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Photovoltaphores: pharmacophore models for identifying
metal-free dyes for dye-sensitized solar cells
Hadar Binyamin1 and Hanoch Senderowitz 1✉

Dye-sensitized solar cells (DSSCs) are cost-effective, sustainable, and versatile electricity producers, allowing them to be
incorporated into a variety of devices. In this work, we explore the usage of pharmacophore modeling to identify metal-free dyes
for DSSCs by means of virtual screening. Pharmacophore models were built based on experimentally tested sensitizers. Virtual
screening was performed against a large dataset of commercially available compounds taken from the ZINC15 library and identified
multiple virtual hits. A subset of these hits was subjected to DFT and time-dependent-DFT calculations leading to the identification
of two compounds, TSC6 and ASC5, with appropriate molecular orbitals energies, favorable localization, and reasonable absorption
UV–vis spectra. These results suggest that pharmacophore models, traditionally used in drug discovery and lead optimization,
successfully predicted electronic properties, which are in agreement with the theoretical requirements for sensitizers. Such models
may therefore find additional usages as modeling tools in materials sciences.
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INTRODUCTION
Chemoinformatics and materials-informatics are rapidly develop-
ing fields that apply computational techniques to the discovery of
new compounds1–3. In particular, machine learning (ML) methods
often referred to as quantitative structure-activity relationship
(QSAR) modeling are used to derive predictive models for a variety
of molecular properties. In the field of drug discovery, one of the
common tools for predicting the binding of a ligand to its bio-
target based on the three-dimensional (3D) complementarity
between the two is pharmacophore modeling. In the present
study, we apply pharmacophore modeling to a materials
informatics problem, namely, the study of metal-free dyes for
dye-sensitized solar cells (DSSCs).
A pharmacophore model is a set of functional groups defined

by their identity (see below) and the spatial relationship (e.g.,
distances) between them, shared by a set of compounds with a
specific activity and absent from compounds devoid of this
activity4–6. The functional groups considered in pharmacophore
modeling typically include negatively ionizable centers (NIC) and
positively ionizable centers (PIC), i.e., atomic centers which can
carry negative or positive charge under specific conditions,
hydrogen bond acceptors (HBA), hydrogen bond donors (HBD),
hydrophobic interactions (HI), and aromatic rings (AR)5,7. The
different features and their representation in LigandScout8 are
shown in Fig. 1. Pharmacophore models are best derived from
protein-ligand complexes. However, when this information is
unavailable they could also be derived by analyzing isolated
ligands (ligand-based pharmacophores). This is in fact the case in
the present study, since the data available to us do not contain
any information on the 3D complementarity between the dyes
and the semiconductor onto which they are adsorbed. In such
cases, the procedure for deriving pharmacophore models consists
of the following steps5,9,10:

(1) Obtain a set of active compounds.
(2) For each of the compounds, perform a conformational

search to identify a diverse set of conformations
(a conformational ensemble). Pharmacophore modeling

assumes that each compound is represented by its so-
called bioactive conformation, namely, the conformation
adopted by the compound when performing its activity11. In
the case of ligand-based pharmacophore modeling, this
information is typically unavailable. A diverse conforma-
tional ensemble holds the potential of containing the
bioactive conformation12.

(3) For each conformation of each ligand, identify all pharma-
cophoric features (NIC, PIC, HBA, HBD, HI, AR) and the
distances between them.

(4) Superimpose the conformational ensembles of the active
compounds in order to identify a pharmacophore (i.e., a set
of features and distances) common to all or most. Typically,
a set of active compounds will give rise to several
pharmacophores.

(5) Validate the resulting pharmacophore(s) for its ability to pick
active compounds from within a pool of inactive or random,
yet presumed to be inactive compounds. As with all
machine learning techniques, validation should be per-
formed on an external dataset, namely a dataset not used
for the construction of the pharmacophore.

In recent years, pharmacophore models have been mainly used
in computer-aided drug design to provide chemical insight into
ligand-proteins interactions and for virtual screening (VS). Virtual
screening is a process in which a computational model developed
to predict a certain activity is used to screen large libraries of
compounds in search for those predicted to possess this activity13.
Pharmacophore models have been widely used in VS efforts in
drug discovery projects14–17 and in the present study we wish to
investigate their usefulness for the discovery of dyes for DSSCs.
DSSCs, pioneered by O’Regan and Grätzel18, emerged out of

growing interest around the world in renewable energy,
specifically in solar energy. DSSCs traditionally consist of five
components: (1) A photo-anode, (2) A mesoporous semiconductor
metal oxide film layer (commonly TiO2), (3) A molecular sensitizer
(dye), (4) An electrolyte/hole transporter medium (HTM), (5) A
counter electrode. Current is generated upon illumination, when a
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photon is absorbed by the sensitizer, causing electron injection
from the photo-excited sensitizer into the semiconductor’s
conduction band. Completion of the circuit is done by regenera-
tion of the dye by the electrolyte solution, which is then reduced
at the counter electrode18–20. The dye is a critical component for
the cell’s function, as it is responsible for both photon harvesting
and electron injection into the semiconductor surface21,22. There-
fore, the dye’s properties govern the sunlight to electricity
conversion capability of the cell, which is estimated by sunlight-
to-power conversion efficiency (PCE) calculated from the gener-
ated photocurrent density (Jsc), the open-circuit potential (Voc), the
fill factor (FF) and the incident illumination intensity (Pin) as
follows19,23:

PCE ¼ Jsc ´ Voc ´ FF
Pin

(1)

A compound can be utilized as a dye in a DSSC, as long as it
meets the following criteria20,24:

(1) The compound should have an absorption spectra covering
ultraviolet–visible (UV–vis) and near-infrared (NIR) regions.
Its molar extinction coefficient should be as high as possible.

(2) The highest occupied molecular orbital (HOMO) should lie
below the energy level of the redox electrolyte and farthest
away from the conduction band of the semiconductor. The
lowest unoccupied molecular orbital (LUMO) should be
located close to the semiconductor’s surface, and higher
than the semiconductor conduction band potential.

(3) The sensitizer should have a hydrophobic periphery in order
to enhance the cell’s stability, minimizing direct interactions
between electrolyte and anode.

In their seminal work, O’Regan and Grätzel18, achieved a solar
conversion efficiency of 7.1% with a ruthenium-based complex.
Nazeeruddin et al.25 discovered that using cis-di(thiocyanato)bis
(2,2-bipyridyl-4,4′-dicarboxylate)ruthenium(II) dye, known as N3
(Fig. 2) in DSSC leads to a PCE of 10%. Subsequently, additional
ruthenium-based dyes were reported, such as black dye and N719
(Fig. 2), exhibiting efficiencies of more than 11%26–29. Ruthenium
is a rare, expensive metal, and ruthenium-based sensitizers are

difficult to synthesize and have relatively low molar extinction
coefficients. Thus, extensive research efforts were dedicated to
metal-free dyes for DSSC-based devices. Even though organic
dyes typically have lower PCE than metal-based dyes, they have
several notable advantages including low price, ease of synthesis,
tunable (e.g., by chemical modification) photovoltaic and electro-
chemical properties and high molar extinction coeffi-
cients20,22,24,30. Significant progress in the development of
organic dyes for DSSCs came with the usage of dyes with an
electron donor-conjugated π system-electron acceptor (D-π-A)
architecture30. This architecture enables a charge-separated
resonance structure, as shown in Fig. 3, which can create an
electron-hole pair22. Within this design, the acceptor is also
responsible for the electron injection into the conduction band of
the semiconductor and a wide absorption spectrum can be
achieved. This architecture has been often manipulated to
generate additional structural patterns20,31–33, and these struc-
tures make metal-free sensitizers easily tunable and flexible34.
Usage of metal-free dyes in DSSCs was leveraged by Hara et al.35,36

and Yanagida et al.37 who used oligoenes containing dialkylami-
nophenyl as donors and cyanoacrylic acid (CAA) as the acceptor.
These dyes achieved PCE of up to 6.8% in DSSCs with iodide/
triiodide electrolyte. Many different organic dyes have been
reported, utilizing the versatility of the D-π-A framework with
different chemical groups38–42. In 2017, a DSSC incorporating a
metal-free dye, achieving an efficiency of 11.18% with TTAR-b8 as
sensitizer and I�=I�3 as the electrolyte was reported43. Through
molecular engineering, existing sensitizers could be modified in
order to enhance desirable properties and new candidates for
metal-free DSSCs could be synthesized and tested30,32,44. However
for this paradigm to be applicable, a better understanding of the
relations between molecular structures and photovoltaic proper-
ties is needed29,45. We propose that pharmacophore models could
provide this understanding.
At first sight, it might seem counter-intuitive to construct

pharmacophore models for DSSCs from molecular features,
typically used for analyzing ligand-protein interactions, for the
study of photovoltaic (PV) properties. Indeed previous efforts to
model the activities of DSSCs mainly relied on quantum
mechanical (QM) calculations21,26,44. However, these calculations
are time consuming and as a result, could not be performed on
large sets of compounds, thereby precluding the usage of the
resulting models for virtual screening. Other studies relied on
machine learning methods including evolutionary algorithms46–49,
multiple linear regression (MLR)48–50, partial least squares

Fig. 1 Pharmacophore features and their color codes.

Fig. 2 Molecular structures of ruthenium-based dyes: N3, N719 and
Black dye.

Fig. 3 Illustration of D-π-A architecture with TiO2.
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(PLS)45,47,50,51, gradient boosted regression trees52, and neural
networks52 to model a variety of PV properties with mixed levels
of successes. Of note, most of these models were based on two-
dimensional (2D) descriptors thereby excluding all information
pertaining to the 3D structures of the compounds. This informa-
tion however is automatically accounted for by pharmacophore
models. Moreover, we hypothesized that using the standard
pharmacophoric features would account for key properties of
active dyes in particular in what pertains to their aromaticity (via
the AR feature), hydrophobicity (via the HI feature), and charge
distribution (via the NIC, PIC, HBA, and HBA features).
Given a validated pharmacophore model, it could be applied in

virtual screening to accelerate the discovery of new organic
sensitizers. Pharmacophore-based VS is advantageous over other
methods due to its low computational complexity and since it
allows for finding hits that have chemical features similar to those
of known active dyes, yet with molecular scaffolds that haven’t
been tested for that purpose17.

RESULTS
Pharmacophore modeling
Ligand-based pharmacophore models were generated for the
four largest scaffold families found in the filtered database, which
was derived from the dye-sensitized solar cell database (DSSCDB)
published by Venkatraman et al.53, namely, carbazoles, indolines,
phenothiazines, and triphenylamines (Table 1). Radial distribution
function (RDF) based clustering (see Methods section) was
employed on the most active/least active seven and most
active/least active ten compounds from each family. Every
clustering process resulted in one or two significant clusters
(containing more than two compounds) from which pharmaco-
phore models were derived. In addition, models were also built
from the entire scaffold-based subsets described above. Pharma-
cophore alignment (PA) score-based clustering was also applied
in several cases. In detail, 11 models were created for the
carbazole family (eight based on highest activity compounds and
three based on lowest activity compounds), nine for the indoline
family (seven based on highest activity compounds and two
based on lowest activity compounds), eight for the phenothiazine
family (six based on highest activity compounds and two based
on lowest activity compounds), and 17 for the triphenylamine
family (13 based on highest activity compounds and four based
on lowest activity compounds). Models derived from inactive
compounds represent a collection of undesired pharmacophoric
features. A list of all models based on division by scaffold is given
in Supplementary Table 1.
In addition, the most active dyes (MAD) and the least active

dyes (LAD), irrespective of their scaffold as well as the most
active dyes from each scaffold were also clustered with both RDF

and PA methods. Every clustering process resulted in 1–3
different significant clusters from which additional models were
derived. In total, 33 different pharmacophore models were
created using this approach. Out of them, 26 models were based
on the most active dyes with one model being derived from the
entire MAD set, and others being derived based on specific
scaffolds within the MAD set or clusters derived from them. Few
models were derived by fusing models generated from the
individual scaffolds with MAD-based pharmacophore models.
Seven additional pharmacophore models were developed using
the LAD. A list of all models based on MAD and LAD is given in
Supplementary Table 2.

Pharmacophore validation and selection
Each of the above-described pharmacophore models was
evaluated for its ability to retrieve known active dyes taken from
the DSSCDB which were embedded within a pool of structurally
similar, i.e., having the same scaffold, random compounds
(presumed to be inactive) retrieved from the ZINC1554 database
(see Methods section). The MAD and LAD pharmacophore models
were derived from dyes with different scaffolds and were
therefore validated using random compounds containing these
scaffolds. The validation sets for each scaffold are given in Table 2.
As elaborated in the “Methods” section, the performances of the

different models were evaluated by several metrics including
the area under the curve (AUC), the enrichment factor at 1% of the
library (EF1%), the Matthews correlation coefficient (MCC), and the
percentage of retrieved high activity (%HA) and low activity (%LA)
compounds. These metrics highlight different aspects of models’
performances. Thus models with high EF1% retrieved true positives
(TPs) early in the VS process whereas models with high AUC values
demonstrated overall good performances. The MCC values were
taken into consideration in order to select the models that could
perform the best with imbalanced data. The %HA and %LA
measures were also considered to ensure that compounds mined
during VS would have features that better correspond with high-
activity dyes (and not with low-activity dyes).
Values of all these metrics for the 78 pharmacophore models

derived in this work are presented in Supplementary Table 3.
Based on AUC and EF1% values, coupled with a visual inspection,
we have selected a subset consisting of 18 high activity-based and
three low activity-based models for virtual screening. The latter
were used to eliminate false positive (FP) compounds that may
result from the VS procedure with the active compounds-based
pharmacophores. High activity-based and low activity-based
models are presented in Tables 3 and 4, respectively and their
validation statistics is provided in Table 5. In Tables 3 and 4, each
model is shown aligned to one compound from the dataset used
for its construction.

Virtual screening
The ZINC15 in-stock library comprised of more than 13.8 M
compounds was screened against all 18 high activity-based
pharmacophore models. Since all these models differed from each
other both in their features as well as in their performances, we
have adopted a consensus approach focusing on compounds that
matched at least nine models. 5636 compounds met this criterion.
Next, these compounds were screened against the three filtering
pharmacophores (i.e., pharmacophores built based on low PCE
dyes). This filtering process resulted in a final hitlist of 446
compounds that did not match any of the three low activity-based
models (see Supplementary Table 4). Finally, these compounds
were screened again against the 18 high activity-based pharma-
cophore models, in order to calculate their total score (TS) and
average score (AS) values (see Eqs. 9 and 10 in the “Methods”
section). The ten compounds with the highest TS and AS values
(altogether 20 compounds) are listed in Table 6. These compounds

Table 1. Significant chemical families in the preprocessed DSSCDB
and their frequencies.

Scaffold Number of entries

Triphenylamine 621 (42.44%)

Phenothiazine 270 (18.46%)

Carbazole 182 (12.44%)

Indoline 115 (7.86%)

Coumarin 53 (3.62%)

Diphenylamine 33 (2.26%)

Bodipy 16 (1.09%)

Imidazole 14 (0.96%)

Cyanine 14 (0.96%)
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were subjected to quantum mechanics (QM) calculations as
discussed below.
As can be seen, most hits contain a carboxylic acid moiety, and

some also contain rhodanine moieties, both of which can function
as electron acceptor in DSSCs’ sensitizers55. In addition, most
compounds possess interesting moieties that could function as
potential donors such as barbiturate, triazine, and other aromatic
moieties. However, most compounds lack a continuous con-
jugated π-bridge moiety to complete the D-π-A architecture. This
is presumably due to limited emphasis given to the π-linkers in the
pharmacophore models. In addition, most compounds lack a
hydrophobic moiety in their periphery in accord with the absence
of a corresponding hydrophobic feature in the pharmacophore
models. This may seem puzzling since many of the active dyes are
decorated by long alkyl chains, but could be rationalized by the
vast conformational space characteristic of such flexible chains
which may well challenge the alignment process and prevent the
identification of a fixed pharmacophoric feature.
Because of these potential deficiencies of the top-ranking hits,

we have visually inspected the 5636 compounds that matched at
least 50% of the pharmacophores and selected an additional 15 of
them for QM calculations. These compounds are shown in Fig. 4.

QM calculations
In order to computationally estimate whether the compounds
identified by the pharmacophore-based VS procedure have the
proper electronic properties for DSSCs, we have subjected the
final list of 35 structures (shown in Table 6 and Fig. 4) to density
functional theory (DFT) and time-dependent-DFT (TD-DFT) calcu-
lations to predict their HOMO/LUMO energies and UV–vis spectra.
QM results of these compounds are reported in Supplementary
Table 5. In order to provide a baseline for comparison, we have
performed DFT and TD-DFT calculations on the 16 most active

compounds reported in the DSSCDB (see the Methods section for
more details) for which experimentally determined absorption
spectra are available. The experimentally determined PCEs and
λmax values together with the calculated HOMO, LUMO, and the
λmax values are reported in Supplementary Table 6.

DISCUSSION
Pharmacophore validation and selection
Looking at the various pharmacophore models in Tables 3 and 4,
the prominence of the above-discussed D-π-A architecture is
clearly evident. More specifically, in all models, barring models 1
and 54, the acceptor (A) is presented by at least one HBA feature,
occasionally with one or two additional HBA features (for example
in models 46 and 51) or NIC (models 6 and 78). This pattern
matches the chemical characteristics of acceptors in metal-free
sensitizers, which also serve as anchoring groups to the
semiconductor component, and conventionally consists of car-
boxylic acid, cyanoacrylic acid or rhodanine24,55. The donor (D) is
an electron-rich fragment in the sensitizer56,57, generally aro-
matic32,37,58. The alignment process during the pharmacophore
generation determines whether an aromatic moiety will be
represented by an aromatic or hydrophobic feature thus, the
donor is represented either by AR or by HI or both. Similarly, π-
bridges can be seen in some models (for example models 3 or 21);
however, most models emphasize the donor and acceptor groups.
This may be due to the sensitivity of the AR feature to the
orientation of aromatic units59. Importantly, all these models have
no more than five mandatory pharmacophoric features, high-
lighting the simplicity of the pharmacophore concept.
As can be seen from Table 5, all models achieved AUC above

0.5, indicating their above-random predictive ability for com-
pounds of the same scaffold, with several models achieving AUC
close to 1 which points to a perfect prediction (e.g., 21, 39, and

Table 2. Scaffolds used for pharmacophore generation, with their matching validation sets.

Scaffold Structure 'Actives’ set 'Decoys’ set

Carbzole Carbazole dyes subset (165 compounds) ZINC carbzole library (5916 compounds)

Indoline Indoline dyes subset (115 compounds) ZINC indoline library (19620 compounds)

Phenothiazine Phenothiazine dyes subset (254 compounds) ZINC phenothiazine library (392 compounds)

Triphenylamine Triphenylamine dyes subset (520 compounds) ZINC triphenyamine library (488 compounds)
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Table 3. Selected pharmacophore models created from dyes with high PCE.

Model Figure Description

1 Model generated from top seven carbazole dyes, cluster 1

3 Model generated from top ten carbazole dyes, cluster 1

5 Shared feature pharmacophore model generated from pharmacophores 3 and 4 (see
Supplementary Table 1)

6 Model generated from top ten carbazole dyes, cluster 2, with an additional aromatic feature

7 Same as model 6, omitting aromatic features in the center of the model

21 Model generated from triphenylamine dyes in the MAD set

H. Binyamin and H. Senderowitz
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55). MCC values vary, yet are all above zero, suggesting at least
some predictive ability, with some models achieving MCC values
around 0.9, indicating an almost perfect predictive ability (e.g., 39
and 54). With respect to EF1% the highest values were found for
the most selective models, e.g., models 6, 54, and 58, which did

not retrieve any random compound during the validation process.
All the selected phenothiazine (59, 61, 65, and 66) and
triphenylamine-based (21, 39, 44–46, 51, 52, and 72) models
have the same EF1% values since all retrieved the same number of
active compounds within the first 1% of the library. With respect

Table 3 continued

Model Figure Description

39 Model generated from top seven triphenylamine dyes

44 Shared feature pharmacophore model generated from pharmacophores 40 and 43 (see
Supplementary Table 1)

45 Same as model 44, marking two HBA features as non-optional

46 Model generated from top ten triphenylamine dyes, cluster 3

51 Shared feature pharmacophore model generated from pharmacophores 46 and 47 (see
Supplementary Table 1)

H. Binyamin and H. Senderowitz
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Table 3 continued

Model Figure Description

52 Shared feature pharmacophore model generated from pharmacophores 9 and 51 (see
Supplementary Table 2)

54 Model generated from top seven indoline dyes, cluster 2

55 Model generated from top seven indoline dyes, cluster 2 (PA Score)

58 Model generated from top ten indoline dyes, cluster 4

59 Model generated from top seven phenothiazine dyes

61 Model generated from top ten phenothiazine dyes

H. Binyamin and H. Senderowitz
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to models’ ability to retrieve high activity (HA) vs. low activity (LA)
compounds, 15 out of the 18 models that were generated from
dyes of high PCE values retrieved at least 60% of the HA dyes.
However, some of these models also retrieved LA dyes. In
particular, models like 54 and 55, which exhibited high AUC and
decent %HA rate, retrieved all the dyes of low activity. On the
other hand, models 3 and 7, both with MCC values lower than 0.5,
retrieved only 12.5% and 27.5% of the low activity dyes,
respectively. Based on the results it can be concluded that most
selected pharmacophore models can successfully differentiate
between photoactive sensitizers and structurally similar random
compounds.
Regarding the three filtering models, generated from dyes of

low PCE, it can be seen that apart from model 67, the two other
models have relatively low MCC, yet higher than zero, suggesting
that they can still differentiate between low activity dyes and
decoys. Models 65 and 67 were selected because of their high %
LA and their remarkable true negatives (TNs) retrieval rate (see
Supplementary Table 3). Model 66 was selected because of its low
%HA and despite its low MCC value. Model 67may be too general,
but could still be useful for filtering TNs with good confidence.

QM calculations
The results of our calculations on the 35 selected hits suggest that
all met the criterion for the HOMO lying below the energy level of
the electrolyte medium, and most of them (31 out of 35
compounds) met the criterion for the LUMO lying above the
semiconductor’s conduction band potential (−4.85 eV for I�=I�3
medium and −4.0 eV for TiO2 as semiconductor according to
Fedowski et al.33). Notably, all compounds which did not meet the
latter condition were manually selected, and none came from the
list of highest scoring hits. Two compounds, TSC6 and ASC5, also
met the condition for the HOMO and LUMO to lie furthest away
from each other, as the LUMO should lie closest to the
semiconductor surface, localized on the acceptor (A) part, while
the HOMO should lie furthest from it, on the donor (D) part, in
order to accelerate recombination of the oxidized dye (after
electron injection) from the electrolyte medium and improve
the cell’s efficiency20,60–62. These two compounds are presented in
Fig. 5 alongside a compound taken from the DSSCDB, namely
TA-DM-CA with experimentally determined LUMO energy and
absorption spectrum, and a reported PCE of 9.67%63, positioning it
within the top three most active metal-free sensitizers, that
was also subjected to DFT and TD-DFT calculations as part of
the baseline set. In TSC6, the HOMO is localized on the carbazole
fragment, which is one of the most common donors for metal-free
sensitizers, as can be seen in the DSSCDB and Table 1. At the same
time, the LUMO is localized on the carboxylic acid, a highly
common acceptor group in DSSCs’ sensitizers64,65, as well as on an
amide carbonyl group which is a part of the succinimide moiety
and could enhance the anchoring strength of the compound to
the semiconductor surface66. The HOMO of ASC5 is localized on a

benzene ring, further from the LUMO that is localized on the
nitrophenyl unit. Nitro units have previously been utilized as
acceptor groups in DSSCs67, although with rather low photovoltaic
activity due to relatively low absorption onto TiO2

68. As expected,
the calculated HOMO/LUMO energies of TA-DM-CA met the
necessary criteria. However the calculated values deviated from
the experimental values in particular for the LUMO which
according to DFT calculations was estimated to be at −0.658 eV
but found at −3.02 eV according to the experimental work of Im
et al. Experimentally, the LUMO energy was estimated from the
compound’s oxidation potential in combination with its optical
band gap, estimated from the edge of the absorption spec-
trum63,69,70. Despite this discrepancy, we note that the HOMO and
LUMO energies calculated for TSC6 and ASC5 lie well within the
energy ranges of these orbitals calculated for the active dyes in
the DSSCDB (Supplementary Table 6).
TD-DFT calculations showed that all 35 compounds (including

TSC6 and ASC5) had absorption spectra in the UV–vis region,
peaking for most compounds between 200 and 400 nm in the
middle and near UV regions. The lack of rich π linkers in the
selected dyes may be the reason for the spectra to be narrower
than traditional organic sensitizers’ absorption spectra, specifically
in the red and near IR region. The manually selected compounds
(Fig. 4) exhibited broader spectra in the visible range due to their
extended pi-conjugated frameworks in comparison with the
compounds selected by scoring.
It is also important to note that the absorption spectrum of

TA-DM-CA predicted by TD-DFT calculations was found to be not
as broad as the experimentally determined absorption spectrum
in ethanol, which may indicate that these calculations under-
estimate the spectra of the VS-selected candidates. This assump-
tion is backed up by the known tendency of the CAM-B3LYP
functional to yield blue-shifted spectra in comparison with
experiment71,72. Indeed a comparison between experimentally
and calculated λmax values for active dyes (Supplementary Table 6)
suggest the latter to produce an average blue shift of 104 ± 76 nm.
Using this value, we revised the estimation of the maximal
absorption wavelengths in the UV–vis region for compounds
TSC6, ASC5, and TA-DM-CA from the QM-calculated values of λ=
286 nm, λ= 293 nm and λ= 293 nm respectively to λ= 390 nm,
λ= 397 nm and λ= 397 nm respectively. The experimentally
determined λmax value for TA-DM-CA is 433 nm, in reasonable
proximity to the revised prediction.
Based on the above results, we suggest that TSC6 and ASC5 are

plausible candidates to be used as dyes in DSSCs, yet their
performances should be verified experimentally.
As can be seen from Supplementary Table 5, other compounds

met the required criteria for the HOMO and LUMO energies and
displayed acceptable absorption spectra, e.g., TSC4, ASC3, MSC1,
and MSC9, however, their predicted LUMO is localized on
functional groups that are not considered traditional anchoring
groups, and their ability to function in DSSCs requires further
investigation.

Table 3 continued

Model Figure Description

78 Shared feature pharmacophore model generated from pharmacophores 52 and 77 (see
Supplementary Table 2), marking AR features as optional

H. Binyamin and H. Senderowitz
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In order to further validate the pharmacophore-based VS
approach, we have selected a random set of 20 compounds from
within those that matched more than three yet less than nine
pharmacophore models, and subjected them to the same QM
calculations. The results (Supplementary Table 7) demonstrated
that out of these 20 compounds, two did not meet the HOMO/
LUMO energies criteria (whereas all 20 highest-ranking com-
pounds did), and none of them exhibited a proper separation
between the HOMO and the LUMO. In addition, several
compounds did not have a sustainable pi-conjugated framework.
Finally, the average calculated λmax value for the 20 randomly
selected compounds was lower than that for the 20 highest-
ranking ones (255 nm versus 297 nm, respectively). While these
are perhaps not staggering differences, we note that the 20
random compounds still matched a number of pharmacophore
models and consequently may well display some photovoltaic
activity. Selecting for comparison compounds that did not match
any pharmacophore model would have been inappropriate since
such compounds are likely too different from solar cell dyes to
provide any meaningful conclusions.
In an attempt to achieve a better candidate for experimental

evaluation, two modifications of TSC6 were suggested and
subjected to DFT and TD-DFT calculations. In the first, the hydroxyl
group on the phenyl unit was substituted with cyanoacrylic acid
(CAA), and in the second, the succinimide unit was replaced with a
pyrroledione moiety, turning the single C(sp3)-C(sp3) into a double

bond. The DFT and TD-DFT results of the hypothesized compounds
(termed TSC6-CAA and TSC6-US) are shown in Fig. 6.
It can be seen that these modifications induced a slight

favorable shift in the absorption spectrum toward the visible
range in both compounds, with maximal absorption wavelengths
estimated at λ= 308 nm and λ= 320 nm for TSC6-CAA and TSC6-
US, respectively, and at λ= 412 nm and λ= 424 nm following
the spectral shift correction. This may also indicate a possible
contribution of the CAA moiety in organic sensitizers to the
increase in their light absorption, in addition to its role as a highly
common acceptor (A). While the HOMO in both compounds
remained localized on the carbazole units, the LUMO in TSC6-US
is mainly localized on the pyrroledione unit, which may hinder its
applicability as a sensitizer due to a potential suboptimal
attachment to the TiO2 layer. In TSC6-CAA the LUMO is localized
on the CAA as expected, maintaining the amide carbonyl
localization observed for TSC6 (Fig. 5).
In conclusion, we have developed an approach to identify

potential candidates for metal-free dyes for DSSCs by VS using 3D
pharmacophore models. The pharmacophore models were built
from a dataset of experimentally tested dyes, and then used to
screen the in-stock portion of the ZINC15 database which contains
over 13.8 M compounds, in order to retrieve those that match the
relevant pharmacophoric features.
The inclusion of multiple pharmacophore models, as well as

models which were based on poor-performing dyes, enabled us to
focus on hits with a higher probability of being active. Indeed, QM
calculations performed on a small subset of the highest-ranking
hits identified two with the appropriate electronic properties. In
this respect, we wish to emphasize that while the QM results on
HOMO/LUMO energies and λmax values do not always match the
experimental data, in this work we demonstrated that values of
these parameters calculated for our two most promising hits
nicely fall within the range of these parameters calculated for

Table 4. Selected pharmacophore models created from dyes with
low PCE.

Model Figure Description

65 Model generated from
bottom ten
phenothiazine dyes

66 Model generated from
bottom ten
phenothiazine dyes,
cluster 5

67 Model generated from
bottom ten
indoline dyes

Table 5. AUC, EF1%, MCC, %HA, and %LA values of the selected
pharmacophore models.

Model EF1%[%] AUC MCC %HA %LA Notes

High activity-based models

1 33.8 0.82 0.43 60.0 62.5

3 32.4 0.63 0.48 35.0 12.5

5 16.6 0.87 0.36 85.0 55.0

6 36.9 0.57 0.37 5.0 5.0 Only TPs were retrieved

7 30.1 0.80 0.47 60.0 27.5

21 1.9 0.95 0.88 100.0 66.0

39 1.9 0.96 0.90 93.3 68.1

44 1.9 0.87 0.75 78.9 47.9

45 1.9 0.79 0.63 67.8 34.0

46 1.9 0.85 0.73 63.3 46.8 Only TPs were retrieved

51 1.9 0.84 0.71 66.7 45.7

52 1.9 0.83 0.70 65.6 42.6 Only TPs were retrieved

54 171.6 0.91 0.90 74.3 100.0 Only TPs were retrieved

55 82.8 0.95 0.50 91.4 100.0

58 171.6 0.85 0.83 82.9 36.4 Only TPs were retrieved

59 2.5 0.72 0.57 47.5 23.3 Only TPs were retrieved

61 2.5 0.77 0.62 61.0 60.0

78 1.9 0.92 0.85 78.9 55.3

Low activity-based models

65 2.5 0.85 0.50 74.6 86.7

66 2.5 0.54 0.23 0 33.3 Only TPs were retrieved

67 123.1 0.97 0.82 100.0 100.0 High TNs rate
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Table 6. The ten compounds with the best TS and AS scores (TSC1-10 and ASC1-10, respectively).

Name (ZINC ID) Structure TS AS

TSC1 (ZINC000408664124) 492.9

TSC2 (ZINC000408639131) 488.2

TSC3 (ZINC000014269488) 486.9

TSC4 (ZINC000100938804) 485.8

TSC5 (ZINC000408719933) 485.3

TSC6 (ZINC000150482673) 467.6

TSC7 (ZINC000408937686) 461.9

TSC8 (ZINC000408721284) 455.4

H. Binyamin and H. Senderowitz
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Table 6 continued

Name (ZINC ID) Structure TS AS

TSC9 (ZINC000013579341) 452.2

TSC10 (ZINC000408940671) 452.1

ASC1 (ZINC000408938316) 37.9

ASC2 (ZINC000408938673) 37.6

ASC3 (ZINC000100872118) 37.5

ASC4 (ZINC000257212636) 37.3

ASC5 (ZINC000014358980) 37.1
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experimentally active dyes. Yet the results of this research require
experimental validation in order to unambiguously confirm the
power of pharmacophore models as predictors of dyes for DSSCs.
The methodology presented in this work could be improved in

several ways. First, an implicit assumption of ligand-based
pharmacophore modeling is that each compound is represented
by its active conformation. In this respect, identifying the exact
conformation(s) of the dye when bound to the TiO2 layer can
significantly improve the resulting pharmacophore models and
the subsequent VS. Second, the pharmacophore models could
be improved by adding additional features, for example, to
account for the π-bridges. Third, the selection process of models
for VS could be improved. Fourth, higher-level QM methods
for improving the characterization of the selected VS hits could
be evaluated. Finally, while in this work the construction of the
pharmacophore models was based on dyes’ PCE, Jsc and Voc are
also possible properties for modeling.
Yet regardless of these potential improvements, we suggest

that, the ability of pharmacophore models to identify dyes with
favorable (predicted) characteristics for DSSCs constructs an
important bridge between the spatial arrangement of simple
chemical moieties and electronic characteristics. We posit that

traversing this bridge expands the usage of ligand-based
pharmacophore modeling beyond its chemoinformatic/drug
design ‘natural habitat’ into the realm of materials sciences with
many potentially exciting applications.

METHODS
Dataset
A dataset consisting of 1463 dyes was compiled from the dye-sensitized
solar cell database (DSSCDB)53. The DSSCDB contains over 4000 experi-
mental observations of DSSCs’ properties spanning different classes of
compounds. Every entry in the DSSCDB contains information on
photovoltaic properties (e.g., Jsc, Voc, FF, PCE) in addition to molar
extinction coefficient, wavelength at maximal absorption, maximal
emission wavelength, molecular keyword (scaffold), and additional data
about the cell. The DSSCDB was preprocessed to create a homogenous
dataset containing only metal-free dyes with no duplicate structures.
Entries with co-sensitizers or co-adsorbents were excluded. Furthermore, in
order to maintain uniformity, entries with light simulator conditions
different from AM 1.5 G 100Mw cm−2 (sun simulator conditions),
semiconductors different from TiO2 or electrolytes different from iodide/
triiodide were also excluded. The dataset was also divided into smaller
subsets based on molecular scaffolds (Table 1).

Table 6 continued

Name (ZINC ID) Structure TS AS

ASC6 (ZINC000408938715) 37.1

ASC7 (ZINC000408934249) 36.9

ASC8 (ZINC000004470174) 36.7

ASC9 (ZINC000408935659) 36.6

ASC10 (ZINC000009550333) 36.5
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Conformer generation
Conformers of dataset’s compounds were generated by the iCon73

conformer generator, implemented in LigandScout 4.48. BEST settings
were applied; hence 200 conformers at most were generated for every
compound.

Clustering
Each class of scaffolds was further clustered using the LigandScout 4.4
clustering tool to generate more structurally homogenous subclasses. Two
clustering methods were employed:

(1) Radial distribution function (RDF) similarity—An RDF gives the
probability of finding an object at a distance r from another object
and is defined according to Eq. (2):

g rð Þ ¼
XN�1

i¼1

XN

j>i

e�B r�rijð Þ2 (2)

where rij is the distance between objects i and j, and N is the number of
objects. Here the objects are the pharmacophoric features. An individual
RDF is calculated for each ligand based on its pharmacophoric features and
clustering is performed based on the similarity between the RDFs74. This is
the default method used by LigandScout.
(2) Pharmacophore alignment (PA) score—This method uses the

ligands’ pharmacophore scores to calculate the similarity between
them. Clustering is based on this similarity.

Pharmacophore modeling
Pharmacophore models were generated based on two types of input data
and according to the steps outlines in the introduction:

(1) Compounds with the best photovoltaic performance (as determined
by PCE) in each class (scaffold-based) were taken to build
pharmacophore models. Compounds with lowest PCE in each class
were also taken to generate models with undesired features.

(2) The most active dyes (MAD) in the entire dataset (PCE ≥ 8.5%, 12
entries) irrespective of their class membership were used to
generate pharmacophore models, and the least active dyes (LAD)
in the dataset (PCE ≤ 0.1%, 13 entries) were used in an attempt to
find models with undesired features. Additional pharmacophore
models were derived by dividing the MAD and LAD groups into
different scaffold-based subsets and clusters within these sets.

Some of the final models were manually refined to better match their
constituting compounds. Manual refinement was done in several ways:
aligning different pharmacophores in order to extract shared feature
models or merging them, adding new features or modifying the positions
of existing features. Shared feature models and merged feature models
were built by aligning two or more pharmacophores in order to build more
inclusive and exclusive models, respectively. In a shared feature model,
common features are extracted to generate a single model with features
shared by all its constituting dyes, while in a merged feature model,
features are combined to generate a single model containing unique
elements from each of its constituting dyes.

Pharmacophore validation
Pharmacophore models were validated in small-scale VS experiments by
testing their ability to identify active/inactive compounds from within a
pool of random compounds (assumed to be inactive). Compounds with
experimentally tested photovoltaic activity were obtained from the
DSSCDB whereas random compounds were obtained from the ZINC1554

database. In order to make the validation process as rigorous as possible,
random compounds were selected to have the same scaffolds as those
characterizing the corresponding active compounds. To this end we have
used the substructure search tool which is part of the ZINC15 database.
The performances of the various pharmacophore models in the VS

experiments were validated using several metrics. First, the area under the
curve (AUC) metric was calculated by generating receiver operating
characteristic (ROC) curves75 for each model. A ROC curve is obtained by
plotting model sensitivity (Se) against (1-model specificity (Sp)), termed

MSC1
(ZINC000408988701)

MSC2
(ZINC000685944474)

MSC3
(ZINC000685944484)

MSC4
(ZINC000685944530)

MSC5
(ZINC000685944675)

MSC6
(ZINC000097962657)

MSC7
(ZINC000104389160)

MSC8
(ZINC000150476942)

MSC9
(ZINC000150484975)

MSC10
(ZINC000252517859)

MSC11
(ZINC000159147980)

MSC12
(ZINC000001132943)

MSC13
(ZINC000001234978)

MSC14
(ZINC000001706918)

MSC15
(ZINC000408535431)

Fig. 4 Manually selected compounds for QM calculations.
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(Sp). The relevant equations are:

Se ¼ TP
TPþ FN

(3)

Sp ¼ TN
TNþ FP

(4)

Sp ¼ 1� Sp ¼ FP
TNþ FP

(5)

Where TP, FN, TN, FP are the numbers of true positives, false negatives,
true negatives and false positives, respectively. The AUC is calculated as
follows76:

AUC ¼
Xn

x¼2

Se xð Þ Sp xð Þ � Sp x � 1ð Þ� �
(6)

Where Se(x) is the sensitivity at rank position x and Sp xð Þ is the (1-model
specificity) at rank position x77. AUC values range in the interval [0, 1],
with 1 indicating perfect prediction and 0 indicating complete inverse
prediction. An AUC value above 0.5 suggests that the model is better
than a random assigner.
Another important metric for model validation is the enrichment factor

(EF). It is defined as the ratio of TPs in a certain rank position x, normalized
by the total ratio of active ligands given to the model78,79.

EFx% ¼ TPx%=Nx%

TPtot=Ntot
(7)

where TPx% represents the number of TPs in the top x% of the ranked
dataset, TPtot represents the total number of active ligands in the dataset,
Nx% is the number of compounds in rank position x% and Ntot is the total
number of compounds. EF values provide insight into the model’s ability to

find active compounds compared to a random selection at a certain
position rank80. In the present work, we used x= 1% thereby focusing on
model’s ability to retrieve active compounds early in the screening process.
Models were also evaluated by means of the Matthews correlation

coefficient (MCC), a common measure of the success of binary classifica-
tions which takes into account true and false positives and negatives and is
considered to be a balanced measure even when the data distribution is
imbalanced81–83.

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TPþ FPð Þ � TNþ FPð Þ � TNþ FNð Þp (8)

MCC takes values between −1 and 1, with 1 indicating perfect
prediction and −1 indicating perfect inverse prediction. A MCC value of
0, suggests that the prediction has no correlation to the data.
Finally, models were evaluated by calculating the percentages of the

retrieved high activity (%HA) and low activity (%LA) compounds. A model
developed based on high-activity compounds only, should ideally retrieve
only high-activity compounds whereas a model developed based on low
activity compounds only, should ideally retrieve only low activity
compounds. In the present study, HA and LA compounds were defined
as those having PCE values >6.3% and <2.0%, respectively. These numbers
correspond to the average PCE values across the entire dataset +/− one
standard deviation.

Virtual screening and hits retrieval
Virtual screening was performed with a subset of the pharmacophore
models that performed well during the validation stage, using LigandSc-
out 4.4 virtual screening tool. Each high activity-based pharmacophore
model was used for screening the in-stock catalogue of ZINC15, which
contains over 13.8 M commercially available compounds, ready for

Fig. 5 Results of DFT and TD-DFT calculations for TSC6, ASC5 and TA-DM-CA. a HOMO/LUMO energy diagrams and structures.
b Absorption spectrum for TSC6. c Absorption spectrum for ASC5. d Absorption spectrum for TA-DM-CA.
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shipment. Conformations of compounds in the screening library were
generated by iCon with FAST settings applied; hence 25 conformations at
most were generated for each compound. The compounds from all
screening processes were crosschecked and combined into a single hitlist
composed only of compounds that matched at least half of the
pharmacophore models used for screening. The hitlist was then subjected
to further screening against selected pharmacophore models based on
low activity-dyes in order to filter out potential low-activity candidates
that may have been identified in the first stage of the screening process.
Following filtration, the remaining compounds were scored based on their
ranks in the high activity-based pharmacophore models and the overall
performances of these models. Scoring of compounds was done by the
following formulae:

TS zð Þ ¼
X

p

score p; zð Þ �MCC pð Þ (9)

AS zð Þ ¼ TS zð Þ
Nz

(10)

where TS(z) is the total score of compound z, score(p,z) is the score of
the best matching conformation of compound z against pharmacophore
model p, MCC(p) is the MCC value of pharmacophore p as calculated in the
validation stage, AS(z) is the averaged score of z and Nz is the number of
pharmacophore models that matched compound z. Thus, compounds
matching many models with high MCC values have high TS values, and
compounds having a better overlap with the pharmacophore models’
features have high AS values. Overall, this ranking procedure assigns

higher ranks to compounds that well-match multiple higher-performing
pharmacophore models.
Using the ZINC database as a source for inactive compounds in the

validation stage and as a source for potentially active compounds in the VS
stage merits some discussion. Experience with VS campaigns suggests that
the percentage of compounds with any specific type of activity in screened
databases is in the range of 0.5–0.7%84,85. Thus, it is reasonable to assume
that most compounds found within the ZINC database are indeed inactive
with respect to their PV properties. However, those compounds that,
following the screening procedure, surface to the top of the list have a
reasonable chance of being active.

QM calculations
QM calculations were executed in the Jaguar86 software package as
implemented in Maestro 12.5.139. HOMO and LUMO energies were
computed in the gas phase employing DFT methods with the B3LYP
exchange-correlation functional, using the 6–31 G(d, p) basis set. UV–vis
absorption spectra were calculated as well, employing TD-DFT methods
with the CAM-B3LYP87 functional and the same basis set. Similar
calculations with the same functional and basis set are reported in the
literature, some providing results in good agreement with experimental
values46,48,65,88–90. Input geometries for the QM calculations were selected
by aligning the compounds to their respective pharmacophore models in
order to emulate their photoactive conformations.

Fig. 6 Results of DFT and TD-DFT calculations for TSC6-CAA and TSC6-US. a HOMO/LUMO energy diagrams and structures. b Absorption
spectrum for TSC6-CAA. c Absorption spectrum for TSC6-US.
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DATA AVAILABILITY
The preprocessed DSSCDB data that was used to generate the pharmacophore
models is available as Supplementary File 1.
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