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A non-ideal solution theory for the mechanics and
electrochemistry of charged membranes
Alain Boldini1 and Maurizio Porfiri 2✉

Understanding how ions and solvent molecules migrate within charged membranes is fundamental for advancing the analysis of
biological membranes and the design of energy storage and production devices. Recent efforts highlighted a significant interplay
between mechanics and electrochemistry in charged membranes, calling for the development of high-fidelity models to describe
their interaction. Here, we propose a continuum theory of the chemoelectromechanics of charged membranes, accounting for
potentially large deformations and non-idealities of the solution permeating the membrane. We demonstrate the potential
applications of our theory within the study of ionic polymer actuators. Our theory predicts sizeable effects of non-idealities and
mechanical deformations, enabling insight into the role of mechanics on solute and solvent transport within charged membranes.
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INTRODUCTION
Membranes play a prominent role in many chemical, biological,
and physical processes, where they separate two environments
with different chemical composition1,2. Their microscopic structure
and features determine the type of chemical compounds that
cannot diffuse across them. Particularly important is the capability
of charged membranes to interact with charged species3,4. Cell
membranes, which bear a negative fixed charge5, are at the basis
of cell physiology6, and they are often considered as one of the
most important component of cellular life7. Similarly, artificial ion-
exchange membranes, wherein ionic groups are covalently
bonded to the polymeric skeleton, are widely employed in fuel
cells, hydrogen production, and energy storage technologies4,8.
Modeling of charged membranes is central to understand

biological processes and designing new, sustainable energy
devices. Typically, charged membranes have been studied
through the lens of electrochemistry, wherein the motion of
charges is modeled by means of homogenized continuum
treatments9–11, with roots in the classical Poisson-Nernst-Planck
system that describes electrolytes in solution12. Extensions of
these models include complex, non-ideal behavior of electrolytes
within charged membranes13,14.
In this picture, membrane mechanics has often been neglected

and relegated to a handful of phenomena in which deformations
play a major role, such as mechanosensitive ionic gates in cell
membranes15. A more thorough analysis of membrane chemoe-
lectromechanics has been proposed for actuators and sensors
based on ionic polymers, which transduce mechanical to
electrochemical energy and vice versa9,11,16–19. Despite these
inquiries, the coupling between mechanics and electrochemistry
has yet to be explored in many of the natural and artificial
processes in which charged membranes play a key role.
Recent theoretical and experimental endeavors highlighted

profound, unexpected interactions between the mechanics and
electrochemistry of charged membranes, with broad implications
on biological membranes and energy storage and production
devices. On the one hand, the non-ideal behavior of the solution

permeating charged membranes can significantly affect the
membrane deformations20. Specifically, solvation, the interaction
between solvent molecules and counterions21,22, can elicit
macroscopic bending of charged membranes in electrolyte
solutions. On the other hand, the mechanical deformations of
charged membranes can have sizeable effects on membrane
electrochemistry. For example, the migration of solvent within
charged membranes, which normally occurs from high to low
counterions’ concentrations, can be reversed by volumetric
deformations of the membrane, contradicting our intuition based
on osmosis23.
Understanding the role of solution non-idealities on the

coupled mechanics and electrochemistry of charged membranes
constitutes an untapped problem. We know that solution non-
idealities are expected to bear important consequences on the
electrochemistry of the solution permeating the charged mem-
brane. In fact, several studies have previously highlighted the
critical role of non-idealities in solutions. For example, solvation is
responsible for the lower conductivity of small ions compared to
ions of intermediate size, contrary to our intuition based on the
radii of isolated ions, the so-called Stokes-Nernst-Einstein’s
predictions24. Similarly, long-range electrostatic interactions
between ions can explain the remarkable discrepancies from
ideality in the evaluation of the activity of the ions in an electrolyte
solution or a charged membrane, within the classical Debye-
Hückel theory25. Other types of non-idealities can also contribute
to experimentally measurable changes in the membrane electro-
chemistry13. Quantifying how these non-idealities work together
or at odds to modulate the coupled mechanics and electro-
chemistry of charged membranes is the objective of our effort.
Clearly, there is a dire need for mathematical models that can

describe the chemoelectromechanics of charged membranes,
accounting for large deformations and non-ideal behavior of
solutions in the membrane. Here, we bridge this gap in the
literature by proposing a continuum-level, faithful theory of the
coupled mechanics and electrochemistry of charged membranes.
The theory includes the incompressibility constraint accounting
for the finite volume of counterions, which is responsible for the
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inversion of solvent migration23, along with four different types of
non-ideal solution behavior that are expected to play a substantial
role in membrane response.
Following the nomenclature in refs. 13,14, the four modeled

sources of non-idealities are (Fig. 1): solvation, long-range
electrostatic interactions, short-range physical interactions, and
steric effects due to finite pore size. Solvation indicates the
interaction between solvent and solute molecules, which affects
ideal mixing by causing the formation of solvation shells of solvent
around counterions21,22. Long-range electrostatic interactions are
well-known in the electrochemistry literature, since the seminal
work of Debye and Hückel25 aimed at explaining departures from
the ideal behavior of electrolyte solutions. These departures are
associated with the rearrangement of ions in solution, whereby
cations tend to be surrounded by anions and vice versa26,27. Short-
range physical interactions are related to the interactions between
pairs of ions in the non-diluted limit26,28. Such interactions occur
between ions of opposite sign and depend on the specific
characteristics of each ion in the couple28. Finally, steric effects are
related to the finite volume of pores in the membrane13. Due to
these effects, the concentrations of solvent and counterions
cannot grow indefinitely, unless the volume of pores is increased
due to volumetric deformation.
We highlight that the ‘ideal’ model we define within our

modeling framework is one in which the free energy of mixing
only contains the ideal mixing term. In classical models of
electrolyte solutions, the definition of the ‘ideal’ model is different,
whereby long-range electrostatic interactions are typically
included in addition to the ideal mixing term. Our choice of not
including this term in the ‘ideal’ model is motivated by the
previous literature on the mechanics and electrochemistry of
charged membranes, where long-range electrostatic interactions
have typically been neglected9–11.

As a key application of our theory, we study the steady-state
actuation of an ionic polymer actuator. Through a series of
simplifying hypotheses, we reduce the three-dimensional che-
moelectromechanical problem to a nonlinear system of integro-
differential equations that can be solved numerically. We study
membranes with small (lithium) and large (cesium) monovalent
counterions, which are characterized by two different sets of
parameters that have a dramatic effect on actuation. Our results
unravel a significant interplay between non-ideal solution
behavior and mechanics, which are of major interest for the
study of charged membranes.

RESULTS
Continuum theory of mechanics and electrochemistry of
charged membranes
Without loss of generality, we consider a charged membrane with
monovalent negative fixed ions and positive counterions, mirror-
ing cell membranes and common membranes utilized in fuel cells
and ionic polymer transducers29. We assume perfect permselec-
tivity of the membranes, such that no ion with a charge of the
same sign of fixed ions can cross the membrane. We assume that
the membrane undergoes small deformations with respect to a
reference configuration that is stress-free, electroneutral, and with
zero electric field. This hypothesis allows us to confound the
reference and deformed configurations, and therefore material
and spatial variables. Thus, variables are functions of the position x
in the reference configuration and time t. The extension to finite
deformations is tackled in the Supplementary Information.
The mechanics of the membrane is defined by the displace-

ment u(x, t) of the material particle x at time t. Membrane
deformation is described by the infinitesimal strain tensor
εðx; tÞ ¼ 1

2 ½∇uðx; tÞ þ ∇uðx; tÞð ÞT�, where ∇(⋅) is the nabla opera-
tor. The trace of the small strain tensor tr ðεÞ determines the

Fig. 1 Schematics of the four types of non-idealities considered in this manuscript. Here, counterions and fixed ions are represented as
green and blue spheres, while solvent molecules are shown as red-gray molecules (focusing on water, oxygen, and hydrogen atoms are
shown in red and gray, respectively). The insets show the four non-idealities: (1) solvation (the formation of solvation shells around ions); (2)
long-range electrostatic interactions (the arrangement of ions such that charges of one sign tend to be surrounded by charges of the
opposite sign); (3) short-range physical interactions (the interaction of closeby ions with opposite charges); and (4) steric effects due to finite
pore size (the limitation to the maximum concentration of counterions and solvent due to the finite volume of the pores of the membrane).
The orange lines highlight the interactions associated with each type of non-ideality.
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difference in volume compared to the reference configuration.
The electrochemistry is described by three scalar fields: the
concentration of solvent C0(x, t), the concentration of counterions
C+(x, t), and the electric potential φ(x, t) with respect to a common
ground. We assume that the concentration of fixed anions C−(x, t)
is uniform, C�ðx; tÞ ¼ C�, such that Cþ ¼ C�. In the reference
configuration, we consider that the concentration of solvent is
also uniform, C0 ¼ C0.
The deformation of the membrane is governed by equilibrium,

which, upon neglecting inertia and body forces, requires that the
stress tensor is divergence-free9, see “Methods”. Migration of
solvent and counterions is governed by mass conservation. We
assume that no reaction occurs within the membrane, such that
concentrations’ variations over time are associated to fluxes of
solvent or counterions, see “Methods”. We neglect electrody-
namics phenomena, such that Maxwell equations reduce to the
Gauss law30 that relates the electric displacement D to the net
charge density, see “Methods”.
Following the examples of the literature11,23,31–33, we put

forward two constraints that allow us to significantly simplify the
description of the motion of the solution in the membrane.
Specifically, we assume that connected pores are fully saturated,
and we impose that the individual constituents of the mixture
(solid phase, counterions, and solvent) are incompressible, such
that23

V0ðC0 � C0Þ þ VþðCþ � CþÞ ¼ tr ðεÞ; (1)

where Vð�Þ is the molar volume of the corresponding species. The
inclusion of the finite volume of ions in Eq. (1) is critical to capture
the coupling between mechanical deformations and electro-
chemistry in charged membranes, including the inversion of
solvent migration23.

Constitutive equations and excess energy
We employ a thermodynamically consistent approach to deter-
mine the constitutive equations for the charged membrane9,32,34.
To this end, we define a Helmholtz free-energy density Ψ per unit
volume of the mixture. We hypothesize that this quantity can be
additively decomposed in four contributions9,13: the mechanical
strain energy Ψmec(ε), the ideal energy of mixing Ψmix(C0, C+), the
excess energy that encapsulates solution non-idealities within the
membrane Ψexc(C0, C+), and the polarization energy Ψpolðε;DÞ. We
modify the free-energy density to impose the constraint in Eq. (1),
obtaining the following functional:

Ψfðε; C0; Cþ;D; πÞ ¼ ΨmecðεÞ þ ΨmixðC0; CþÞ þ ΨexcðC0; CþÞ
þΨpolðε;DÞ � π½tr ðεÞ � V0 C0 � C0

� �
�VþðCþ � CþÞ�:

(2)

Here, the hydraulic pressure π serves as a Lagrange multiplier to
impose the constraint in Eq. (1), whereby taking the variation of
Eq. (2) with respect to π and setting it to zero provides the
incompressibility constraint. Constitutive equations that satisfy the
second principle of thermodynamics can be derived upon
differentiation of the Helmholtz free-energy density34, see
“Methods”. The only quantities that are not defined by the
functional are the solvent and counterions’ fluxes, for which
we consider a Nernst-Planck form11, see “Methods”. Due to the
presence of ε, C0, and C+ in the incompressibility constraint,
the modification of the free-energy density with π affects the
stress and electrochemical potentials of solvent and cations.
The mechanical, mixing, and polarization free-energy contribu-

tions are relatively standard in the study of charged membranes, and
are defined in “Methods”. On the other hand, the definition of excess
energy associated with non-idealities in the solution constitutes a
fundamental advance in the study of coupled mechanics and
electrochemistry of charged membranes. We decompose the excess

energy into four contributions13, associated with solvation, long-
range electrostatic interactions, short-range physical interactions,
and steric effects due to finite pore size.
The term solvation identifies the interaction between solvent

molecules and ions in electrolyte solutions21,22. Depending on
the nature of the solvent, interactions may include dipole-dipole
interactions, ion-induced dipole, and hydrogen bonds. Thus,
solvent molecules dispose themselves around ions, creating so-
called solvation shells21,22. The rearrangement of solvent
molecules and ions due to solvation generates an excess energy
compared to the ideal mixing case. In this case, both mobile
counterions and fixed anions contribute to the energy. We
follow the example of the literature13,28,35 toward defining
the free energy of solvation. The model relies on the hypothesis
of a stepwise solvation process, from which one can write the
free energy as

ΨslvðC0; CþÞ ¼ RT C0 log α0ðC0; CþÞ þ Cþ log αþðC0;CþÞ
α1þ

� �h
þ C� log α�ðC0;CþÞ

α1�

� �i
:

(3)

Here, R is the universal gas constant, T is the temperature, α0 is
the ratio between the free solvent molar fraction in the solvated
and unsolvated states, αi is the ratio between the molar fraction of
unbound ions i=+, − in the solvated and unsolvated states, and
α1i is the fraction of unbound ions i=+, − in the infinite
dilute state.
To determine α0, α+, α−, α1þ , and α1� , we ought to define the

free molar fractions of solvent and ions,

χ0 ¼
C0

C0 þ Cþ þ C�
; (4)

χ i ¼
Ci

C0 þ Cþ þ C�
; (5)

for i=+, −. We also have to define the free molar fractions of
solvent and ions in the solvated state. For the solvent, we need to
reduce the concentration by the fraction of solvent molecules
bonded to cations and to anions, Cþhþ and C�h�, respectively,
where hi is the average solvation number of ion species i, which
quantifies the average number of solvent molecules bonded to
each ion. Thus, we obtain

χslv0 ¼ C0 � Cþhþ � C�h�
C0 þ Cþð1� hþÞ þ C�ð1� h�Þ

: (6)

For the ions, the free molar fractions in the solvated state are
defined as

χslvi ¼
Ci

ð1þkiα0χ0Þ
N i

C0 þ Cþð1� hþÞ þ C�ð1� h�Þ
; (7)

where ki is the binding constant of ion species i and N i is the
number of binding sites for the solvent on ion species i. The
binding constant is related to the enthalpy of solvation ΔHslv

i
through ki ¼ exp �ΔHslv

i =ðRT Þ
� �

. Based on these definitions, we
can finally write

α0 ¼
χslv0
χ0

¼
C0�Cþhþ�C�h�

C0þCþð1�hþÞþC�ð1�h�Þ
C0

C0þCþþC�

; (8)

αi ¼
χslvi
χ i

¼ 1

χ0ð1þ kiα0χ0Þ
N i 1þ Cþ

C0
ð1� hþÞ þ C�

C0
ð1� h�Þ

� � :

(9)

In the infinitely dilute state, we have C+≪ C0 and C−≪ C0, such
that χ0→ 1 and α0→ 1. As such, from Eq. (9), we find that
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the fraction of unbound ions in the infinite dilute state is

α1i ¼ 1

ð1þ kiÞN i
: (10)

The average solvation number of ion species i, hi , can be
expressed as hi ¼ N ikiα0χ0=ð1þ kiα0χ0Þ. Since hi depends on α0,
the contribution of solvation to the excess energy is defined
implicitly. By substituting the expression of hi into Eq. (8), we
obtain a nonlinear equation that can be solved for α0 for given
values of C0 and C+.
Similar to solvation, long-range electrostatic interactions play a

significant role in determining the activity coefficients of
electrolytes in solution26. Due to these interactions, ions of one
sign tend to be surrounded by ions of opposite sign, contrary to
what one would expect from ideal mixing. To model this behavior,
we consider a modified version of Debye-Hückel theory27 that
accounts for the presence of fixed anions in the membrane13. We
write

ΨelsðC0; CþÞ ¼ � 4
3RT AI

3
2ðC0; CþÞV0C0τ½aBI

1
2ðC0; CþÞ�

�RT C�
2A
bB

logðbBI12Þ;
(11)

where A and B are the Debye-Hückel limiting slope and solvent
parameter (known for each solvent), respectively, a is the distance
of closest approach of counterions (that is, their average
diameter), b is the spacing between fixed charges in the polymer,
τðxÞ ¼ 3 logð1þ xÞ � x þ x2=2½ �=x3, and I is the ionic strength36,
computed only for mobile counterions as IðC0; CþÞ ¼ Cþ=ð2C0V0Þ.
The third term in the excess energy represents the free energy

associated with short-range physical interactions between cations
and anions in solution13,28. Physical interactions between ions of
the concordant sign are instead much more sporadic and are here
neglected13. This term is of semi-empirical origin, based on simple
physical considerations on the probability of encounter of cations
and anions in solution (similar to kinetic theory) and fitting of
solution data. Following the example of ref. 13, specialized for the
case of a single species of positive counterions and fixed negative
ions, we define

ΨphyðC0; CþÞ ¼ 2
RT
C0

βþ�CþC�; (12)

where β+− is the interaction coefficient between cations and
anions.
Finally, we consider the free energy associated with steric

effects due to finite pore size13. Due to the finite size of the pores,
we need to consider the excluded volume of counterions in the
saturating solution, which would affect the mixing of free energy.
Following the approach in ref. 13, which considers the pores as the
space between randomly oriented walls37, we define

ΨstcðC0; CþÞ ¼
RT

dðC0; CþÞ � d0
Cþaþ; (13)

where d(C0, C+) is the actual spacing between hydrophilic
domains, and d0 is the spacing between hydrophilic domains in
the dry membrane. These two quantities are related experimen-
tally by the volumetric deformation of the membrane13, which we
express as a function of C0 and C+ through the incompressibility
constraint in Eq. (1).

Static solution for ionic polymer actuators
As a key application of our theory to describe the complex
interplay between mechanics and electrochemistry in charged
membranes, we focus on ionic polymer actuators. We analyze
the steady-state response of an ionic polymer actuator under
the premises of small deformations and plane-strain, representing
the master problem to be studied to describe the multiaxial
response of these actuators38,39. Under these two assumptions
(small-strain and plane-strain), the two-dimensional problem can
be effectively decomposed into a (highly nonlinear and compu-
tationally challenging) one-dimensional problem through the
thickness of the membrane and a one-dimensional problem
along the width (with a trivial solution). Such a decomposition has
been thoroughly validated through nonlinear, two-dimensional
finite element simulations38,39. Ultimately, we obtain a ‘semi-
analytical’ solution that allows us to solve the two-dimensional
mechanics and electrochemistry through the numerical solution
of a one-dimensional electrochemical problem. We distinguish
this type of solution from the ‘numerical’ solution of the two-
dimensional mechanics and electrochemistry.
We consider an ionic polymer actuator of length L and thickness

2H≪ L, with zero-thickness electrodes (Fig. 2). We define a
reference frame centered on the left end of the membrane mid-
axis, with the x-axis along the actuator length, y-axis along the
membrane thickness, and z-axis along the membrane width to
form a right-handed coordinate frame. We assume that all
boundaries are impermeable to both solvent and counterions,
such that the total mass of solution in the membrane is conserved.
For classical ionic polymer actuators, while displacements may be
very large, the strains typically remain small (below 5%40), due to
the small thickness of the actuators. We focus on plane-strain
deformations, which are non-zero only within the x-y plane. The
plane-strain hypothesis is verified for standard ionic polymer
actuators, in which the width is several times their thickness. We
study the static actuation of the ionic polymer for a voltage V
applied across its electrodes at y= H (anode) and y=−H
(cathode). We consider simply supported boundary conditions
for the actuator, such that the left end of the membrane mid-axis
is constrained not to translate in the x-y plane, whereas the right
end of the membrane mid-axis can only translate along the x-axis,
see Fig. 2.
As we focus our attention on static actuation, we eliminate the

dependence on time. Similar to ref. 38, we hypothesize that the
variation of electrochemical quantities along the length and width
of the membrane is negligible compared to the variation along the
thickness. As a consequence, all electrochemical variables depend

Fig. 2 Schematics of the plane-strain actuation problem for an ionic polymer with corresponding boundary conditions and reference
frame. Here, positive mobile counterions are depicted as green spheres, fixed negative charges as blue cubes, and solvent molecules are
shown as red-gray molecules (focusing on water, oxygen and hydrogen atoms are shown in red and gray, respectively).
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only on the y coordinate. We expect this hypothesis to be valid
along the entire length of the ionic polymer actuator, apart from
small regions in proximity of the supports, as extensively verified
through finite element simulations in previous studies38,39. In the
static regime, fluxes of solvent and counterions must be equal to
zero, such that their (electro)chemical potentials must be constant.
Analogously, Gauss law reduces to a second-order ordinary
differential equation along the thickness of the membrane.
We follow the approach in ref. 38 to obtain a Saint-Venant

solution for the membrane deformation, which can accurately
describe multiaxial deformations of simply supported ionic
polymer actuators. In this vein, we hypothesize that shear strains
are negligible, such that εxx and εyy are the only non-zero strain
components. We assume a linear form of the longitudinal strain
εxx, an assumption that has been widely verified through finite
element simulations38,39. As equilibrium requires the through-the-
thickness stress to be zero, we can express the through-the-
thickness strain εyy in terms of the longitudinal strain εxx and
electrochemical quantities, see “Methods”. Since the actuator is
unloaded, the longitudinal strain is written as a function of the
electrochemical quantities by requiring the longitudinal force and
bending moment per unit width of the membrane to be zero.
Thus, the incompressibility constraint in Eq. (1) can be written in
terms of electrochemical variables only.
The resulting system of equations, including the constant

solvent and counterions’ electrochemical potentials, through-the-
thickness Gauss law, and the incompressibility constraint,
constitutes an integro-differential system in the variables C0(y),
C+(y), π(y), and φ(y). We complement this system with two
boundary conditions for φ, φð±HÞ ¼ ± V=2. The electrochemical
potentials of solvent and counterions, defined up to an additive
constant, are obtained by imposing the mass conservation of
solvent and counterions, which is not automatically satisfied in the
static case, as well-known from the classical Poisson-Boltzmann
equations12.
We solve this system by adapting the numerical method for

two-point boundary value problems in ref. 41, see “Methods”. We
solve the resulting nonlinear algebraic system numerically. We
utilize parameters for ionic polymer actuators based on a typical
commercial Nafion™ membrane with two different types of
counterions, lithium and cesium, and water as the solvent, see
“Methods”. We apply a voltage of 1 Vth, where V th ¼ RT =F is
the thermal voltage (~25 mV at room temperature), being F the
Faraday constant.

Electrochemistry of ionic polymer actuators
In Figs. 3 and 4, we show the steady-state profiles of the
electrochemical quantities through the thickness of membranes
with lithium and cesium counterions, respectively. Specifically, we
consider the concentration of solvent C0, the concentration of cations
C+, the pressure π that imposes incompressibility and generates a
stress in the membrane, and the voltage ϕ within the membrane.
These variables are scaled by the reference concentration of solvent
C0, the reference concentration of cations Cþ, a reference pressure
RT Cþ , and the thermal voltage RT =F , respectively.
Similar to the ideal case, in the bulk of the membrane,

concentrations of solvent and counterions remain the same as in
the reference configuration, for both lithium and cesium counterions.
Boundary layers of solvent (Figs. 3a, b, 4a, b) and counterions
(Figs. 3c, d, 4c, d) are formed close to the cathode and anode. Non-
idealities widen the boundary layers and considerably decrease the
pile-up and depletion of counterions in the boundary layers
compared to the ideal case. For example, for the pile-up at the
cathode, we register −54% and −66% of the maximum concentra-
tion for lithium and cesium counterions, respectively.
With lithium counterions, solvent migrates in the same direction

of counterions, as one would expect from osmosis, regardless of

the presence of non-idealities (Fig. 3a, b). Contrary to counterions,
non-idealities increase the pile-up of solvent at the cathode (33%)
and the depletion at the anode (37%), by increasing both the
change of solvent concentration with respect to the reference
value and the thickness of boundary layers. With cesium counter-
ions, for the ideal solution, we observe the solvent migration
inversion predicted in ref. 23, opposing osmosis (Fig. 4a, b). We find
that non-idealities completely hinder this phenomenon, both at
the cathode and anode (Fig. 4a, b), such that we observe solvent
migration in the direction expected from osmosis. The suppression
of inversion of solvent migration is an important qualitative
difference introduced by non-ideal solution behavior.
For both counterions, the pressure in the bulk is zero, similar to

the reference configuration. The pressure is higher than this
reference value at the cathode and lower at the anode, regardless
of the presence of non-idealities (Figs. 3e, f, 4e, f). For lithium
membranes, we observe an increase in the difference of pressure
with respect to the reference configuration when considering
non-idealities (21% at the cathode and 40% at the anode), which
also widen the boundary layers (Fig. 3e, f). When considering
cesium membranes with non-idealities, we register a smaller
peak pressure difference in the boundary layers compared to the
ideal case (Fig. 4e, f), with a 39% reduction at the cathode and
33% at the anode. Such a decrease is accompanied by a smaller
rate of change in the profile and thicker boundary layers
compared to ideality.
The electric potential is the only variable that is not zero in the

membrane bulk (Figs. 3g, h, 4g, h), where it achieves a negative
value that is slightly reduced by non-idealities. Non-idealities
cause a larger voltage drop at the cathode, while decreasing the
one at the anode (Figs. 3g–h, 4g–h). Further, non-idealities widen
the boundary layers at both electrodes.

Free-energy contributions in ionic polymer actuators
We now focus on the differences in free-energy contributions
with respect to the reference configuration Ψð�Þ � Ψð�Þ (Fig. 5). For
both counterions, all the changes are concentrated in the
boundary layers.
The contribution of the mixing free energy is negative, and is

the dominant one in absolute value for both counterions at both
electrodes. For cesium counterions, its value is almost half that
for lithium ones. The second most important contribution is
the one associated with electrostatic interactions, which is
negative and reaches more than 50% of the mixing free-energy
values. This contribution is slightly smaller in cesium memb
ranes compared to lithium ones. The solvation term is positive
and of similar magnitude for both counterions. The one
associated with physical interactions is almost identical to
solvation in the case of lithium membranes, whereas it has the
opposite sign for cesium membranes. Finally, the contribution
related to steric effects is negligible at this voltage level for both
counterions.

Mechanics of ionic polymer actuators
Finally, we look at the effect of non-idealities on the mechanics of
ionic polymer actuators. First, we investigate the longitudinal and
through-the-thickness strains (Fig. 6). As expected from our
hypotheses, the longitudinal strain is linear throughout the
membrane thickness and does not present boundary layers in
the proximity of the electrodes (Fig. 6a, d). The slope of the strain
indicates the actuator curvature, while the value at y= 0 is the
mid-axis strain38. The inverse of the curvature is the radius of
curvature, which for our simulations is around 5m, in line with
what we would expect at these levels of applied voltage from
experimental results42. While for cesium counterions the long-
itudinal strain profile is analogous to the ideal case (Fig. 6d), non-
idealities for lithium counterions cause a larger steady-state
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curvature and smaller mid-axis strain compared to the ideal
scenario (Fig. 6a). The effect of non-idealities on the final curvature
is remarkable, whereby the value of the curvature almost doubles
compared to the ideal case.
The through-the-thickness strain is negligible in the bulk of the

material and strain concentration occurs close to the electrodes, in
correspondence to the electrochemical boundary layers (Fig. 6b, c,
e, f), with positive strains at the cathode (Fig. 6b, e) and negative
strains at the anode (Fig. 6c, f). Regardless of non-idealities and

counterions’ type, through-the-thickness strain at the electrodes is
three orders of magnitude larger than longitudinal strain. For
lithium membranes, the presence of non-idealities causes an
increase in the absolute values of the through-the-thickness strain
and in the thickness of its boundary layers, further exacerbating
strain concentration at the electrodes (Fig. 6b, c). In the case of
cesium, non-idealities decrease the peak absolute values of the
strain in the boundary layers, while increasing the thickness of the
boundary layers and reducing the slope of their profile (Fig. 6e, f).

Fig. 3 Electrochemistry of ionic polymer actuators with lithium counterions. Steady-state profiles of solvent concentration C0 (a, b), cations'
concentration C+ (c, d), pressure π (e, f), and voltage φ (g, h) for an ionic polymer actuator with lithium counterions, close to the cathode
(a, c, e, g), and close to the anode (b, d, f, h). The blue solid line indicates the results with solution non-idealities, whereas the red dashed line
represents the results for an ideal solution.
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In Figs. 7 and 8, we display the steady-state profiles for lithium and
cesium counterions, respectively, of the three contributions to the
axial stress, which are related to the mechanical stress σmec

xx , Maxwell
stress σpol

xx , and incompressibility σincxx . Regardless of the counterions’
type, all the three contributions to the stress are zero in the bulk.
Boundary layers of stress occur for all contributions, even to the
mechanical one, due to Poisson effects associated with εyy. The
mechanical stress contribution always shows positive values in the
proximity of the cathode (Figs. 7a and 8a) and negative values near

the anode (Figs. 7b and 8b). The effect of non-idealities on the stress
contribution associated with mechanical stress is different depending
on the type of counterion. Specifically, for lithium counterions, non-
idealities cause an increase in the thickness of the boundary layer of
mechanical stress and of its absolute value at both electrodes (27% at
the cathode and 32% at the anode), compared to the ideal case
(Fig. 7a, b). For cesium counterions, we still register a larger thickness
of the boundary layers when considering non-idealities, but we find
an overall smaller peak mechanical stress (Fig. 8a, b).

Fig. 4 Electrochemistry of ionic polymer actuators with cesium counterions. Steady-state profiles of solvent concentration C0 (a, b), cations'
concentration C+ (c, d), pressure π (e, f), and voltage φ (g, h) for an ionic polymer actuator with cesium counterions, close to the cathode
(a, c, e, g), and close to the anode (b, d, f, h). The blue solid line indicates the results with solution non-idealities, whereas the red dashed line
represents the results for an ideal solution.
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Fig. 5 Free-energy changes in ionic polymer actuators. Steady-state profiles of the differences in free-energy contributions with respect to
the reference configuraton for an ionic polymer actuator with lithium (a, b) and cesium (c, d) counterions, close to the cathode (a, c), and close
to the anode (b, d). The black solid line is the mixing free energy, the red dash-dotted line is the solvation free energy, the green loosely
dotted line is the free energy associated with electrostatic interactions, the blue finely dotted line is the free energy related to physical
interactions, and the brown dashed line is the free-energy associated with steric effects due to finite pore size.

Fig. 6 Strains in ionic polymer actuators. Steady-state profiles of the longitudinal strain εxx (a, d), and through-the-thickness strain εyy close to
the cathode (b, e) and close to the anode (c, f), for an ionic polymer actuator with lithium counterions (a–c) and cesium counterions (d–f). The
blue solid line indicates the results with solution non-idealities, whereas the red dashed line represents the results for an ideal solution.
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For both counterions’ type, non-idealities reduce the contribu-
tion of Maxwell stress (Figs. 7c, d and 8c, d). This contribution is
always positive, and it is the smallest in absolute value among the
three, likely due to the moderate levels of applied voltage. The
two boundary layers are almost symmetric, since the nonlinearity
is modest. As non-idealities elicit a widening of the boundary
layers of voltage (Figs. 3g, h and 4g, h), the electric field is reduced
compared to the ideal case, and so is Maxwell stress (Figs. 7c, d
and 8c, d). The intensity of the reduction is higher for cesium
cations, around 63% (Fig. 8c, d), compared to lithium cations, that
experience a 50% reduction (Fig. 7c, d).
Finally, we consider the largest stress contribution, which is

associated with incompressibility (Figs. 7e, f and 8e, f). This term is
exactly the opposite of the hydraulic pressure shown in Figs. 3e, f
and 4e, f. Thus, we always record a negative contribution at the
cathode (Figs. 7e and 8e) and a positive contribution at the anode
(Figs. 7f and 8f). Similar to the other quantities, non-idealities
widen the boundary layers, regardless of the counterions’ type.
Analogous to the pressure, for lithium counterions (Fig. 7e, f), non-
ideal behavior increases in absolute value the stress contribution
associated with incompressibility, compared to the ideal scenario.

On the other hand, non-idealities in membranes with cesium
counterions (Fig. 8e, f) cause a reduction of the peak stress
contribution in absolute value compared to an ideal solution,
along with a less sharp change of the stress profile from the
electrode to the bulk.

DISCUSSION
The coupling between mechanics and electrochemistry has so far
been mostly neglected by the literature on charged membranes.
Only recently, a few efforts highlighted a significant effect of non-
ideal behavior of electrolyte solutions on membrane mechanics20,
as well as counterintuitive consequences of including membrane
deformations on the electrochemical response23. In this vein, it
becomes critical to build a unifying, high-fidelity model of the
interplay between mechanics and electrochemistry in charged
membranes to inform their applications from cell physiology to
energy storage and production devices.
In this manuscript, we established a continuum theory for

charged membranes accounting for potentially large mechanical
deformations and four non-idealities that can play a significant

Fig. 7 Axial stresses in ionic polymer actuators with lithium counterions. Steady-state profiles of the three contributions to the axial stress,
associated with mechanical stress (a, b), Maxwell stress (c, d), and incompressibility (e, f), for an ionic polymer actuator with lithium
counterions, close to the cathode (a, c, e), and close to the anode (b, d, f). The blue solid line indicates the results with solution non-idealities,
whereas the red dashed line represents the results for an ideal solution.
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role in the mechanics and electrochemistry of charged mem-
branes, namely: solvation, long-range electrostatic interactions,
short-range physical interactions, and steric effects due to finite
pore size. Toward obtaining insight into the importance of these
four non-idealities, we focused on a specific application of our
theory, analyzing the plane-strain, steady-state actuation of ionic
polymer actuators. The resulting system of integro-differential
equations was solved numerically to study the mechanics and
electrochemistry of membranes with different counterions.
We found that non-idealities significantly affect the membrane

electrochemistry, mediated by the size of the counterions. For small
counterions, we observed an increase in the absolute value of the
concentration of solvent, accompanied by a rise in the absolute value
of the pressure. Larger counterions displayed an inversion in solvent
migration in the ideal case, opposite to the one expected from
osmosis23. Non-idealities contrasted the inversion of solvent migra-
tion, restoring migration in the direction predicted by osmosis.
Hence, non-idealities increase the molar volume of counterions
required for solvent migration inversion, compared to the values
from the ideal case23. Such an increase could explain why inversion
of solvent migration has not been observed yet in charged

membranes, but only for large macromolecules in nanochannels43.
In this vein, the model with non-idealities seems to describe better
the physics of the inversion of solvent migration than the ideal one.
The breakdown of the various contributions to the membrane

free-energy showed that non-idealities were not negligible
compared to ideal mixing free energy. In particular, we discovered
that long-range electrostatic interactions cannot be disregarded,
especially for large counterions. Solvation and short-range
interactions constitute other two important contributions, which
should be accounted for in any high-fidelity charged membrane
theory. Only steric effects due to finite pore size could be
neglected, although we anticipate that they could play a more
significant role at higher values of the applied voltage, similar to
steric effects due to finite ion size44,45.
The effect of non-idealities on the electrochemistry was mirrored

by membrane mechanics. Non-ideal behavior with small counter-
ions increased the absolute values of membrane curvature and
through-the-thickness strain, with no change in the curvature and
a decrease in through-the-thickness strain for large counterions.
Thus, non-idealities magnify the difference between actuators with
small and large counterions, which have been experimentally

Fig. 8 Axial stresses in ionic polymer actuators with cesium counterions. Steady-state profiles of the three contributions to the axial stress,
associated with mechanical stress (a, b), Maxwell stress (c, d), and incompressibility (e, f), for an ionic polymer actuator with cesium
counterions, close to the cathode (a, c, e), and close to the anode (b, d, f). The blue solid line indicates the results with solution non-idealities,
whereas the red dashed line represents the results for an ideal solution.
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observed in previous efforts46,47. Non-ideal behavior also affected
the contributions to the axial stress, in a way that depends on the
type of counterion.
Our continuum theory constitutes the first unifying framework for

the study of the complex interplay between mechanics and
electrochemistry in charged membranes, paving the way for a
series of new efforts to quantify the effects of these couplings on
charged membranes used in a variety of applications. Future studies
should analyze dynamic phenomena in counterions’ and solvent
migration, neglected in this fundamental work. Further, extensive
simulations should be performed to unravel the nonlinear interplay
between deformations, ideal mixing, polarization, and non-idealities
at various applied voltages. These simulations should span the
variability range of material parameters, to obtain the sensitivity of
the results on each parameter. The high dimensionality of the
resulting space suggests the adoption of dimensionality reduction
techniques for the modeling of charged membranes48,49, toward a
high-fidelity description of their mechanics and electrochemistry at a
limited computational cost.

METHODS
Governing equations
By neglecting inertia and body forces, mechanical equilibrium reads9

Divσ ¼ 0; (14)

where σ is the Cauchy stress tensor34 and Div ð�Þ is the divergence
operator.
Mass conservation of solvent and counterions are11

∂C0

∂t
þ Div J0 ¼ 0; (15)

∂Cþ
∂t

þ Div Jþ ¼ 0: (16)

Here ∂
∂t ð�Þ indicates the partial derivative with respect to time, while J0 and

J+ are the molar fluxes of solvent and counterions per unit area.
The Gauss law for the charged membrane is30

DivD ¼ Q; (17)

where Q is the net charge density,

Q ¼ FðCþ � C�Þ: (18)

Free-energy contributions
Constitutive equations that satisfy the second principle of thermodynamics
can be derived upon differentiation of the Helmholtz free-energy
density34. For the strain energy, we consider a linear isotropic constitutive
behavior, with9

ΨmecðεÞ ¼
λL
2
½trðεÞ�2 þ μLtr ðε2Þ; (19)

where λL and μL are the Lamé parameters50. The Lamé parameters are
related to the Young modulus E and Poisson ratio ν through λL= Eν/[(1+ ν)
(1− 2ν)] and μL ¼ E= 2ð1þ νÞ½ �50.
Ideal mixing of free energy is associated with mixing entropy, describing

the ideal mixing between distinguishable particles51. We write

ΨmixðC0; CþÞ ¼ RT C0 log
C0

C0 þ Cþ

� 	
þ Cþ log

Cþ
C0 þ Cþ

� 	
 �
: (20)

Contrary to ref. 11 and mirroring refs. 23,31, we do not assume a dilute
solution in the ionic polymer, whereby this hypothesis may not be verified
in boundary layers.
Finally, we assume that the ionic polymer behaves as a linear dielectric

with dielectric constant ϵ. Thus, the polarization free-energy density is
written as9

Ψpolðε;DÞ ¼
1

2ϵ½1þ tr ðεÞ� ðIþ 2εÞ � ð~D� ~DÞ
� �

: (21)

Here, ‘⋅’ is the inner product, whereas ‘⊗’ is the outer product.

Utilizing well-known procedures to identify relevant derivatives32,34, we
find

σ ¼ ∂Ψ

∂ε
� πI; (22)

μ0 ¼
∂Ψ

∂C0
þ πV0; (23)

μþ ¼ ∂Ψ

∂Cþ
þ Fφþ πVþ; (24)

E ¼ ∂Ψ

∂D
: (25)

Here E(x, t)=−∇φ(x, t) is the electric field, while μ0 and μ+ are the (electro)
chemical potentials of solvent and counterions, respectively.
Solvent and counterions’ fluxes are not determined by the functional, as the

second principle of thermodynamics only provides an inequality constraint
−J0 ⋅∇μ0− J+ ⋅∇μ+≥ 0. We assume a Nernst-Planck relationship between

fluxes and electrochemical potentials11, JT0; JTþ
� �T ¼ �M ∇μT0; ∇μTþ

� �T
,

whereM is a symmetric, positive semidefinite mobility tensor. Note that cross-
diffusion terms are symmetrical, according to Onsager theory36. The choice of
the mobility tensor can differ between different formulations. A potential
choice is the one proposed in ref. 11,

J0 ¼ � D0

RT C0∇μ0 þ Cþ∇μþ
� �

; (26)

Jþ ¼ Cþ
C0

J0 �
Dþ
RT Cþ∇μþ; (27)

where D0 and Dþ are the diffusivities of solvent and counterions,
respectively. Since we will only study the steady-state problem in which we
neglect the variation of solvent and counterions’ concentration over time,
this specific choice of fluxes does not affect our results.

Steric effects due to finite ion size
The actual spacing between hydrophilic domains d and the spacing
between hydrophilic domains in the dry membrane d0 are related
experimentally by ref. 13 as dðεÞ ¼ d0ϕ�m

solidðεÞ, where m is a parameter that
depends on the size of the hydrophilic domains and ϕsolid is the volumetric
fraction of the solid phase in the deformed configuration. This quantity is
related to the volumetric fraction of the solid phase in the undeformed
configuration, Φsolid, through Φsolid ¼ ½1þ tr ðεÞ�ϕsolid. Due to the incom-
pressibility constraint in Eq. (1), Φsolid ¼ 1� V0C0 � VþCþ is a constant.
Upon substituting the expression of the volumetric deformation through
Eq. (1), we obtain dðC0;CþÞ ¼ d0Φ

�m
solid 1þ V0ðC0 � C0Þ þ VþðCþ � CþÞ

� �m
.

Equations for the static actuation of ionic polymer actuators
With the hypotheses of small deformations and electrochemical variables

varying only along the y coordinate, Eqs. (15) and (16) become
dJ0y
dy ¼ 0 and

dJþy

dy ¼ 0, such that J0y and Jþy are constants that do not depend on y. Since
the normal fluxes of solvent and counterions at the electrodes are zero, J0y
and Jþy must be zero as well throughout the thickness. For this condition
to be identically fulfilled, we need the (electro)chemical potentials of the
solvent μ0 and counterions μ+ to be constant,

RT log
C0

C0 þ Cþ

� 	
þ μ0slv þ μ0els þ μ0phy þ μ0stc þ V0π � μ

0
; (28)

RT log
Cþ

C0 þ Cþ

� 	
þ μþslv

þ μþels
þ μþphy

þ μþstc
þ Vþπ þ Fφ � μþ:

(29)

Here, μð�Þslv ¼
∂Ψslv
∂Cð�Þ

, μð�Þels ¼
∂Ψels
∂Cð�Þ

, μð�Þphy ¼
∂Ψphy

∂Cð�Þ
, and μð�Þstc ¼

∂Ψstc
∂Cð�Þ

.

By neglecting the effect of the deformation on the dielectric
displacement from Eq. (25)52 and substituting in Eq. (17), we find

�ϵ
d2φ
dy2

¼ F Cþ � C�ð Þ: (30)

We now focus on satisfying equilibrium from Eq. (14). We consider small
deformations, such that we can confound variables in the undeformed and
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deformed configurations. The stress tensor can be additively decomposed
into three contributions: the mechanical stress σmec, Maxwell stress σpol,
and the stress due to the incompressibility constraint σinc; σpol and σinc are
so-called eigenstresses.
Due to our hypothesis on the shear strain and the form of eigenstresses,

equilibrium along the y-axis requires that σyy does not depend on y. Since
σyy must be zero at the electrode due to boundary conditions, we have
that σyy= 0 everywhere. Thus, from the expression of σyy, we recover the
through-the-thickness strain εyy as a function of the longitudinal strain εxx
and electrochemical quantities,

εyy ¼
1

λL þ 2μL
�λLεxx þ π � ϵ

2
dφ
dy

� 	2
" #

: (31)

We consider a Saint-Venant form of the solution by assuming that38

εxx(y)=−ky+ ε0, where k and ε0 are the curvature and the mid-axis strain of
the membrane, respectively. These quantities are obtained by requiring the
longitudinal force and bending moment per unit width of the membrane to
be zero, that is, N ¼

R H
�H σxx dy ¼ 0 and M ¼ �

R H
�H σxxy dy ¼ 0, respec-

tively, so that

ε0 ¼
ϵ

8μLH

Z H

�H

dφ
dy

� 	2

dy; (32)

k ¼ � 3

8μLðλL þ μLÞH3 2μL

Z H

�H
πy dy þ ðλL þ μLÞϵ

Z H

�H

dφ
dy

� 	2

y dy

" #
: (33)

Substituting the expressions of εxx and εyy in the incompressibility in Eq.
(1), we find

V0ðC0 � C0Þ þ VþðCþ � CþÞ ¼
1

λL þ 2μL
2μLð�ky þ ε0Þ þ π � ϵ

2
dφ
dy

� 	2
" #

:

(34)

The system of equations in Eqs. (28), (29), (30), and (34) constitutes an
integro-differential system in the variables C0(y), C+(y), π(y), and φ(y). We
complement this system with two boundary conditions for φ,
φð±HÞ ¼ ± V=2. Finally, to obtain the constant electrochemical potentials
μ
0
and μþ, we impose mass conservation of solvent and counterions, such

that
R H
�H C0 dy ¼ 2HC0 and

R H
�H Cþ dy ¼ 2HCþ.

Numerical method
We solve the integro-differential system in Eqs. (28), (29), (30), and (34) with
boundary and integral conditions by adapting the numerical method for
two-point boundary value problems in ref. 41. To this end, we define a grid
with N nodes yi, i= 1,…, N and N− 1 elements, with centroid yjþ1

2
¼

ðyjþ1 þ yjÞ=2 and size Δyjþ1
2
¼ yjþ1 � yj . Note that the element size is non-

uniform, whereby we consider a finer mesh close to the electrodes, where
we anticipate the formation of boundary layers.
We need to solve for the 5N variables C0i ¼ C0ðyiÞ, Cþi ¼ CþðyiÞ,

πi= π(yi), φi= φ(yi), and ξ i ¼ dφ
dy ðyiÞ, along with the unknown constants μ

0
and μþ, for a total of 5N+ 2 variables. We obtain 3N equations by
evaluating the algebraic equations in Eqs. (28), (29), and (34) at each node
yi. k and ε0 in Eq. (34) are evaluated from Eqs. (32) and (33), upon
discretizing the integrals with the trapezoidal rule, which approximates the
integral of any function f(y) on the [−H, H] interval as53R H
�H f ðyÞdy � 1

2

PN�1
j¼1 f ðyjþ1Þ þ f ðyjÞ

h i
Δyjþ1

2
.

Other 2(N− 1) equations are found from discretization of the first-order
system of differential equations equivalent to Eq. (30), dφ

dy ¼ ξ and
d
dy ξð Þ ¼ �F Cþ � C�ð Þ=ϵ. We collocate these equations at each midpoint
of each element, yjþ1

2
. We approximate first derivatives in y with central

differences over the element, and the value of functions at yjþ1
2
as the

average of the function at the nodes of the element, according to
df
dy ðyjþ1

2
Þ � ½f ðyjþ1Þ � f ðyjÞ�=Δyjþ1

2
and f ðyjþ1

2
Þ � ½f ðyjþ1Þ þ f ðyjÞ�=2.

The last four equations are obtained from the boundary and integral
conditions. The boundary conditions are directly applied, such that φ1 ¼
�V=2 and φN ¼ V=2. In the integral conditions, we utilize the trapezoidal
rule for discretizing the integrals, such that

PN�1
j¼1 C0jþ1 þ C0j

� �
Δyjþ1

2
=2 ¼

2HC0 and
PN�1

j¼1 Cþjþ1 þ Cþj

� �
Δyjþ1

2
=2 ¼ 2HCþ .

These discretized equations constitute a nonlinear system of 5N+ 2
algebraic equations in 5N+ 2 unknowns. We solve this problem
numerically, by utilizing a nonlinear solver. The output of the solver are
the values of C0i , Cþi , πi, φi, ξi, μ0, and μþ, for i= 1,…, N. From these
quantities, we can evaluate the curvature and the mid-axis strain of the
membrane in Eqs. (32) and (33) and the contributions to the free energy in
Eq. (2).
We solve the static problem for membranes with lithium and cesium

counterions through two independent simulations. We utilize a mesh with
N= 502 nodes and 501 elements, corresponding to a total of 2512
variables. Such a mesh includes a refinement in the proximity of the
electrodes with a resolution of λ/20 for a region of thickness 10 λ, where

λ ¼ 1
F

ffiffiffiffiffiffiffi
ϵRT
Cþ

q
is the Debye screening length54. We consider the static

solution for a voltage of V ¼ 1 V th, where V th ¼ RT =F � 25mV is the
thermal voltage.
We solve the nonlinear systems of equations in Matlab®, by utilizing the

nonlinear solver fsolve. We use a nested structure, with an outer solver
that finds the values of C0i , Cþi , πi, φi, ξi, μ0, and μþ, and an inner solver
that, given the tentative values of these variables, finds μ0slvi

and μþslvi
through the implicit definition of α0. As an initial guess for the outer solver,
we utilize the values of C0i , Cþi , πi, φi, ξi, μ0, and μþ from the ideal case.
Once the values of C0i , Cþi , πi, φi, ξi, μ0, and μþ are known, we evaluate the
changes in energy contributions in Eq. (2), as well as the curvature and
mid-axis strain in Eqs. (32) and (33).

Material parameters
The semi-thickness of membranes is assumed to be 10−4 m, which is
typical of commercial ionic membranes9. We set the temperature to
T ¼ 300 K.
Molar volume of water can be obtained from water’s molar mass and

density, and equals 1.802 × 10−5m3mol−1. Molar volume of cations in solution
is retrieved by previous studies, and corresponds to 1.5 × 10−6m3mol−1 for
lithium and 2.2 × 10−5m3mol−1 for cesium counterions22.
Concentrations in the reference configuration are obtained from

experiments with fully saturated membranes. For counterions’ concentra-
tion in the reference configuration, we use the data from ref. 55. Since that
work does not consider actuators with cesium counterions, we use instead
counterions’ concentration for actuators with sodium counterions. Thus,
we select 1100m3mol−1 for lithium and 1200m3mol−1 for cesium. Water
concentration in the reference configuration is obtained from absorption
experiments with fully saturated membranes. Based on the ratio between
water and counterions’ concentrations from ref. 56, we estimate water
concentration to be 17,600mol m−3 and 12,000mol m−3 for membranes
with lithium and cesium counterions, respectively. The reference volume
fraction of solid is found from the values of C0 and Cþ as Φsolid= 0.681 for
lithium and Φsolid= 0.757 for cesium counterions.
The dielectric constant of the membranes is determined to maintain the

Debye screening length equal to 10−7 m. This value, which is larger than
the actual λ in Nafion™ membranes, is utilized to model high surface
electrodes that significantly increase the capacity of the electric double
layers57–59 and, indirectly, to enhance numerical convergence. For this
value of the Debye screening length, we expect the continuum hypothesis
to hold60. Due to the differences in C� for membranes with lithium and
cesium counterions, we obtain two slightly different dielectric constants of
4.106 × 10−5 F m−1 and 4.480 × 10−5 F m−1, respectively.
The mechanical properties of ionic membranes have been previously

determined experimentally. We utilize the Young modulus of Nafion™
membranes in water saturated form measured in ref. 46. Since membranes
with lithium counterions were not considered in that study, we utilize
instead the Young modulus of membranes with sodium counterions. Thus,
we use 80 × 106 Pa and 165 × 106 Pa for membranes with lithium and
cesium counterions, respectively. Similar to our previous studies38,39, we
set the Poisson ratio to 0.45.
The parameters N i and ki for solvation are taken from ref. 13, such that

Nþ ¼ 5, N� ¼ 0, k+= 3.59 for lithium and k+= 2.74 for cesium counter-
ions, and k−= 0. We utilize the values from the same reference and its
supplementary material for the parameters A= 1.177m3/2 mol−1/2 and
B= 3.291m3/2 mol−1/2 nm−1 of Debye-Hückel theory, spacing
d0= 2.7 × 10−9 m between hydrophilic domains in the dry membrane,
counterions’ diameter a= 3 × 10−10 m, fixed ions’ distance
b= 4.7 × 10−10 m, physical interaction parameter β+−= 7.83 for lithium
and β+−=−4.44 for cesium counterions (scaled by the molar mass of
water), and the scaling parameter m= 1.33 for the pore deformation. Note
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that the expression of β+− is different from that of βij in ref. 13 since we
incorporated M0, the molar mass of solvent, in the β+− coefficient to make
it non-dimensional.
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