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Superconductivity in antiperovskites
Noah Hoffmann 1, Tiago F. T. Cerqueira 2, Jonathan Schmidt 1 and Miguel A. L. Marques 1✉

We present a comprehensive theoretical study of conventional superconductivity in cubic antiperovskites materials with
composition XYZ3 where X and Z are metals, and Y is H, B, C, N, O, and P. Our starting point are electron–phonon calculations for
397 materials performed with density-functional perturbation theory. While 43% of the materials are dynamically unstable, we
discovered 16 compounds close to thermodynamic stability and with Tc higher than 5 K. Using these results to train interpretable
machine-learning models, leads us to predict a further 57 (thermodynamically unstable) materials with superconducting transition
temperatures above 5 K, reaching a maximum of 17.8 K for PtHBe3. Furthermore, the models give us an understanding of the
mechanism of superconductivity in antiperovskites. The combination of traditional approaches with interpretable machine learning
turns out to be a very efficient methodology to study and systematize whole classes of materials and is easily extendable to other
families of compounds or physical properties.
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INTRODUCTION
Perovskites are one of the better known and more extensively
studied family of ternary compounds. Of general formula XYZ3,
they crystallize in a structure that is derived from a simple cubic
lattice, that can easily tolerate distortions from intercalations,
dopants and defects1. They find applications in a multitude of
technological domains, such as photovoltaics2–5, piezoelectricity6,
magnetism7, thermoelectricity8, lasing9,10, multiferroicity11, etc.
One field where perovskites have a pivotal role is superconduc-
tivity. In fact, the cuprate ceramics that hold the record for the
highest transition temperature (Tc) belong to this family12. These
are complex oxide materials that exhibit an exotic superconduct-
ing state with d-wave paring13–15 resulting from an electronic
pairing mechanism.
In 2001, He et al. reported the surprising discovery of

superconductivity at 8 K in a non-oxide perovskite, MgCNi316.
The high relative proportion of Ni in this compound suggested
that magnetic interactions were important, and the relatively low
Tc when compared to its two-dimensional analog (the LnNi2B2C
family) led the authors to argue for a non-conventional mechan-
ism. These claims were however quickly dismissed, and MgCNi3 is
now acknowledged as an s-wave superconductors with a paring
mechanism mediated by the electron–phonon interaction17.
These findings sparked the interest of researchers, and

other related materials were found to be superconducting in
the following years. Several other carbide, boride, and even
nitride and oxide antiperovskites were proved experimentally
to be superconductors, and a few other were predicted by theory
(see Table 1). The maximum transition temperature measured
experimentally was 10 K for InBLa3 and InOLa318, although higher
Tc were predicted by theory for materials, such as RhNCr319 or
TlBSc320.
Standard perovskites, such as the high-Tc superconductors,

have a nonmetal atom (for instance, oxygen, a halide, or even
nitrogen21,22) in the Z-position that corresponds to the vertices
of the characteristic octahedra (see Fig. 10). MgCNi3 is different,
in the sense that the nonmetal is in the Y-position at the center
of the octahedra, and therefore belongs to the family of

antiperovskites23 (also referred to as inverted or intermetallic
perovskites). Among others, this family includes several borides
and carbides24 (such as MgCNi3, GaCMn3, ZnCMn3, SnCMn3,
etc.). These are very interesting materials23 as they can exhibit
superconductivity16,25 and magnetism26,27, they can be used to
strengthen aluminum-alloyed steels28 or as fast alkali ionic
conductors29, etc.
In this work, we study conventional superconductivity in the

family of inverted perovskites. Our objective is not only to
investigate the physics of specific systems, but to understand
the overall behavior of the whole family of compounds. We note
that such large-scale studies are still rare in the literature, and we
are only aware of one high-throughput study in hydrids under
high pressure30.
We use a combination of standard methods with newer

machine-learning methods. Specifically, we employ density-
functional perturbation theory to calculate the electron–phonon
properties. For the machine learning, we choose algorithms that
not only have the ability to predict the relevant physical properties
(the electron–phonon coupling strength λ and the averaged
phonon frequency ωlog), but are also capable of providing an
interpretation of the data.

RESULTS
High throughput
We selected all inverted perovskites with H, B, C, N, O, and P that
were studied in the systematic work of ref. 31. We then filtered out
the ones that the original calculation, performed with the
Perdew–Burke–Ernzerhof (PBE) approximation32, yielded as semi-
conducting and magnetic. As expected, the number of materials
increases rather rapidly with the distance to the convex hull. To
keep the number of systems manageable, we decided to calculate
inverted perovskites with distances to the convex hull, as
calculated in ref. 31, smaller than 50meV/atom. We discuss other
compounds farther from the hull in “Machine learning”. Finally, we
eliminated the systems that included chemical elements for which
the PSEUDODOJO33 did not provide a pseudopotential.
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In total, we calculated 397 systems within 50 meV/atom of the
hull as calculated in ref. 31, of which 120 contained H, 45 with B, 66
with C, 93 with N, 56 with O, and 17 with P. We then calculated λ,
ωlog, and Tc as explained in “Methods”. Of course, not all systems
were dynamically stable, and we found imaginary frequencies for
169 compounds. In many cases, these appeared only at the edges
of the Brillouin zone, and corresponded to vibrations of the
Z-atoms (i.e., of the octahedra). As many perovskites exhibit
structures where the octahedra are tilted and rotated, this is
expected. The imaginary frequencies merely indicate that the five-
atom cubic cell is unstable with respect to such distortions of the
octahedra. Obviously, we did not consider these dynamically

unstable compounds in our analysis of the results. Finally, we
failed to converge the calculations for two compounds.
An overview of our data can be found in the blue curves of

Fig. 1. In panel a, we can see that the distribution of values of λ is
very asymmetric and peaked at around 0.25, indicating that most

Table 1. Superconducting transition temperatures present in the
literature in inverted perovskite systems compared to our results using
the LDA and the PBE functionals.

Material Tc (exp.) Tc (theor.) Ref. LDA PBE

MgCNi3 8 16 imag. 9.1

AlCNi3 <4 79,80 imag. imag.

GaNNi3 0 81 imag. imag.

In0.95CNi3 Magnetic 57 4.7 3.5

CdCNi3 3 82 5.0 5.4

ZnNNi3 3 83 imag. 5.1

3.53 75

ZnCNi3 <2 84 imag. imag.

CuNNi3 3.2 85 imag. imag.

3.16 75

CdNNi3 <1.8 86 imag. imag.

InNNi3 <1.8 86 0.4 0.2

RhNCr3 17.74 87 magnetic

SnOSr3−x 5 58 0.0 0.0

8.38 88

YBRh3 0.76 89 0.0 0.0

AlBSc3 7.5 20 3.8 2.4

GaBSc3 10 20 imag. imag.

InBSc3 12 20 2.3 1.3

TlBSc3 15 20 2.8 1.6

GaNCr3 4.17 19 6.4 6.3

InBLa3 10 18 – imag.

InCLa3 2.6 18 – imag.

InNLa3 <2 18 – 0.7

0.44 76

InOLa3 10 18 – 0.7

3.77 76

InCY3 <2 18 0.4 0.1

CaPPt3 6.6 56 imag. imag.

SrPPt3 8.4 56 imag. imag.

LaPPt3 1.5 56 –

We distinguish between experimental and theoretical results. InBSc3,
TlBSc3, and GaNCr3 have been synthesized experimentally90,91, while
AlBSc3 and GaBSc3 are hypothetical compounds20 that have only been
studied theoretically. Temperatures are in K, and we also indicate if the
system had imaginary phonon frequencies or was magnetic. Note that in
refs. 20,88 the electron–phonon coupling constant was estimated using the
Gaspari–Gyorffy formula59. The LDA pseudopotential set we used did not
include lanthanum, so we could only perform PBE calculations for
materials containing this chemical element. Our values are calculated with
a 8 × 8 × 8 q-point grid.

a

b

c

Fig. 1 Histograms of the electron-phonon coupling constant, the
averaged phonon frequency and the superconducting transition
temperature. (a) A histogram of the calculated values of the electron-
phonon coupling constant λ; (b) a histogram of the averaged phonon
frequency ωlog; and (c) a histogram of the superconducting transition
temperature Tc. The blue curves are for systems with distances to the
hull below 50meV/atom and the orange curves for systems between
50 and 400meV/atom predicted to have high values of the transition
temperature.
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systems have a very weak electron–phonon coupling. Further-
more, it exhibits a fat tail that extends to values larger than one,
i.e., into the so-called strong coupling regime. The distribution of
values of ωlog (panel b) is quite different: it is quite symmetric and
goes quickly to zero not exhibiting any fat tail. The peak of the
distribution is at around 250 cm−1, a relatively small value
especially when we consider those very light chemical elements
occupy the Y-atom in the antiperovskite structure. We also would
like to note that the values of λ and ωlog are not completely
independent. In fact, systems with soft phonons, i.e., materials
close to structural instabilities, will often exhibit large values for
the electron–phonon coupling constant, leading to a degree of
anti-correlation between λ and ωlog. Finally, in panel c of Fig. 1 we
see the distribution of values of the superconducting transition
temperature Tc. Not surprisingly, the overwhelming majority of the
228 compounds have Tc smaller than 1 K. The distribution has,
however, a rather fat tail, allowing us to find a series of systems
with considerably higher transition temperatures, reaching more
than 15 K. In fact, we find 16 compounds with Tc higher than 5 K,
including antiperovskites with Y= H, N, C, and O.
The five materials with the highest Tc are listed in the top panel

of Table 2, while the complete list can be found in the
Supplementary Information. All these materials have positive,
but small, distances to the convex hull. While they are not the
ones with the highest values of λ, they are the ones that exhibit
the best compromise between λ and ωlog. The first entry on the list
with a predicted Tc of 16.9 K is a nitride, specifically MoNMn3. We
could not find any reference to this compound in the literature,
and the only known material in the ternary phase diagram is
MnMoN2

34. We then find three hydride antiperovskites, AsHTi3,
VHRu3, and PtHCr3 with transition temperatures around 10 K. We
could not find any reference to these compounds in the literature
either, which is perhaps not surprising as the scientific interest in
these materials is rather recent29. In fact, in the ICSD35 database,
we only find two such systems with a perovskite structure, namely

TlHPd336 and SnHMn337. Finally, we find an oxygen-containing
perovskite, HgOZr3, with a Tc of 8.8 K. Once again, no compound in
the Hg–O–Zr ternary phase diagram could be found in the ICSD35.

Machine learning
We used the results obtained in the previous section to train
two machine-learning algorithms. We note that the size of the
data, albeit substantial when compared to the number of
electron–phonon calculations present in the literature, is relatively
small for most machine-learning algorithms. Therefore, we chose
two different machine-learning algorithms that are known to yield
good results in such small data sets, specifically, the sure
independence screening and sparsifying operator (SISSO)38,39

and the model agnostic supervised local explanations (MAPLE)40.
Another distinct advantage of these two models is that they
provide straightforward ways to rationalize and interpret complex
data that in some way goes well beyond simple statistical tools.
For each composition XYZ3, we used as input features the

structure volume (V), the charges of the atoms (QΛ, where Λ∈ {X,
Y, Z}) and the density-of-states at the Fermi level (DOS(EF)), all
obtained from the ground-state calculations31. In addition, we
included a series of atomic properties: the row (RowΛ) and column
(ColΛ) in the periodic table, the electronegativity (χΛ), the atomic
weight (MΛ) and its square-root and the covalent radius (RΛ). We
chose as target properties λ and ωlog.
Due to the relatively small size of the dataset, we decided to use

cross-validation: The dataset was randomly split into a training
(80%) and a validation set (20%) ten times. We then trained ten
machine-learning models on each of the ten training sets. The
mean of the errors on the corresponding validation sets is then
the cross-validation error.

SISSO
The first model was trained using SISSO38,39. SISSO combines
symbolic regression with compressed sensing. Symbolic regres-
sion has the advantage of being easily interpretable as the models
are simple formulas connecting the features to λ and ωlog.
For λ, the training of the model yielded the formula

λ ¼ c0 þ c1
DOSðEFÞ

MY
χY � χZj j: (1)

in five out of the ten different runs. All runs combined have a
mean absolute cross-validation error of 0.12. From this formula, we
learn that the electron–phonon coupling constant is essentially
proportional to the density-of-states at the Fermi level. This is not
surprising, as this quantity determines the number of electrons
available to form Cooper pairs. We are therefore tempted to look
for materials with a very large DOS(EF) in order to maximize Tc. We
should however remember that a large density-of-states at the
Fermi level often leads to dynamical instabilities related to
Jahn–Teller distortions41. We also discover that λ is inversely
proportional to the mass of the Y-atom, which favors antiper-
ovskites containing H. Indeed, as we can see from Table 2, most
materials with high Tc are of this kind. Finally, the difference in
electronegativity will be largest for materials containing O.
The most common formula for ωlog, which also appeared in five

out of ten runs reads

ωlog ¼ c0 þ c1
ffiffiffiffiffiffi
MZ

3
p V

RZ
: (2)

Unfortunately, in all five cases, the value of c1 turned out to be
negative, allowing for negative ωlog, and making the interpreta-
tion difficult. The second most common formula, which appeared
in three out ten runs, gives therefore a more physical description

ωlog ¼ c0 þ c1
RZRowZ

V
ffiffiffiffiffiffi
MZ

p : (3)

Table 2. Calculated superconducting properties of a few selected
antiperovskites with the largest values of Tc.

System Ehull λ ωlog Tc
(meV/atom) (cm−1) (K)

MoNMn3 66 0.92 279 16.9

AsHTi3 128 0.95 162 10.4

VHRu3 42 0.73 246 9.5

PtHCr3 77 0.69 274 9.3

HgOZr3 44 1.00 126 8.8

PtHBe3 175 1.25 190 17.8

PdHBe3 160 0.83 344 17.3

CoHBe3 197 0.99 198 13.6

AsOLi3 277 0.92 141 8.5

SbOLi3 269 0.95 104 6.7

OsHCr3 103 0.98 225 15.3

IrHCr3 62 0.81 268 12.8

TiHZr3 110 1.43 114 12.3

TiHRu3 108 0.90 210 12.3

YHZr3 174 1.15 137 11.6

Top panel: systematic high-throughput search; Middle panel: XY{Li,Be}3
compounds; Bottom panel: Superconductors predicted by our machine-
learning models. Note that in total we discovered 16 (73) compounds
within 50meV/atom (400meV/atom) from the convex hull and with Tc > 5.
Values calculated with a 4 × 4 × 4 q-grid.
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Independent from the specific formula, the mean absolute cross-
validation error for ωlog is 36.5 cm−1. It is clear that the maximum
phonon frequency usually depends on the mass of the Y-atom,
which is in most cases the lightest in our systems. However, we
see that ωlog depends mainly on the properties of the Z-atom,
and is inversely proportional to its mass. This means that it is the
vibration of the Z-atoms (i.e., of the vertices of the octahedra)
and not of the Y-atom that couple strongly with the electrons at
the Fermi energy. In addition, Eq. (2) shows that large unit-cell
volumes lead to small ωlog, and are therefore detrimental to
superconductivity.

MAPLE
For the second model we used MAPLE40, a method capable of
accurate predictions, while also providing some form of interpret-
ability. Random forests provide an importance score for each
feature, which gives a first explanation of global behavior, and
weight the training points. Only certain features are used for the
prediction by fitting a local linear model using the weights of the
provided samples.
Training the model to predict λ yields an error of 0.11, very

similar to the one given by SISSO. The five most important
features for MAPLE are DOS(EF), QY, ColZ, QZ, and QX. We can see
that both models consider the density-of-states to be an essential
feature for λ and the properties of the Y- and Z-atom also seem
important. As the charge and the electronegativity are connected,
the models are probably very similar especially considering the
nearly identical error.
Compared to the SISSO model, MAPLE performs only slightly

better for ωlog with an error of 31.4 cm−1. The five most important
features according to MAPLE are RZ,

ffiffiffiffiffiffi
MZ

p
, χZ, RowZ, and volume of

the unit-cell V, in very good agreement with formulas (2) and (3).

Predictions
These models were used to predict the superconducting properties
of antiperovskite materials with distances to the hull smaller than
400meV/atom. By extending our search, we can obtain a much
better overview of superconductivity in antiperovskite systems, and
estimate the maximum Tc that we might expect in this family.
Moreover, (i) the error in the calculation of formation energies with
the PBE is considerably larger than 50meV/atom42–44; (ii) often one
can synthesize unstable compounds by using targeted synthesis
techniques; (iii) there may be further stabilizing (or destabilizing)
effects (such as off-stoichiometry, phonons, temperature, doping, etc.
Vibrations can stabilize certain crystalline phases with respect

to other45, and the phonon contribution to the free energy can
be considerably larger than 50 meV/atom46–50 (although energy
differences are smaller, of the order of 10–20 meV/atom). For
perovskites also distortions, such as the tilting or rotations of the
octahedra, can lower their energy by more than 100 meV/
atom51,52. Furthermore, defects can play a major role49,50. In fact,
in some cases, such as in the photovoltaic absorbing materials
copper indium gallium selenide (CIGS) and copper zinc tin
sulfide (CZTS), the concentration of defects (in this example,
copper vacancies) may amount to more than 10%53, due to their
strong stabilizing effect.
By extending the range to 400meV/atom, we are reasonably

sure to cover the cases where the system can be realized
experimentally. However, we should keep in mind that the
probability of being able to synthesize a compound decreases
rapidly with its distance to the convex hull.
In view of a large number of systems in our energy range, we

decided to study in detail only the materials for which the
machine-learning models predicted large values for Tc. We
followed two strategies.
First, in “Machine learning”, we realize the importance of the

Z-atom for superconductivity, with lighter atoms leading to

higher ωlog. Therefore, we investigated all materials of the type
XY{Li, Be}3. There are 79 compounds below 400 meV/atom
containing Li3 and 16 containing Be3, of which 31 and 7 are
dynamically stable, and 8 and 5 exhibit Tc > 5 K, respectively.
The five compounds with the highest Tc are listed in the middle
panel of Table 2. The two best materials are {Pt, Pd}HBe3 with
transition temperatures above 17 K, followed by CoHBe3.
Second, we selected all systems for which both models

predicted a Tc of 5 K or higher. Excluding the Be/Li3 compounds
there are 248 such materials, of which 167 exhibited imaginary
phonon frequencies and 16 failed to converge. Such a high
number of dynamically unstable systems is not surprising. In fact,
it is clear that the machine-learning models are giving preference
to compounds with a large density-of- states at the Fermi surface,
particularly prone to structural distortions. From the 65 dynami-
cally stable entries, we found 44 with a transition temperature
above 5 K. Surprisingly all of these had Y= H. The top five are
listed in the bottom panel of Table 2, and are OsHCr3, IrHCr3,
TiHZr3, TiHRu3, and YHZr3, with Tc reaching more than 15 K.
The distributions of values of λ, ωlog, and Tc for these materials

with a distance to the hull between 50 and 400 meV/atom can be
seen as orange lines in Fig. 1. The models clearly predict systems
with values of λ higher than the initial dataset (in blue). The
distribution of ωlog is however red-shifted, which we can
understand from the fact that ωlog is anti-correlated with λ.
Finally, from panel c of the picture, we can see the quality of the
machine-learning prediction of Tc, with only 21 false negatives out
of the 65 compounds.

Specific systems
We start our discussion of the specific systems by comparing the
previously studied compounds listed in Table 1 with our
calculations with both the LDA and PBE functionals. This
comparison will also allow us to identify eventual problems with
our methodology that might appear for some compounds. We
then discuss in more detail a few materials, which will allow us to
better understand superconductivity in inverted perovskites.

Previously studied compounds. There are a few general conclu-
sions that we can draw from Table 1. First, there are a considerable
number of systems for which we obtain imaginary phonon
frequencies while experiments yields a stable superconductor.
Second, for systems with real phonons, there is a very good
agreement between the LDA and PBE results, and also between
experiment and theory. Third, our results are not always in
agreement with other published theoretical results. To understand
these, we have to look in detail into each material.
For MgCNi3, the first inverted perovskite superconductor to be

discovered16, the existence of imaginary frequencies turns out to
be well known54,55. In fact, already in 2003, Ignatov, Savrasov, and
Tyson noted the presence of an unstable acoustic mode54,
corresponding to perpendicular movements of two Ni atoms
towards octahedral interstitials of the perovskite structure.
Furthermore, they found that this mode is stabilized by
anharmonic effects, that when included in the analysis lead to a
very high calculated λ= 1.5154. To make this result compatible
with the experimental transition temperature of 8 K required the
authors to use the very large μ*= 0.33. We do find imaginary
frequencies in our LDA calculation. However, for the PBE the
system is dynamically stable, yielding a Tc very close to the
experimental value (with a standard μ*= 0.1). It is easy to
understand this result by looking at the phonon dispersion. In
fact, we find a very soft phonon mode in the PBE that becomes
imaginary with the LDA. This is therefore a system that is very
close to a phase transition, where small changes in the calculation
parameters (in the functional, or even in the pseudopotential) can
have a large influence in the results. By this, we do not mean that
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anharmonic effects are absent from MgCNi3, but that a full
understanding of superconductivity in these compounds will
require the inclusion of all these effects.
We believe that the same reasons can easily explain the

discrepancy between our calculations and experiment for the other
systems (such as AlCNi3 or GaNNi3), and we should therefore keep
in mind when analyzing the data that a fraction of the systems we
labeled unstable can indeed be stable and superconducting.
In what concerns SrPPt3 and CaPPt3, the experimental

structures56 are not cubic and are more complex than the five-
atom cell used in this work. Therefore, it is not surprising that we
find large imaginary phonons frequencies across the whole
Brillouin zone for these compounds, indicating that our simple
cell is extremely unstable.
For other compounds where we obtained real phonons, we can

see a good agreement between calculation and experiment. This
is the case of CdCNi3, InNNi3, YBRh3, and InCY3. For InCNi3, we
obtain a non-magnetic superconductor, while ref. 57

finds a
magnetic system. However, as discussed in that work, the
magnetism is suggested to originate from the deviation of the
Ni/In atomic ratio from the ideal stoichiometry (the experimental
sample contained 5% of In vacancies). Finally, for SnOSr3 we find a
normal metal, while ref. 58 obtained a superconductor. However,
batch ”E” in the experimental article, that was believed to have
approximately stoichiometric composition, showed semiconduct-
ing resistivity behavior down to low temperature. Superconduc-
tivity seems therefore to be closely related to the doping caused
by Sr deficiency, that is absent from our calculations.
Let us now discuss the materials that were predicted previously

to be superconductive theoretically. The agreement is very good
for ZnNNi3, GaNCr3. For RhNCr3, we obtain a magnetic ground
state, while ref. 19 apparently performed calculations for an
incorrect spin-compensated state. Then, it appears that calcula-
tions in the literature for SnOSr3, AlBSc3, GaBSc3, InBSc3, and
TlBSc3 using the Gaspari–Gyorffy formula59 tend to grossly
exaggerate the superconducting transition temperature, and even
to yield erroneous trends.

PtHBe3. This material exhibited the highest transition tempera-
ture for all stoichiometries studied. This is a hypothetical material,
and as we see from Table 2 its distance to the convex hull of
stability amounts to 175 meV/atom. From the electronic band
structure depicted in Fig. 2, we can see that the valence is
dominated by highly delocalized electrons, leading to very
dispersing bands with a bandwidth of around 4 eV. As a
consequence, the density-of-states at the Fermi surface is not
particularly large.

The phonon band structure, density-of-states, and α2F(ω) can be
seen in Fig. 3. As the masses of H, Be, and Pt are very different, the
phonon modes completely decouple: The highest phonon optical
modes between 800 and 1100 cm−1 are vibrations of H; The nine
optical modes between 200 and 600 cm−1 are almost exclusively
composed of the Be at the vertices of the octahedra; Finally, the
acoustic modes are due to Pt vibrations. The latter modes are the
ones that couple more strongly with the electrons, but there is still
a sizeable contribution from the H and Be modes. This leads to
ωlog ¼ 208 cm−1 and λ= 1.0 calculated with a 8 × 8 × 8 q-point
grid, and Tc= 15.4 K.
We also investigated the behavior of the superconducting

properties with pressure. As expected, the average frequency ωlog
increases monotonically with pressure, although saturating at high
pressures. The inverse happens for λ that decreases exponentially
with increasing pressure. This leads to a transition temperature
that decreases monotonically with pressure, at least for the range
we investigated (from 0 to 50 GPa).

ScCRh3. The family of transition metal carbides, to which ScCRh3
belongs to, has attracted some attention due to high stability and
hardness. It is therefore not surprising that the structural,
electronic and elastic properties of this compound have already
been studied in the literature60–62. The electronic band structure
and corresponding density-of-states can be seen in Fig. 4. It turns
out that ScCRh3 is a metal with highly dispersive bands crossing

Fig. 2 Calculated band structure (left) and total density-of-states
(right) for PtHBe3. The red line represents the Fermi level.

Fig. 3 Calculated phonon dispersion curves (left), projected
phonon density-of-states (center), α2F(ω) and λ(ω) (right) for
PtHBe3. The red circles represent the phonon linewidths with radius
proportional to the respective electron–phonon coupling strength.

Fig. 4 Calculated band structure (left) and total density-of-states
(right) for ScCRh3. The red line represents the Fermi level.
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the Fermi energy around the R point. However, parabolic valence
and conduction bands barely touch at Γ, leading to a relatively
small density-of-states at the Fermi level.
The phonon band structure, density-of-states, and α2F(ω) can

be seen in Fig. 5. As expected due to the mass difference, the
highest energy optical phonons correspond to vibrations of
the carbon atoms that occupy the center of the octahedra.
These are very dispersive bands that yield a small density-of-
states and that do not couple strongly with the electrons. At
around 200 cm−1 we find the vibrations of the Sc atoms. These
are very localized bands resulting in a large peak in the density-
of-states that however couple weakly to the electrons. The
largest contribution to λ comes indeed from the vibrations of
the Rh atoms forming the octahedra, in particular the acoustic
modes and lowest-lying optical modes. It is therefore not
surprising that ωlog has the relatively modest value of 177 cm−1

and λ= 0.64, leading to Tc= 5.0 K. However, looking at the
electronic density-of-states, we can expect that hole-doping
this compound should increase considerably the density-of-
states at the Fermi level and the superconducting transition
temperature.
As expected, ωlog increases monotonically with increasing

pressure, although in a sublinear way. The behavior of λ is more
complicated, with a minimum at around 28 GPa. Assuming a
constant μ*, we then obtain that Tc decreases with increasing
pressure until around 15 GPa, and then increases reaching
around 5.4 K at ~ 55 GPa.

MoNMn3. MoNMn3 was the material with the highest super-
conducting transition temperature that appeared in our systematic
high-throughput search. This is a hypothetical compound, appear-
ing 66meV/atom above the updated convex hull. From the band
structure and electronic density-of-states depicted in Fig. 6, we can
see several bands crossing the Fermi level, leading to a complex
Fermi surface with a pocket around the R point and several bands
barely touching the Fermi level at X, M, and between Γ and R.
Looking at the phonon band structure (see Fig. 7), we can see that
the low-lying bands have contributions from both cations, and are
followed by two bands involving purely Mn vibrations. Finally, there
is a gap, and we find (as expected from the considerable difference
of masses), the phonons involving the N atoms. Although all modes
contribute to some extent to λ, the strong contributions to the
electron–phonon coupling constant come from the modes between
around 150–300 cm−1.
Considering the behavior of MoNMn3 with pressure, we find that

as expected ωlog increases and λ decreases. This leads to an overall

small decrease of the superconducting transition temperature with
the pressure of the order of 0.13 K/GPa.

AsHTi3. Our final example is AsHTi3. The band structure for this
compound is shown in Fig. 8. We can see that close to the X-point,
and in the line connecting the M and Γ point, there are bands with
relatively flat regions, translating to a rather large density-of-states
at the Fermi level. We might expect that this benefits super-
conductivity, but as we know it also unlocks Jahn–Teller
distortions41. This can be clearly seen in the phonon band
structure depicted in Fig. 9. Once again, the H-modes are very
high in energy and completely separated from the other bands
and do not couple with the electrons. All other bands involving Ti
and As states couple strongly with the electrons leading to ωlog ¼
170 cm−1 and a rather high λ= 0.94. One can also see that the
lowest acoustic mode is very soft, especially in the line connecting
the M and the Γ point, and has a massive coupling with the
electrons. This is an indication that the system is therefore very
close to a structural phase transition. This situation is of course not
unique, and we found several systems with relatively large Tc and
with very soft modes. As we mentioned above, these modes are
often related to distortions of the octahedra typical of perovskites.
Note that, although the existence of these soft modes can
increase substantially λ, it also makes ωlog smaller, so the effect on
Tc may be less relevant than expected.

Fig. 5 Calculated phonon dispersion curves (left), projected
phonon density-of-states (center), α2F(ω) and λ(ω) (right) for
ScCRh3. The red circles represent the phonon linewidths with radius
proportional to the respective electron–phonon coupling strength.

Fig. 6 Calculated band structure (left) and total density-of-states
(right) for MoNMn3. The red line represents the Fermi level.

Fig. 7 Calculated phonon dispersion curves (left), projected
phonon density-of-states (center), α2F(ω) and λ(ω) (right) for
MoNMn3. The red circles represent the phonon linewidths with
radius proportional to the respective electron–phonon coupling
strength.
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When pressure is applied, λ increases and ωlog decreases due to
the softening of a phonon mode. This mode becomes imaginary
above 30 GPa, indicating a pressure-induced structural transition.
Again the behavior of Tc is complex, increasing to 11.2 K at 20 GPa,
but then decreasing until the onset of the transition.

DISCUSSION
We presented an extensive study of superconductivity in inverted
perovskite compounds with composition XYZ3 where Y is a
nonmetal and X and Z are metals. We started by using density-
functional perturbation theory to calculate both ωlog and α2F(ω)
for 397 thermodynamically stable (or close to it) materials. Most of
the dynamically stable compounds turned out to have an
electron–phonon coupling constant λ below 0.5 and ωlog between
150 and 400 cm−1. As such, only a few have superconducting
transition temperatures larger than a few Kelvin, and as few as 16
inverted perovskites appear with a Tc larger than 5 K.
These data were then used to train two machine-learning

models. Our objective was twofold: (i) first to understand and
interpret the superconducting properties based on the chemical
composition of the material and simple ground-state properties
and (ii) to develop simple statistical models that are capable of
predicting λ and ωlog (and therefore Tc) for arbitrary inverted
perovskites. The picture that emerged is that λ is directly
proportional to the density-of-states at the Fermi surface and
inversely proportional to the mass of the Y-atom, while ωlog is

mostly determined by the Z-atom. Based on the understanding
gained from the models and the actual predictions, we found a
further 55 (thermodynamically unstable) materials with a (vali-
dated) transition temperature above 5 K, reaching a maximum of
17.8 K for PtHBe3.
By comparing our results with published experimental and

theoretical studies we arrived at the following conclusions: (i) in
the few cases where a direct comparison was possible, density-
functional perturbation theory compared quite well with the
experiment; furthermore, values of Tc seem to be rather insensitive
to the choice of the exchange-correlation functional; (ii) Off-
stoichiometry in experimental samples can have strong effects in
the properties of the material by, e.g., rendering it magnetic or
even superconducting. (iii) Anharmonic effects are definitively
important in stabilizing some phases; however, it is also likely that
some of the effects previously attributed to anharmonicity are
actually related to an insufficient description of the electronic
exchange-correlation functional. (iv) Estimates of Tc based on the
Gaspari–Gyorffy formula seem to be highly overestimated for
inverted perovskites.
Finally, we studied the electronic and phononic properties of a

few materials in more detail. Combining this with our previous
machine-learning models, we could get a more comprehensive
picture of the mechanism of superconductivity in inverted
perovskites. The phonon modes that couple more strongly with
the electrons, and that are responsible for the binding of the
Cooper pairs, are related to vibrations of the Z-atoms that form the
octahedra characteristic of perovskites. These modes are rather
soft, which enhances the electron–phonon coupling constant λ
but leads to small values of ωlog. For some materials, however, the
soft modes become imaginary and the system is dynamically
unstable, deforming by the tilting or rotation of the octahedra. To
reach values of Tc above 5 K thus requires a careful balance, so
that the crystal is close, but not too close to structural instability.
In conclusion, we showed how the combination of traditional

approaches, based on density-functional theory, and interpreta-
ble machine-learning models can give us not only quantitative
predictions of superconducting properties, but also a qualitative
interpretation of the mechanism of superconduction. Further-
more, these systematic approaches provide a very different
perspective, allowing us to infer the behavior of whole classes of
materials, and to distinguish standard compounds from outliers
with exceptional properties. As such, we expect that they will
become more common in the near future.

METHODS
Crystal structures
The cubic antiperovskite unit-cell belongs to the space group Pm3m
(#221), and contains five atoms in the primitive unit. For simplicity, we will
always label our systems as XYZ3, where the X atoms are in Wyckoff
position 1a (at the center of the cubes), the Y in the position 1b (at the
center of the octahedra), and finally the Z-atoms are in the position 3c (at
the vertices of the ocahedra) (see Fig. 10).

Convex hull
In ref. 31, we used the convex hull of the Materials Project63. Since then,
the knowledge of the convex hull improved massively. Consequently, we
reevaluated the distances to the convex hull using the rather complete
dataset from ref. 64. Furthermore, and due to the errors associated with PBE
formation energies43 we decided to recalculate the selected systems with
the approach and calculation parameters from ref. 65. This allows us to
evaluate the distance to the convex hull with the PBEsol66 and SCAN
functionals44. The former reduces the error of the PBE for lattice
constants67 considerably, while the latter was shown to have a superior
performance for determining thermodynamic stability68. The resulting PBE,
PBEsol, and SCAN distances to the convex hull can be found in the
Supplementary Material for all materials considered. In most cases, we do
not see a large difference between the three values, with one notable

Fig. 9 Calculated phonon dispersion curves (left), projected
phonon density-of-states (center), α2F(ω) and λ(ω) (right) for
AsHTi3. The red circles represent the phonon linewidths with radius
proportional to the respective electron–phonon coupling strength.

Fig. 8 Calculated band structure (left) and total density-of-states
(right) for AsHTi3. The red line represents the Fermi level.
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exception. For materials where the Z-atom is a 3d transition metal, SCAN
distances to the hull are sometimes hundreds of meV/atom larger than
their PBE or PBEsol counterparts. This is due to the well-known problem of
SCAN for itinerant magnets, leading to a significant overestimation of the
magnetic moments69. In such cases, the PBE (or PBEsol) values are
expected to be significantly more accurate than SCAN.

Electron–phonon calculations
We performed electron–phonon calculations using QUANTUM ESPRESSO
version 6.8. We used pseudopotentials from the PSEUDODOJO project33,
specifically the stringent norm-conserving set. This pseudopotential table
has been systematically constructed and validated in a series of 7 tests in
crystalline environments, specifically the Δ-Gauge70, Δ0-Gauge71, GBRV-FCC,
GBRV-BCC, GBRV-compound72, ghost-state detection, and phonons at the
Γ-point. We note that PSEUDODOJO does not include an LDA pseudopo-
tential for La, but provides a PBE one. Therefore, and for consistency, we did
not use any compounds including La in our training set, but evaluated a
posteriori the electron–phonon and superconducting properties of all
relevant La-including antiperovskites using the PBE functional.
For the calculation of the superconducting properties, we used the

Perdew–Wang73 local-density approximation. Our choice was based on the
fact that the local-density approximation performs surprisingly well when
compared, for example, to several commonly used generalized gradient
approximations74, and is more stable numerically. In any case, to
understand the dependence on the results with the functional, we also
used the PBE functional32 for a few compounds.
Our workflow consisted in the following steps:

(i) The energy cutoff was automatically determined such that the total
energy was converged to 2.5 meV/atom. This led to cutoffs in the
interval 60–150 Ry, with the large majority of the compounds laying
in the interval 80–100 Ry. We tested these parameters by performing
calculations for three systems using the more stringent condition
that the total energy was converged to 1.0 meV/atom. Values for λ
changed by a maximum of 0.005 and ωlog by 6 cm−1 leading to an
insignificant variation of Tc (smaller than 0.1 K).

(ii) The lattice constant was optimized using a Γ-centered 8 × 8 × 8
k-point grid until the energy was converged to 10−5 a.u. and the
pressure to 0.5 kbar. For the electron–phonon coupling we used the
same k-point grid. We tried to increase it to a 12 × 12 × 12 but it only
led to small changes in Tc.

(iii) For the q-sampling of the phonons, we used a regular 4 × 4 × 4 grid,
in line with previous theoretical works on inverted perovskites75,76.
We tested the quality of the sampling by performing calculations
with a denser 8 × 8 × 8 q-point grid. For example, for PtHBe3 a 4 ×
4 × 4 (8 × 8 × 8) sampling leads to λ= 1.25 (1.04), ωlog ¼ 190 cm−1

(208 cm−1) and Tc= 17.8 K (15.4 K). For YHZr3, we have λ= 1.15
(1.13), ωlog ¼ 137 cm−1 (140 cm−1) and Tc= 11.6 K (11.6 K). Finally,
for AsHTi3, we obtain λ= 0.95 (0.94), ωlog ¼ 162 cm−1 (170 cm−1)
and Tc= 10.4 K (10.7 K). The differences in λ and ωlog are sometimes
not negligible, but they mostly cancel out in the calculation of Tc. In
any case, the incertitude in Tc due to q-point sampling is smaller
than the one of other parameters (such as μ*) and is adequate
enough for our purposes during the high-throughput search. The
detailed discussion of specific materials will be done, instead, using
the denser 8 × 8 × 8 sampling.

(iv) The double δ-integration to obtain the Eliashberg function was
performed with a Methfessel–Paxton smearing of 0.05 Ry. For the
8 × 8 × 8, we found that the integrated values were essentially
constant for smearings in the range 0.02–0.05 Ry, but varied more
for the coarser q-grid. We chose the value of 0.05 Ry for the high-
throughput study, as it yielded the best integrated values of λ and
ωlog when compared to the better converged 8 × 8 × 8 results.

(v) The values of λ and ωlog were then used to calculate the
superconducting transition temperature using the Allen–Dynes
modification77 to the McMillan formula78

Tc ¼ wlog

1:20
exp �1:04

1þ λ

λ� μ�ð1þ 0:62λÞ
� �

: (4)

We took arbitrarily the value of μ*= 0.10 for all materials studied.

SISSO hyperparameters
For the training of the SISSO models, we considered a descriptor of dimension
1, a feature space of rung 2 with a maximum feature complexity of 10 and a
subspace size of 20. The following operators were used to construct the
formulas: þ; �; �; =; exp; exp�; ^ � 1; ^2; ^3; ^6; sqrt; cbrt; log; abs.
The features had an absolute data value range of 0.001 up to 100,000.
The 23 input features were grouped in the following dimension (unit)
classes: (1) the structure volume, (2) the atom charges, (3) the density-of-
states, (4) the columns, and (5) the rows in the periodic table, (6) the
electronegativities, (7) the atomic weights, (8) the square roots of the
atomic weights, and (9) the covalent radii. The sparsifying operator L0 was
used together with the RMSE metric.

MAPLE hyperparameters
The MAPLE model used a random forest regressor with 200 trees and a
minimum number of 10 samples per leaf. Furthermore, 50% of the
features were considered looking for the best split. The local linear model
had a regularization of 0.001. For the rest of the parameters, we used the
default values in the MAPLE implementation (https://github.com/
GDPlumb/MAPLE.git).

DATA AVAILABILITY
All data used in or resulting from this work is available in the manuscript, the
Supplementary Material and at https://archive.materialscloud.org/record/2022.49.
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