of 70%, and a Spearman's rank correlation of 85%. b This plot
shows the predicted ϵ-distributions and corresponding E(I) values on the same test dataset consisting of 373 materials split from the training-
data. The error bars represent the standard deviation in ANN-ensemble predictions which is quantified as the uncertainty of ANN modeling.
For a clearer perspective, the radius and color of the circles represent the same quantity—the expected improvement, E(I), value calculated
using the EGO algorithm. A point without an outer circle around it represents a material with a negligible (<10−3) value for E(I). In this figure,
only 25 materials have an E(I) value that is greater than 10−3.
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mean μ and a standard deviation σ, the above equation can be re-
written as:

EðIÞ ¼ σ½ϕðzÞ þ zΦðzÞ� (2)

where, z ¼ μ�ymax
t
σ , ϕ is the probability density function, and Φ is the

cumulative distribution function38 of the normal distribution, φ(Y).
For dielectric design, Y is the dielectric constant (ϵ) of a

candidate material, and ymax
t is the highest value of ϵ in the

training-data obtained from DFPT calculations. In the MP dataset,
the largest ϵ value is for TiO2 with ϵ= 988 and Eg= 1.8 eV. But our
goal in this work is to find materials with large ϵ’s, not necessarily
higher than 988 as long as the Eg’s are greater than 1.8 eV. Thus
the ymax

t in this work was set at 100.0 for all design cycles, instead
of setting it at 988.0, to consider the search-space materials whose
ϵ values are predicted to be sufficiently high. The φ(Y) is
approximated to be a normal distribution with the same mean,
μ, and standard deviation, σ, as that of the original ϵ-distribution
predicted by the ANN ensemble for each search-space material.

Design cycles with feedback
The ϵ values of a few materials selected from the statistical
modeling are computed from DFPT calculations, as shown in the
final segment of a design cycle in Fig. 1. The results from the DFPT
calculations are used to determine whether to conduct any further
design cycles. In this work, we conducted the design cycles until at
least one high-ϵ dielectric with a large Eg is identified. When no
such materials are found during a design cycle, all the selected
materials along with their newly DFPT-estimated ϵ values are
transferred from search-space to training-data, resulting in a
feedback of information prior to the beginning of the next design
cycle. The feedback is one of the most crucial parts of our material
design workflow because it results in a better sampling of material
representation vector space by training-data and thus, more
reliable ANN model predictions during the next design cycle. The
advantage of the feedback mechanism is prominent during the
quantification of uncertainty which is used directly by the EGO
algorithm to identify the best candidates for the next set of DFPT
calculations. After the end of a design cycle, the uncertainty on
predicting the ϵ values is decreased for the set of materials which
are similar to the materials whose ϵ values were calculated using
DFPT in the given cycle.
In addition to the feedback mechanism, another factor that

influenced the candidate selection in the design workflow is the
minimum cutoff imposed on the band gap values of materials
when they are included in the search-space. The reason for
implementing a cutoff is to externally introduce a character of
multi-objective optimization in this work. Without explicitly setting
a minimum band gap limit, the candidate selection process that is
dictated by the EGO algorithm tries to optimize only a single
objective, which is the ϵ value. We conducted three design cycles
sequentially with feedback of the newly calculated data into
training-data after each cycle. In the first design cycle, we set no
band gap minimum cutoffs to allow the full exploration of the
search-space that consists of 11,102 non-metals from OQMD. In
the second design cycle, a minimum cutoff of 2.25 eV was set,
leaving 6191 materials in the search-space. In the final cycle, the
minimum cutoff was increased to 5 eV to limit the candidate
selection only to the materials with very high Eg. Hence, the
search-space size in the final cycle was reduced to 1046 materials.
The workflow that we adopted in this work deviates from the ideal
situation where a dedicated multi-objective optimization statistical
algorithm will be used to find a material with high ϵ and large Eg
values. Since the band gap values are already available for all
materials in the search-space, the best approach here was to
implement a statistical optimization algorithm to quickly find
high-ϵ materials while the preference for large band gap values is
achieved by manually setting a minimum cutoff. This work stands

as an example for the modifications required to practically
implement the statistical algorithms that are often benchmarked
on idealistic scenarios.

New dielectric materials
The materials that are part of the Pareto front of MP data are listed
in Table 1, while the Pareto front of training-data at each design
cycle is plotted in Fig. 5. Since the maximization of ϵ and Eg values
are considered as optimal in this study, each material in the Pareto
front has a higher value of either ϵ or Eg than any other material in
the corresponding training-data. Therefore, the modification of
the training-data’s Pareto front by any of the newly calculated
dielectric constants after each design cycle may indicate the
identification of suitable, high-dielectric materials.
During the first design cycle, the EGO algorithm picked out the

five most promising candidates with the largest E(I) values in the
search-space. The ϵ values of these five selected materials were
calculated using DFPT. Two materials among them turned out to
have very high ϵ values (~370) but very low Eg (~0.5 eV). The low
Eg values are not unexpected since the EGO algorithm imple-
mented in this work aims to maximize only the ϵ values. None of
the materials selected in this cycle modified the Pareto front of the
MP dataset, as shown in Fig. 5a. The ϵ values of these five
materials were appended to the training-data prior to starting the
next design cycle.
Five materials were selected in the second cycle and their

dielectric constants were calculated. Our calculations predict a
large dielectric constant for one of the five new materials—
tetragonal Tl3PbBr5 (ϵ= 101, Eg= 2.9 eV). Tl3PbBr5 joined the
Pareto front, as shown in Fig. 5b. Three other new materials—
Bi5IO7 (ϵ= 36, Eg= 2.7 eV), Bi3ClO4 (ϵ= 39, Eg= 2.3 eV), and
Bi3BrO4 (ϵ= 39, Eg= 2.3 eV), have moderately large ϵ values, even
though they did not improve the existing Pareto front. All the five
new materials were appended into the training-data before
proceeding to begin the third design cycle.
During the third and final design cycle consisting of only

materials with very large Eg in search-space, seven new candidate
materials were selected to do DFPT calculations. Two among them
—Eu5SiCl6O4 (ϵ= 69, Eg= 5.5 eV) and HoClO (ϵ= 75, Eg= 5.2 eV)
joined the Pareto front due to their large ϵ and Eg values, as shown

Table 1. The Pareto front of dielectric materials dataset from Materials
Project.

MP ID Material Eg (eV) ϵ

mp-1138 LiF 8.7161 9.3107

mp-13948 Cs2HfF6 7.2288 9.3281

mp-13947 Rb2HfF6 7.1298 9.3626

mp-7104 CsCaF3 6.8955 9.7272

mp-5347 KAlF4 6.7863 10.63

mp-10250 BaLiF3 6.5643 14.7705

mp-3654 RbCaF3 6.3974 18.8679

mp-8455 CsF 5.9329 20.3025

mp-28243 RbLiCl2 5.1482 54.4788

mp-5606 AlTlF4 4.2492 96.91

mp-23092 Ba2TaBiO6 2.5855 99.8664

mp-27832 Tl2SnCl6 2.4814 100.8

mp-3614 KTaO3 2.0983 639.8836

mp-2657 TiO2 1.781 988.0478

MP ID corresponds to the unique ID of material in the repository, Eg is the
band gap energy, and ϵ corresponds to the largest eigenvalue in the
dielectric constant tensor.
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in Fig. 5c. In total, three new dielectric materials in the Pareto front
were discovered after three design cycles and 17 new DFPT
calculations were performed in the entire workflow. No further
design cycles were conducted since we have already identified
multiple compounds with high ϵ and Eg, which remained
unexplored experimentally.
The ϵ values of all 17 materials which were obtained in this work

are given in Table 2. The ϵ and Eg of all materials belonging to the
Pareto front of the MP dataset is listed in Table 1 for comparison.
Among all the newly discovered dielectrics with large ϵ values,
tetragonal HoClO and monoclinic Eu5SiCl6O4 stand out because of
their very large DFT-calculated band gap energies (5.2 eV and
5.5 eV respectively). These two rare earth oxychlorides are
reported to have been experimentally synthesized41–44 but their
dielectric properties remained unstudied to the extent of our
knowledge. Both of these compounds are mixed-anionic inorganic
compounds—a class of emerging functional materials45. Interest-
ingly, the monoclinic Eu5SiCl6O4 has 32 atoms in its primitive unit
cell which often exceeds the maximum cutoff on the number of
atomic sites in HT studies involving computationally expensive
material properties11,19.
Thermodynamic stability of a dielectric when in contact with Si

or other semiconductors is an important requirement for it to be

used in electronic applications. Several of the high-ϵ dielectrics
identified in the published literature were shown to be unstable
while forming an interface with Si in subsequent experimental
studies conducted at or above the room temperature. The
formation of SiOx and other undesired metal oxides were reported
at the interface between Si and the popular high-ϵ dielectrics such
as Ta2O3

46–48, TiO2
49,50, BaTiO3

51, and SrTiO3
52,53. The thermo-

dynamic stability between two compounds can be assessed from
the phase diagram involving those compounds. In this work, the
phase diagram is constructed by computing the convex hull54 of
formation energies of all the materials that belong to a given
phase space spanned by their constituent elements. Each of the
compounds that form the convex hull not only has the lowest
formation energy at its composition but also has lower energy
than any linear combination of other materials in that phase
space. The difference between the formation energy of a
compound and energy at the convex hull for the same
composition is called as the hull distance (Ehd). By definition,
each material that is on the convex hull has a hull distance of zero
(i.e., Ehd= 0) and is considered to be stable. On the other hand,
every material that falls above the convex hull is considered as
metastable (0 < Ehd ≤ 50meV per atom) or unstable (Ehd > 50meV
per atom) depending on the magnitude of Ehd according to the

Fig. 5 Evolution of the Pareto front with design cycles. The ϵ and Eg values of the training-data and newly characterized dielectric materials
are plotted for a design cycle 1, b design cycle 2, and c design cycle 3. All the data shown in these plots originated from DFPT calculations.
Plot a shows the original Pareto front of the dataset from Materials Project (MP) because none of the materials measured in cycle 1 became
part of the Pareto front—predominantly owing to their low band gap values. Assigning no restrictions on the band gap of search-space
materials during the first cycle directed the design algorithm to pick two materials without any preference for large band gaps. The numerical
values of the materials in the Pareto front of the MP dataset are given in Table 1. In both b and c, only the materials with Eg values greater than
2.0 eV are plotted to highlight the area where some of the newly discovered dielectrics in their corresponding cycles joined the Pareto front.
Due to this cropping, two materials from the MP dataset which are actually in the Pareto front in plots b and c with very high ϵ values—
tetragonal TiO2 (ϵ= 988, Eg= 1.8 eV) and cubic KTaO3 (ϵ= 640, Eg= 2.1 eV), are not shown here.
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heuristic conventions adopted in literature31,55–58. The presence of
a tie-line between two compounds in a convex hull phase diagram
indicates that they are thermodynamically stable phases when in
contact with each other. Our thermodynamic stability analysis on
Ta2O3, TiO2, BaTiO3, and SrTiO3 in OQMD using the qmpy API14

showed no tie-lines connecting any of them to Si, indicating they
are unstable when in contact with Si. This is consistent with the
published results46–53. We also analyzed Gd2O3, a high ϵ (~2059)
that is proven to be stable against Si60, and found that a tie-line
does exist between Si and Gd2O3. These phase diagram plots are
provided in Supplementary Fig. 6. In Fig. 6, we report a phase
diagram to assess the stability of newly discovered high-ϵ
dielectrics—HoClO and Eu5SiCl6O4. The phase diagram shows
that both these materials are thermodynamically stable with the
semiconductors such as Si, Ge, GaAs, GaN, and SiC at 0K, a
requirement for them to be used in microelectronic devices where
an interface with one of the common semiconductors is often
necessary61. The next most promising candidate, tetragonal
Tl3PbBr5, has a very large ϵ (101) but possesses a relatively
smaller band gap (2.9 eV) and is computed to be thermodynami-
cally metastable at 0K (Ehd= 16meV per atom) according to the
data obtained from the OQMD. Tl3PbBr5 is also reported in the
literature to have been experimentally synthesized62–64, without
any mention of its dielectric properties.

DISCUSSION
We report the identification of three dielectric materials that
contain a combination of high-dielectric constant and large band
gap—HoClO(ϵ= 75, Eg= 5.2 eV), Eu5SiCl6O4(ϵ= 69, Eg= 5.5 eV),
and Tl3PbBr5(ϵ= 101, Eg= 2.9 eV). These compounds modify the
Pareto front of previously known high-throughput dielectric
constants data available from the MP database. Our screening
strategy also uncovers four other dielectric materials with large Eg

and moderately large ϵ—Sr2LuBiO6(ϵ= 24, Eg= 2.4 eV), Bi5IO7(ϵ=
36, Eg= 2.7 eV), Bi3ClO4(ϵ= 39, Eg= 2.3 eV), and Bi3BrO4(ϵ= 39,
Eg= 2.3 eV)—at the cost of conducting only 17 DFPT calculations
overall. We utilize the data available in the open-source databases
(OQMD, MP) to build a statistical optimization model and use it to
select the best candidates after searching among 11,102 stable
non-metals that are available in the OQMD. Among the newly
discovered dielectrics, two mixed-anionic materials—HoClO and
Eu5SiCl6O4 are shown to have tie-lines with multiple, commonly
used semiconductors on their phase diagrams, that indicate their
thermodynamic equilibrium.
The presence of rare earth elements such as Ho and Eu in

dielectrics can be a challenge for their use in practical applications.
However, the ongoing efforts toward increasing their availability
such as efficient recycling of rare earth materials65,66 can result in a
sufficient supply of elements for mass production of small
electronic components. In particular, Ho is an underutilized
element in the industry67 even though it is more abundant in
the earth’s crust than other widely mined elements such as Mo, Bi,
and precious metals68. Eu is more abundant on earth’s crust than
Ho and some of the heavily mined elements such as W and As68.
Hence, an active exploration of cheaper and easier extraction
methods for rare earth elements may make it feasible to include
them in mass-produced electronics in the near future. The
presence of toxic elements such as Pb and Tl can stand as a
barrier against including Tl3PbBr5 in consumer electronics. Since
mixed-anionic materials are an emerging class of functional
materials, our identification of promising dielectric materials in
this family opens up further research opportunities on rational
design of high-performance dielectrics and their experimental
characterizations.
We also assessed the thermodynamic stability of the new

dielectrics by creating a large convex hull diagram containing the
best two new dielectrics (HoClO and Eu5SiCl6O4) and several
commonly used materials in electronics. The relevance of this
analysis is also provided in detail along with examples of
previously reported high-ϵ dielectrics46–53 that were later found
out to be unstable when in contact with common electronic
component materials such as SiO2. Our convex hull analysis
indicates that both HoClO and Eu5SiCl6O4 are stable against the
common electronic materials that we considered.
To understand what features of HoClO, Eu5SiCl6O4, and

Tl3PbBr5 make them the best dielectric candidates in this study,
we have calculated their electronic structures and partial
density of states (Supplementary Fig. 5). Our analysis shows
that the top of the valence bands and bottom of the conduction
bands in these compounds consists of primarily the contribu-
tions from the anions (Cl, Br) and cations (Ho, Eu, Tl),
respectively. This analysis indicates that having lighter anions
(such as Cl, Br) is advantageous as their valence orbitals making
up the valence band edge in those compounds will have lower
energies, hence, a relatively larger band gap that is desired in
high-ϵ materials.
In addition to the identification of high-dielectrics, we

successfully demonstrated an implementation of a cross-
database statistical design for computational materials selection.
Datasets from the MP and OQMD repositories are used in this
work as training-data and search-space, respectively. The
successful identification of new materials from such a workflow
is another motivation for actively moving toward the interoper-
ability of materials databases, which is one of the four pillars of
FAIR data principles69 in scientific data management. Therefore,
better interoperability across databases amplifies the flexibility in
utilizing materials data while solving a complex materials
problem.
Lastly, this work also stands as an example of the practical

implementation of a computational design strategy for property
optimization via data-informed material selection. A multi-

Table 2. Dielectric constants of 17 materials calculated using DFT in
this work.

OQMD ID Material Eg (eV) ϵx ϵy ϵz Cycle

681780 CaVO3 0.4 4.7 4.5 4.5 1

14476 Sr2VN3 1.8 28.8 16.5 16.0 1

13450 BaZrN2 1.2 31.2 31.2 21.7 1

1104204 HoN 0.4 376.9 373.0 372.7 1

649584 Bi2SeO2 0.5 377.3 371.8 118.2 1

19571 Sr2LuBiO6 2.4 24.1 19.4 18.7 2

5958 Bi5IO7 2.7 35.8 28.2 23.1 2

24994 Bi3ClO4 2.3 38.9 24.2 25.7 2

22697 Bi3BrO4 2.3 39.0 23.7 22.1 2

118234 Tl3PbBr5 2.9 100.8 36.4 36.4 2

11916 Eu4Cl6O 5.3 7.4 7.3 5.5 3

18953 EuClF 5.6 11.1 11.1 10.4 3

646321 Rb2PrCl5 5.1 12.2 11.0 8.9 3

15191 Cs2NaCeCl6 5.1 13.2 13.2 13.2 3

4063 EuCl2 5.2 15.6 12.9 11.8 3

24611 Eu5SiCl6O4 5.5 69.3 15.1 12.9 3

13689 HoClO 5.2 75.1 37.9 15.2 3

OQMD ID refers to the materials’ unique entry ID in the OQMD database, Eg
refers to the band gap energy in eV, ϵx,y,z refers to the three eigenvalues
(xx, yy, zz) of the of dielectric constant tensor, and the Cycle mentions the
design cycle when the material was selected for the calculations of
dielectric constant using DFPT. The values ϵx,y,z are ordered in such a way
that ϵx > ϵy > ϵz. The best seven materials found in this work are highlighted
in bold letters.
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objective optimization problem (maximizing ϵ and Eg) is converted
into a single objective optimization using statistical methods
(maximizing ϵ) combined with explicit constraining of band gap
values (higher Eg) among materials since Eg is already available for
all materials in the search-space. The deviation from the ideal,
statistically benchmarked multi-objective optimization work-
flows27 enabled the efficient utilization of resources and resulted
in the identification of three high-ϵ dielectrics at the cost of just 17
new DFPT calculations.

METHODS
ANN modeling
The individual models in the ANN ensemble consisted of a single hidden
layer with the number of neurons in the range of 102. The exact number of
neurons varied randomly within a small range (10–30) to avoid any bias
that may arise from model architecture since the subset of training-data for
each ANN was randomly sampled. Each ANN ensemble consisted of 2000
independent ANNs. Thus, the ϵ-distribution for each material consisted of
2000 independent ϵ predictions. A new ANN ensemble was created and
trained for each new design cycle to learn the incremented training-data.
The Nadam optimizer is used for network optimization during the training.
Both L2 layer regularization and early-stopping callback as implemented in
Keras70, are implemented for each ANN in the ensemble to prevent over-
fitting. On average, it took between 300 to 400 epochs to reach the local
minimum of the loss function. Each epoch is a full iteration of fitting the
training-data to update the internal weights of an ANN. Validation details
of one of the randomly chosen ANN models from the ensemble are plotted
in Fig. 3a for reference. Feature dimensional reduction prior to the training
of ANNs was done using the principal component analysis algorithm
implemented in scikit-learn34. Model validation during the training of one
of the 2000 ANN models in the second design cycle is plotted in Fig. 3a.

DFPT calculations
We performed all DFT calculations using the Vienna Ab initio Simulation
Package (VASP)71,72 with potentials derived using the projector-augmented
wave73,74 method. We calculated the total dielectric constant (sum of
electronic and ionic components) values for selected materials using DFPT as
implemented in VASP. All the compounds were fully relaxed before the
dielectric calculations. We used an energy cutoff of 520 eV, k-mesh of 6000
k-points per reciprocal atom, and an energy-threshold of 10−8 eV during the
self-consistent calculations. The forces on the atoms after structural
relaxations were less than 10−3 eVÅ−1. We used the generalized gradient
approximation75 to approximate the exchange-correlation energies of the
electrons. A detailed discussion on DFPT calculations is provided in the
Supplementary Methods section included within the Supplementary
Material. We did DFPT calculations on a set of well-known dielectrics and a
few rare earth compounds, and benchmarked the results against previously
reported results in the literature. These results indicate the reliability of our
calculated ϵ values, which are provided in Supplementary Table 2.
Specifically, two rare earth oxides (EuO and Ho2O3) and one rare earth
halide (EuF2) were benchmarked to test the accuracy of the standard DFPT
calculations in modeling these compounds. Furthermore, our calculations
reveal that no imaginary phonon modes appear in HoClO, Eu5SiCl6O4, and
Tl3PbBr5, the best high-ϵ materials identified in this work. More details are
provided in Supplementary Table 1 and Supplementary Fig. 4.

DATA AVAILABILITY
The data used in building statistical design models are open-sourced and available
via OQMD and Materials Project databases. Other data that support the findings of
this study are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
The raw, unformatted codes used in this project for statistical materials design are
available via Github at https://github.com/tachyontraveler/diel-design-scripts/tree/

Fig. 6 Phase diagram of all stable compounds in Ho-Cl-O-Eu-Si-Ge-Ga-As-C-N phase space from OQMD (as of January 2022). The two new
most promising dielectrics, HoClO and Eu5SiCl6O4 are plotted in large green circles in the center. The elements (Ho, Eu, Si, Cl, Ge, Ga, As, C, N,
and O) and semiconductors of interest (Si, Ge, GaAs, SiC, and GaN) are plotted in the middle layer in medium-sized yellow circles. All other
stable compounds in the phase diagram are plotted in small dark circles in the outermost layer. Tie-lines between the new dielectrics and the
semiconductors or elements are shown as thick red lines. Other tie-lines from the dielectrics to the rest of the stable materials in the outer
layer are drawn as narrow gray lines. Another 2326 tie-lines exist in this phase diagram that do not include either of the dielectrics, and are not
shown in this network-plot for better visibility of relevant information. The elements and compounds without any visible tie-lines in the
outermost layer do not have tie-lines with HoClO or Eu5SiCl6O4, but they have tie-lines with some of the other materials in the outer layer—
making them part of this phase diagram. There exist a tie-line from each dielectric material to each semiconductor that is considered here for
comparison. This indicates that both HoClO and Eu5SiCl6O4 are in thermodynamic equilibrium with Si, Ge, GaAs, GaN, and SiC at 0K.
Thermodynamic stability is a requirement for dielectrics that needs to form a stable interface with semiconductors in electronic applications61.
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v0.1.0-alpha. The latest versions of the scripts upon release will be available in the
future at https://doi.org/10.5281/zenodo.6515841.
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