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XGBoost model for electrocaloric temperature change
prediction in ceramics
Jie Gong 1, Sharon Chu1, Rohan K. Mehta1 and Alan J. H. McGaughey 1✉

An eXtreme Gradient Boosting (XGBoost) machine learning model is built to predict the electrocaloric (EC) temperature change of a
ceramic based on its composition (encoded by Magpie elemental properties), dielectric constant, Curie temperature, and
characterization conditions. A dataset of 97 EC ceramics is assembled from the experimental literature. By sampling data from
clusters in the feature space, the model can achieve a coefficient of determination of 0.77 and a root mean square error of 0.38 K for
the test data. Feature analysis shows that the model captures known physics for effective EC materials. The Magpie features help
the model to distinguish between materials, with the elemental electronegativities and ionic charges identified as key features. The
model is applied to 66 ferroelectrics whose EC performance has not been characterized. Lead-free candidates with a predicted EC
temperature change above 2 K at room temperature and 100 kV/cm are identified.

npj Computational Materials           (2022) 8:140 ; https://doi.org/10.1038/s41524-022-00826-3

INTRODUCTION
The electrocaloric (EC) effect is the coupled temperature and
entropy change of a dielectric material due to the polarization
change that results from the application or removal of an electric
field1. Electrocaloric cooling offers great potential to build efficient
solid-state cooling devices that are quiet, low weight, and
compact, making it a promising replacement for noisy, less-
efficient vapor compression systems and a candidate for on-chip
cooling and wearable cooling devices2,3. With the potential to
reach 60–70% of the Carnot coefficient of performance4, EC
cooling devices are more efficient than thermoelectric devices5.
The large electric fields required to operate EC cooling devices are
easy to generate compared to the large magnetic fields required
in magnetocaloric cooling devices6.
The EC temperature change (ΔTEC) is a function of material,

characterization temperature, and applied electric field. Its
magnitude is generally larger around phase transition tempera-
tures and it increases with increasing applied electric field. The key
to building an EC cooling device is to find a material with a large
ΔTEC, which drives the heat flow, over a wide temperature range
near the operating conditions, which are usually around room
temperature. The EC effect was first observed in the Rochelle salt
in 19307 and was intensively studied in the 1960s and 1970s in
bulk materials. The resulting ΔTECs were not practically useful
(below 1 K), however, and research interests waned. In 2006, the
field was revitalized by the discovery of a large EC temperature
change in a PbZr0.95Ti0.05O3 ceramic (12 K at a characterization
condition of 499 K and 480 kV/cm)8. In 2008, the discovery of large
EC temperature changes in PVDF-based polymers9 (over 12 K at
353 K and 2090 kV/cm for a P(VDF–TrFE) copolymer and at 328 K
and 3070 kV/cm for a P(VDF-TrFE-CFE) terpolymer] suggested a
path towards economical and environment-friendly fabrication
and integration in flexible systems. Significant progress in EC
materials development10–12 and EC device designs13–16 has been
achieved since then. In 2013, Peng et al.17 reported a giant ΔTEC of
45 K in a Pb0.8Ba0.2ZrO3 thin film at 290 K and 598 kV/cm. In 2017,
Ma et al.18 built a EC cooling device with a flexible
P(VDF–TrFE–CFE) polymer and electrostatic actuation that

produced a specific cooling power of 2.8 W/g and a coefficient
of performance of 13.
Identifying an effective EC material is a non-trivial task. The

synthesis of new EC materials relies on the instincts of experts and
extensive experimental synthesis of ceramics, polymers, and/or
composite materials. Effort has been devoted to theoretical
understanding of the EC effect by conducting ab initio simula-
tions19,20, classical simulations21,22, and phenomenological theory-
based (i.e., Landau–Ginzburg–Devonshire type theory) studies23,24,
but elucidating the physics of the EC effect remains challenging.
One major reason is the complex nature of the EC effect, which
involves polarization hysteresis, phase transition, sample crystal-
linity and crystallite size, and interactions between crystalline and
amorphous regions1,3,25.
To aid the search for effective EC materials, we herein apply a

data-driven approach to build a machine learning (ML) model to
predict the ΔTEC for ceramics based on the material composition,
dielectric constant, Curie temperature, and characterization
conditions. While a large EC entropy change is equally important,
we did not include it as a label because the isothermal entropy
change can be directly calculated from the adiabatic temperature
change, density, specific heat, and temperature1.
Machine learning is the field of study where computer

programs learn some class of tasks and improve by performance
measures from examples or experience26. The application of ML
methods in materials science dates back to the 1990s27,28.
Although ML methods were initially used as assistance tools for
tasks such as spectral analysis29, biomolecule binding site
prediction30, and the derivation of quantitative structure–activity
relationships31, they have since become an essential part of the
materials research portfolio32. Materials databases such as the
Materials Project33, the Inorganic Crystallographic Structure
Database (ICSD)34, Automatic Flow for Materials Discovery
(AFLOW)35, and the Open Quantum Materials Database (OQMD)36

provide curated and reliable data that can be mined to identify
the underlying physics of observed material properties and
phenomena. Open access to ML packages and libraries (e.g.,
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Scikit-learn37, PyTorch38, and Tensorflow39) facilitates the applica-
tion of data-driven approaches to materials challenges.
Materials property prediction with data-driven methods typi-

cally uses the material compositions and/or basic material
properties as input and the property (or properties) of interest
as output. The learning problem is to find the best estimate of the
property of a material not in the original dataset. The resulting
well-trained ML model can reduce human effort that would
otherwise be required to synthesize and characterize materials,
accelerating the discovery of new materials and uncovering
previously unknown correlations between properties32.
The application of ML methods in the field of materials science

is extensive, and we provide four examples that are related to the
current study. To support magnetocaloric refrigeration applica-
tions, Holleis et al. 40 built neural network, random forest, least
absolute shrinkage and selection operator, and support vector
regression models to predict the entropy change of single-
molecule magnets (SMMs) at a magnetic field of 5 T. They
assembled a dataset of more than 60 experimentally synthesized
SMMs and designed 16 descriptors that described their structure,
dimensionality, and chemical features. They identified four key
descriptors that have the largest impact on the entropy change:
number of d-ions, number of f-ions, molecular mass, and ideal spin
per ion. Their ML models predicted three hypothetical SMMs for
future synthesis.
Stanev et al. used random forest and neural network models to

predict the critical temperature of superconducting materials41.
The features were a combination of Materials Agnostic Platform
for Informatics and Exploration (Magpie)42 features generated
from the elemental composition of each material and AFLOW35

features based on crystallographic and electronic information. The
tree-based model reached a coefficient of determination (R2 score)
of 0.88 on the test data for critical temperatures >10 K. Their
models offered insight into the mechanisms behind super-
conductivity in different families of materials and identified over
30 candidate materials from the ICSD. We will use tree-based
models because of their interpretability and Magpie for feature
generation due to its effectiveness in the absence of structural
information43.
The dielectric constant, a property related to the EC effect, can

also be predicted via ML methods. Mannodi-Kanakkithodi et al.
used the kernel ridge regression model to predict the dielectric
constant of polymers44. They represented the polymer structure
based on its building blocks and trained the model on density
functional (DFT) calculations. Their model showed moderate
transferability and can predict the dielectric constant of 6-block
and 8-block polymers after training on only 4-block polymer data.
They also used a genetic algorithm to optimize the blocks in an
evolutionary manner to design polymers with desired dielectric
properties.
Su et al.45 recently developed support vector regression and

random forest regression models to predict the ΔTEC of BaTiO3-
based ceramics represented by chemical composition (i.e.,
elemental descriptors of the A-site and B-site elements),
temperature, and applied electric field. Two separate regression-
based ML models were developed for indirect and direct
measurements. A classification model that predicts the expected
phase as a function of chemical composition and temperature46

was introduced to complement the regression models. The
combined regression and classification ML models are able to
predict a global maximum in ΔTEC near the rhombohedral-to-
cubic and tetragonal-to-cubic phase transitions.
Here, we build an eXtreme Gradient Boosting (XGBoost)47

model to predict the ΔTEC of a ceramic ferroelectric material given
its composition, dielectric constant, Curie temperature, and
characterization conditions. The dataset is assembled from
available experimental ΔTEC measurements. We include the
measurement method (i.e., direct or indirect) and polarization

stage (i.e., polarization or depolarization) as categorical variables
to better describe the data. The XGBoost model is able to predict
ΔTEC with an R2 score of 0.90 and 0.77 on train and test data,
corresponding to root-mean-square errors (RMSEs) of 0.38 K for
both. The model correctly identifies the known physics that
contribute to a large EC temperature change (i.e., applied electric
field and the difference between the characterization and Curie
temperatures). We apply the model to search for effective EC
materials from 66 ferroelectrics whose EC performance has not
been characterized and suggest candidate materials for future
experimental verification.

RESULTS
Materials dataset
There are three major categories of EC materials: polymers,
ceramics, and polymer–ceramic composites. We built a dataset
for EC ceramics due to their wide compositional variety. We
extracted information from available literature as most of the
material compositions do not appear in well-known materials
databases 33–36. The dataset consists of 97 materials from 45 papers
and is available at GitHub48 in a csv format. Snapshots from the
dataset and a flow chart of the data gathering and model
construction steps are shown in Fig. 1. More detailed information
can be found in the “Methods—Materials dataset preparation”
section and Supplementary Note 1.
We extract 7 features for each material: the material composi-

tion, temperature (T) and electric field (E) at which the ΔTEC is
measured, the phase transition temperature (TCurie), the dielectric
constant ϵ at T, and the measurement condition pol (for
measurement during polarization or depolarization) and method
(for direct or indirect measurements). We encode each material
composition with the Magpie package42. Compared to direct
encoding methods, encoding with Magpie keeps more chemical
information from the materials by converting elemental chemical
properties of the composition into 145 continuous or discrete
numerical features. We then conducted feature selection by
dropping features with zero variance, dropping features that have
a Pearson correlation coefficient higher than 0.95 with an existing
feature, and conducting a backward feature elimination process
on these Magpie features. More detailed information on can be
found in the “Methods—Feature selection” section and Supple-
mentary Notes 2 and 3.
After these preprocessing steps, we have 4406 data points, each

containing the 21 features listed in Table 1 (7 experimental
condition/material property features and 14 Magpie features). The
label to predict is the ΔTEC at the given conditions (i.e., T and E).
The collected data are plotted as a function of characterization

temperature for the full scale in Fig. 2a. Data points with ΔTEC in
the range of 0–2 K are plotted as a function of T−TCurie in Fig. 2b.
Different colors represent different material compositions and the
marker sizes are proportional to the applied electric field. Most of
these EC materials have a relatively small temperature change,
with a median of 0.36 K and a mean of 1.07 K. Three of the 97
materials have a maximum ΔTEC > 30 K [Pb0.88La0.08Zr0.65Ti0.35O3

49,
Pb0.8Ba0.2ZrO3

17, and Pb3Mg0.65Nb1.3Ti1.05O9
50], which far exceeds

the next largest maximum value of 13 K. These three materials are
marked as outliers and are excluded when building the model
unless otherwise specified.

Model performance
The XGBoost regression models (more details in the “Methods—
XGBoost regression” section) for ΔTEC prediction are built with the
best hyperparameter set from a grid search of 6912 combinations
(Table 2). Given that XGBoost is unable to extrapolate and can only
make reasonable predictions for situations previously encoun-
tered in the training history, the materials with the lowest and
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highest ΔTEC are forced to be in the training set, unless noted.
These materials are PbZr0.95Ti0.05O3

8, whose maximum ΔTEC is
above 12 K, and Bi0.5Na0.5TiO3

51, which has the largest negative
ΔTEC. To examine the extrapolation capabilities, we forced
PbZr0.95Ti0.05O3 to be in the test set and built three models,
differentiated by their random seeds, whose results are presented
in Supplementary Fig. 3. Although, as expected, the XGBoost
models cannot predict a ΔTEC higher than the maximum seen in
the training set [8.5 K of PbZr0.97La0.02(Zr0.95Ti0.05)O3

52], they all
predict a ΔTEC high in their capability range for PbZr0.95Ti0.05O3.
This observation demonstrates that the XGBoost models learned
from the underlying physics and can be a useful tool for
qualitative prediction and refining the search for new materials.
The 94 EC ceramics are split into train and test data sets based

on their distance in the Magpie feature space53,54. The Magpie
features of the EC materials are first projected onto a two-
dimensional t-distributed stochastic neighbor embedding (t-SNE)
space. A k-means clustering of the projection of the 94 materials
was then conducted. An optimal k value of 3 was determined from
the Elbow Method by plotting the within-cluster sum of squares as
a function of k and identifying the “Elbow" as k. A cluster label is
assigned to all data. From each cluster, 75% of the materials are
picked as the training data and the remaining 25% are picked as

the test data. Different numbers of features are used to build the
models. We went from all 21 features in Table 1, to 20 features by
removing the dielectric constant, to 7 features by removing all
Magpie features, and to 6 features by removing the dielectric
constant and all Magpie features. For each feature set, we trained
100 XGBoost models with the same hyperparameters but different
random seeds and train/test splits. The R2 and RMSE results (mean
and standard deviation) are summarized in Table 3, where the
data in each of the rows corresponds to 100 models. The statistics
of the model performance when training with the three outlier
materials using different feature sets are provided in Supplemen-
tary Table 5. Box plots of the results are provided in Supplemen-
tary Fig. 4. The standard deviation is due to randomness in (i) the
construction of the XGBoost model and (ii) splitting the materials
into the training and testing sets.
In all cases, models trained without the outlier materials have

significantly better performance in both the train and test scores.
This observation suggests that there are features contributing to a
large ΔTEC that are not included in our model. This point is further
addressed in the “Discussion”.
Training with or without the dielectric constant gives a

comparable performance. Models trained with all 21 features
have a 0.01 lower R2 score and 0.01 K higher RMSE on the test set.

Fig. 1 Flow chart of data gathering and EC temperature change model construction. The five steps are: 1. Data gathering from the EC
ceramics literature. 2. Encoding material compositions with Magpie. 3. Handling the missing dielectric constant values with a built-in method
in XGBoost. 4. Building the XGBoost model for the EC temperature change prediction. 5. Predicting the EC temperature change for
ferroelectric ceramics from the non-EC literature.
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When training on 7 features (i.e., the Magpie features removed),
there is a large decrease in the test performance (−0.2 in R2 and
+0.1 K in RMSE) and an increase in the standard deviations
because XGBoost is losing all information about the material
composition. Further removal of the dielectric constant (6 features
remain) leads to a slight improvement (+0.04 in R2 and −0.02 K in
RMSE) in the test performance compared to using 7 features. This
improvement is because the model is introducing noise when

imputing the missing dielectric constants without information
from the Magpie features. In all cases, the standard deviations of
the test sets are an order of magnitude higher than those of the
training sets. The main contributor to the large standard
deviations in the test sets is poor train/test splits where a large
difference exits in the distributions of labels between these two
groups. Even though all three outlier materials are removed and
PbZr0.95Ti0.05O3 is placed in the training set when building models,

Table 1. Features used for ΔTEC prediction.

ID Feature name Feature type Feature description Source

1 E Numerical Applied electric field Literature

2 T Numerical Characterization temperature Literature

3 TCurie Numerical Curie temperature Literature

4 T−TCurie Numerical Difference between characterization temperature and Curie temperature Literature

5 pol Categorical Stage where ΔTEC is measured (polarization or depolarization) Literature

6 method Categorical Measurement method (direct or indirect) Literature

7 ϵ Numerical Dielectric constant at T Lit./XGBoost

8 maxdiff_NfUnfilled Numerical Maximum difference of number of unfilled f-orbitals among elements in the
composition

Magpie

9 maxdiff_NdValence Numerical Maximum difference of number of valence d-orbitals among elements in the
composition

Magpie

10 maxdiff_NdUnfilled Numerical Maximum difference of number of unfilled d-orbitals among elements in the
composition

Magpie

11 NComp Numerical Number of elements in the composition Magpie

12 max_NUnfilled Numerical Maximum of unfilled valence orbitals among elements in the composition Magpie

13 dev_MeltingT Numerical Standard deviation of melting temperature among elements in the composition Magpie

14 maxdiff_Mendeleev Number Numerical Maximum difference of Mendeleev number among elements in the composition Magpie

15 mean_NfValence Numerical Mean of number of valence f-orbitals Magpie

16 min_Number Numerical Minimum of atomic number among elements in the composition Magpie

17 mean_NdUnfilled Numerical Mean of number of unfilled d-orbitals among elements in the composition Magpie

18 mean_GSbandgap Numerical Mean of DFT bandgap of elemental solid among elements in the composition Magpie

19 maxdiff _GSvolume_pa Numerical Maximum difference of DFT-computed volume of elemental solid among elements in
the composition

Magpie

20 maxdiff_MeltingT Numerical Maximum of difference of melting temperature among elements in the composition Magpie

21 mean_Row Numerical Mean of row number of elements in the composition Magpie

Fig. 2 Experimentally measured EC temperature change (ΔTEC). a Full scale of ΔTEC versus temperature. b Data points with ΔTEC between 0
and 2 K versus T−TCurie. Different colors are used to distinguish different material compositions. The marker sizes are proportional to the
applied electric field.
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there are other materials with larger ΔTECs than the majority of the
data (e.g., 8.5 K in Pb0.97La0.02Zr0.95Ti0.05O3

52, 7.2 K in BaZr0.2-
Ti0.8O3

55, and 6.9 K in PbSc0.5Ta0.5O3
56) that may not be placed in

the training set. In contrast, training and testing on the same split
with 100 random seeds only leads to a standard deviation of 0.04
(0.03 K) in the R2 (RMSE) of the test set.
The parity plot for the predicted ΔTEC versus the experimental

values for one of the high-performing models trained with the full
21 features is shown in Fig. 3. This model will also be used for
feature analysis and predictions. For this model, the R2 (RMSE)
scores for the train and test data are 0.90 (0.38 K) and 0.77 (0.38 K).
In the high ΔTEC range (above 7 K), the model underpredicts ΔTEC
due to the scarcity of materials that show a giant EC effect (3 out
of 94 materials and 27 out of 4227 data points have ΔTEC > 7 K).
A test R2 value of 0.77 for a model without material

microstructural information, as we have built, is comparable to
results from previous studies where tree-based models were used
for dielectric constant prediction. For example, Qin et al. 57 trained
five commonly used ML models with 32 intrinsic chemical,
structural, and thermodynamic features to predict the dielectric
constants of ceramics. They gathered 254 single-phase materials
from the experimental literature and their random forest model
achieved an R2 score of 0.76 on the test set. Takahashi et al. 58 built
random forest models to predict the electronic and ionic
contributions to the static dielectric constant. Their dataset
consisted of approximately 1200 metal oxides from density
functional perturbation theory calculations. The introduction of
structural descriptors to the original compositional descriptors
improved the model performance. The test R2 score increased
from 0.87 to 0.89 for the electronic contribution and from 0.65 to
0.73 for the ionic contribution.

Feature analysis
We conducted feature analysis on the XGBoost ΔTEC model whose
parity plot is shown in Fig. 3. The impurity-based feature
importance is calculated by XGBoost by measuring the total gain
(i.e., improvement in accuracy) across all splits where the feature is

used. The higher the feature importance value, the more
important that feature is. Impurity-based feature analysis tends
to favor features with high cardinality (i.e., more unique values). As
such, permutation-based feature importance, which measures the
decrease of the model score when the values in a single feature
are randomly shuffled, is also reported in Supplementary Fig. 5. In
both methods, the six most important features are the same.
The impurity-based feature importance is presented in Fig. 4.

The applied electric field E ranks first, followed by T− TCurie. These
observations are in agreement with the known physics: ΔTEC of an
EC material increases with the applied electric field (before
electrical breakdown) and is usually the largest around its Curie
temperature as the material goes through a phase transition. We
further analyzed the features by setting E= 100 kV/cm and
T= TCurie for ΔTEC predictions, thus ruling out their influence,
and then calculating the Pearson correlation coefficient of the
remaining features with the predicted ΔTEC. As shown in the color
map in Fig. 4, the predicted ΔTEC shows mildly positive
correlations to T (Pearson correlation coefficient of 0.28) and ϵ
(Pearson correlation coefficient of 0.42). A Pearson correlation
coefficient heat map among all features is reported in Supple-
mentary Fig. 6.
The 16 Magpie features synergistically help the model

distinguish between different materials. As such, the direct
interpretation of an individual feature can be difficult. The
predicted ΔTEC shows moderately positive correlations to

Table 3. XGBoost model statistics (mean and standard deviation)
using different features.

Features Train R2 Test R2 Train RMSE (K) Test RMSE (K)

21 0.90 ± 0.02 0.58 ± 0.19 0.37 ± 0.03 0.64 ± 0.16

20 0.89 ± 0.02 0.58 ± 0.19 0.38 ± 0.02 0.64 ± 0.16

7 0.87 ± 0.02 0.40 ± 0.42 0.41 ± 0.03 0.75 ± 0.26

6 0.79 ± 0.03 0.44 ± 0.33 0.52 ± 0.04 0.73 ± 0.22

Table 2. XGBoost hyperparameters from grid search.

Parameter name Meaning Value

objective Learning task and corresponding learning objective reg:pseudohubererror

n_estimators Number of trees 120

max_depth Maximum depth of a tree 12

learning_rate Step size shrinkage to prevent overfitting 0.3

reg_alpha L1 regularization parameter 5

reg_lambda L2 regularization parameter 20

colsample_bynode Subsample ratio of columns for each node (split) 0.3

subsample Subsample given ratio of the training instances prior to growing trees to prevent overfitting 0.5

gamma Minimum loss reduction required to make a further partition on a leaf node of the tree 1

Fig. 3 Parity plot of the predicted EC temperature change from
one of the high-performing XGBoost models versus the experi-
mental values. The gray crosses denote the training materials and
the colored dots denote the test materials (different colors are used
to distinguish different material compositions).
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mean_Row (Pearson correlation coefficient of 0.50) after ruling out
the influence of E and T−TCurie. This result is consistent with the
observation that the ceramics in our dataset with a negative EC
effect usually contain sodium, while 9 of the top 10 materials with
largest experimental ΔTEC contain lead.
maxdiff_MendeleevNumber is ranked as the most important

Magpie feature in Fig. 4. Recall that in the feature selection, we
dropped Magpie features with a Pearson correlation coefficient
>0.95 with existing features. In this case, MaxIonicChar, maxdiff_-
Electronegativity, and min_Electronegativity show a Pearson
correlation coefficient of 0.96, 0.96, and −0.96 with maxdiff_Men-
deleevNumber. It is interesting that this set of four features is
picked up by the XGBoost model among all 145 Magpie features
(or 110 features of non-zero variance). As shown in Fig. 4, the
predicted ΔTEC has a moderately negative correlation to
maxdiff_MendeleevNumber (−0.45). This feature set could be
related to the electronic and ionic polarization in EC ceramics, but
microstructural information (e.g., phases and grain size) for these
materials is required before making firm conclusions.
Although the measurement condition pol is ranked as the third

highest in the impurity-based feature importance, it is ranked fifth
in the permutation-based feature importance. The model tends to
predict a 0.3 K higher ΔTEC if pol indicates polarization instead of
depolarization. The measurement method does not stand out, as
might have been expected. We also note that the differences in
the measured ΔTEC from pol and method in literature are generally
below 0.2 K, smaller than the model RMSE (0.38 K).
The observed low impurity- and/or permutation-based impor-

tance of some Magpie features (e.g., maxdiff_NdUnfilled, mean_-
GSbandgap, and min_number) suggest that they can be removed.
Given that our XGBoost model is rigorously regularized (i.e., with

tree pruning and restrictions in the splitting of nodes), the model
is not sensitive to the inclusion of less relevant features.

Prediction on ferroelectric materials
We now examine the predicted ΔTEC for 66 ferroelectric ceramics
whose EC performance has not been reported. We use the
XGBoost ΔTEC model whose parity plot is shown in Fig. 3 for the
predictions. The electric field is set to 100 kV/cm. The features for
the characterization conditions are set as direct measurement
(method) and polarization (pol). The predicted ΔTEC as a function
of temperature (for the temperatures at which the dielectric
constant is reported) are plotted in Fig. 5a for the 66 ferroelectric
ceramics and in Fig. 5b for the original EC dataset. To simplify the
plots, we grouped materials into families based on compositional
similarities. For example, (1−x)PbMg1/3Nb2/3O3−xPbTiO3 is
denoted as PMN-PT and BaZrxTi1−xO3 is denoted as BZT. A full
list of material compositions with their family group is provided in
a separate csv file48, as described in Supplementary Note 1.
For the ferroelectric ceramics from the non-EC literature,

PbZr0.57Ti0.43O3 has the highest predicted ΔTEC of 3.6 K at
100 kV/cm and 600 K. The EC material PbZr0.3Ti0.7O3

59 exhibits
the largest ΔTEC of 4.1 K at 100 kV/cm and 753 K. We identify good
candidates in Table 4: Pb0.89La0.11Zr0.68075Ti0.29175O3

60 is predicted
to have a ΔTEC of 2.9 K at 328 K and the lead-free Ba0.91Ca0.09-
Ti0.86Zr0.14O3

61 is predicted to have a ΔTEC of 2.6 K at 318 K.
Although no material from the non-EC literature exceeds the

performance of the state-of-the art EC materials, the top lead-free
candidates in Table 4 are worth exploring. By adding new
measurements of promising materials to the existing dataset,
active learning techniques can be used to iteratively train new
models and search for promising materials53. Active learning
approaches, such as Bayes’ theorem on materials discovery62 and
uncertainty-driven active learning for neural network potential
development63, have demonstrated success in reducing experi-
mental trials and/or computational cost.

DISCUSSION
The predictive ability of our XGBoost model demonstrates that a
physics-informed data-driven approach is a promising avenue to
studying EC materials. Moving forward, an organized database
dedicated for ferroelectrics and/or EC materials would be useful to
the community. To further improve the model’s predictive
capability and ability to elucidate underlying physical meaning,
more detailed information on the EC materials is required. Many of
the factors that influence ΔTEC, such as sample size, morphology,
and crystallinity, are not reported in the literature and are
therefore not accessible to our model. Representative examples
are provided below.
Going from a thick film to a thin film leads to an increased ΔTEC

at a moderate voltage3,25 and at the same time changes the
dielectric properties of a material. For example, the maximum
dielectric constant in Pb0.8Ba0.2ZrO3 is around 12,000 in a sintered
bulk sample64 while it has a value of 1200 in a 320 nm thin film17.
Gao et al.65 demonstrated the effect of film thickness with
antiferroelectric Pb0.82Ba0.08La0.10(Zr0.90Ti0.10)O3 (PBLZT) thick films.
ΔTEC values of 25.1, 19.8, and 13.9 K were measured for film
thicknesses of 1.0, 1.5, and 2.0 mm at 700 kV/cm and room
temperature. They attributed the decrease of ΔTEC as film
thickness increases to the reduction of the preferred orientation.
The PBLZT thick films changed from a 100h i-preferred orientation
to random orientation with increased film thickness.
Phase coexistence can contribute to a large ΔTEC and many EC

ceramics are synthesized with compositions from the morphotropic
phase boundary17,50,66. For example, thin film Pb0.8Ba0.2ZrO3 has a
giant ΔTEC of 45 K at room temperature as it goes through an electric
field-induced transition from an orthorhombic antiferroelectric

Fig. 4 Impurity-based feature importance analysis. The error bar
comes from the standard deviation of 100 random seeds. The color
map shows the Pearson correlation coefficient of each feature with
the predicted ΔTEC in the model shown in Fig. 3 after ruling out the
influence of E and T− TCurie by setting E= 100 kV/cm and T= TCurie.
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phase to a rhombohedral ferroelectric phase17. The large entropy
change from random nanoregions to ordered nanoregions in thin
film Pb0.8Ba0.2ZrO3 under an electric field may also contribute to the
giant EC effect17.
Crystal orientation and phase can lead to a different polarization

response and hence a different ΔTEC50,67–70. Luo et al.68 found the
maximum ΔTEC for 111h i- and 001h i-oriented 0.71PbMg1/3Nb2/
3O3-0.29PbTiO3 single crystals to be 2.0 and 2.3 K at 50 kV/cm. Bai
et al.66 demonstrated with (1−x)PbMg1/3Nb2/3O3−xPbTiO3

(x= 0.3–0.35) that the tetragonal-cubic phase transition induced
a much larger ΔTEC (0.69 K) than the rhombohedral-cubic and
rhombohedral-tetragonal transitions. The tetragonal phase has
the largest polarization vector and the complete disappearance of
dipoles in the cubic phase induces a much larger polarization
change than their rearrangement in the rhombohedral phase. A
difference of 0.4 K in ΔTEC is also observed among their 001h i,
110h i, and 111h i crystals.
High crystallinity, a smaller grain size, and isometric grain shape

are beneficial to the EC performance25,71. By introducing Pr to
SrBi2(Nb0.2Ta0.2)2O9, Axelsson et al.71 synthesized dense samples
with no secondary phase. The highly isometric grain shape of the
Aurivillius phases in combination with a small grain size increased
the grain boundary density, leading to an increase in the dielectric
strength. The dopant Pr3+ without lone pair electrons also leads to
a diffuse relaxor-ferroelectric phase transition and shifted the
phase transition temperature to a lower value. Other factors such
as the substrate material and orientation, as well as the sample
growth temperature can also influence ΔTEC by introducing
clamping, misfit strain, and/or thermal stresses72. The order of
the phase transition in an EC material impacts the shape of ΔTEC
versus T and is also worth considering3.

Enforcing physical laws in ML models (e.g., tailoring neural
network architectures, designing kernel-based regression models,
encoding simple symmetries, or choosing appropriate loss
functions) provides another avenue for fast and accurate training
and improved generalization ability73. In the field of EC cooling,
ML architectures that associate ΔTEC with the polarization at a
given E and T, or that incorporate mathematical constraints from
the Maxwell relations are potential approaches. Parallel efforts for
EC polymers would also be of great interest.

METHODS
Materials dataset preparation
We collected 97 materials from 45 papers. For each of these materials, we
extracted ΔTEC at different characterization temperatures T and applied
electric fields E and then included these quantities as features for the
predictive model. As another feature, we extracted the dielectric constant ϵ
at different temperatures (and at the lowest reported frequency if
measured at multiple frequencies) and conducted linear interpolation to
obtain values at the temperatures where the ΔTEC is measured. 34 of the 97
materials do not have a dielectric constant reported with their ΔTEC. We
used the built-in algorithm from the XGBoost47 model to handle the
missing values. The phase transition (e.g., ferroelectric to paraelectric)
temperature is recorded as the feature TCurie. When the Curie temperature
or phase transition temperature is not explicitly reported, we extracted the
temperature where the peak of ΔTEC occurs as TCurie. A precalculated
feature T−TCurie is also included. The categorical feature method is used to
denote how ΔTEC is measured. The direct measurement (where ΔTEC is
measured directly using thermometers or by recording the heat flow using
calorimeters3) and the indirect measurement (where ΔTEC is obtained from
polarization change via the Maxwell relations1,74) may provide different
values and/or trends for ΔTEC for the same material and condi-
tions55,71,75–77. The categorical feature pol records whether ΔTEC is
measured in the polarization or depolarization stage. Due to small losses
associated with the polarization hysteresis and Joule heating, the
measured EC temperature increase in polarization can be ~0.2 K larger
than the EC temperature decrease in depolarization76,77. Although the
phenomenon of the EC effect should be nominally reversible and
independent of measurement conditions78, we use pol and method to
help distinguish the source of the experimentally measured ΔTEC.
Each of the 97 materials has a different number of entries in the dataset

based on how many electric fields and/or temperatures they were
measured at. We trimmed data points when a material had over 100
entries, as these ΔTECs are recorded at small electric field and/or
temperature intervals.
Three of the 97 materials are marked as outliers: Pb0.88La0.08Zr0.65-

Ti0.35O3
49, Pb0.8Ba0.2ZrO3

17, and Pb3Mg0.65Nb1.3Ti1.05O9
50. These materials

have a giant EC effect, with a maximum ΔTEC above 30 K, while the
maximum ΔTEC of the rest of the materials does not exceed 13 K. There
may be microstructural effects contributing to the giant EC effect in these
three outlier materials that cannot be captured by the descriptors

Fig. 5 Predicted ΔTEC at 100 kV/cm and varying temperature for ferroelectric ceramics. a Predictions on the non-EC literature. b Predictions
on the EC dataset.

Table 4. Potential EC candidates from the ferroelectric dataset
predicted at 100 kV/cm.

Material composition T (K) Predicted ΔTEC

PbZr0.57Ti0.43O3
80 600 3.6

PbZr0.9Ti0.1O3
81 530 3.5

Pb0.89La0.11Zr0.68075Ti0.29175O3
60 328 2.9

BaZr0.2Ti0.8O3
82 373 2.7

Ba0.91Ca0.09Ti0.86Zr0.14O3
61 318 2.6

BaSn0.05Ti0.95O3
83 312 2.5
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generated from material compositions and commonly reported properties.
Bi0.5Na0.5TiO3 (BNT)51 has the smallest ΔTEC of −1.6 K. A negative ΔTEC is
known as the negative EC effect, where the isofield polarization of a
material increases with increasing temperature (e.g., an
antiferroelectric–ferroelectric transition with increasing temperature)78. In
total, 16 materials have one or more data points where ΔTEC is smaller than
zero. Of these, the magnitude of ΔTEC is <0.5 K except for three BNT-based
materials.

Feature selection
Each material composition was converted into 145 features with the
Magpie package42. The Magpie features are obtained using the minimum,
maximum, and mean of elemental chemical properties and their positions
in the periodic table. Given the large quantity of generated features, not all
are relevant in our study. We conducted feature selection to remove
redundant features, which could add noise to the model. First, we removed
Magpie features that have zero variance in our dataset, which leads to 111
remaining Magpie features. For example, as all the collected EC ceramics
contain oxygen, the minimum atomic weight and the minimum melting
temperature of the individual elements have the same value. We then
reduced the feature collinearity by dropping features that have a Pearson
correlation coefficient higher than 0.95 with an existing feature, leading to
38 Magpie features (listed in Supplementary Table 1). A list of features
dropped due to a large Pearson correlation coefficient with existing
features is listed in Supplementary Table 2. The choice of the feature to
keep from a set of highly correlated features has a negligible influence on
the model performance (see Supplementary Fig. 1 and Supplementary
Table 3).
Next, we conducted a backward feature elimination process on these

Magpie features. The three outlier points with giant ΔTEC are temporarily
removed in this step to avoid high variance in the cross-validation R2 score.
We started with 45 features (38 Magpie features plus 7 features extracted
from literature), computed the performance of the XGBoost model after
eliminating each Magpie feature, and then removed the least-significant
feature until no improvement was observed. 14 Magpie features (feature
IDs 8–21 in Table 1) remained after this process. The number of features
kept versus the cross-validation R2 score is plotted in Supplementary Fig. 2.
The order of features being dropped in this process is listed in
Supplementary Table 4.

XGBoost regression
XGBoost47 is an open-source library with an efficient and scalable
implementation of the gradient boosting framework79. Gradient boosting
minimizes the prediction error with a gradient descent algorithm and
produces a model in the form of a set of weak prediction models (decision
trees in this case). During the training, gradient boosting adds new
regression trees one at a time to reduce the residual (i.e., the difference
between the model predictions and the label values). Existing trees in the
model remain untouched, which slows down the rate of overfitting. The
output of the new tree is combined with the output of existing trees until
the loss is minimized below a threshold or the specified limit of trees (e.g.,
maximum depth) is reached. After the trees are built, XGBoost can apply
tree pruning, where the size of the trees is reduced by pruning nodes from
bottom (leaves) to top (root) if the loss reduction of having that node is
smaller than the regularization parameter gamma.
We applied XGBoost with the Scikit-learn package37. The hyperpara-

meters were tuned with a grid search using training data. A five-fold cross-
validation resampling technique was used. When examining each
hyperparameter set, the training data was randomly split into five groups
of approximately equal size. Four groups of the data were used for the
training set and the remaining group was used as the validation set. This
procedure was repeated five times, leading to five validation R2 scores for
each hyperparameter set. The set with the highest averaged validation R2

score was selected.
The dielectric constant is a relevant property for the EC performance of a

material. A linear interpolation of the dielectric constant at the
temperatures where ΔTEC was measured provided data for 63 of the
materials in the dataset. The missing dielectric constant values in the other
34 materials were handled by the default built-in method in the XGBoost
algorithm47. Essentially, each of the decision nodes in XGBoost has a
default direction, such that when a missing value is encountered during
splitting in the tree branch, the instance is classified in that default
direction.
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