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Unfolding the structural stability of nanoalloys via
symmetry-constrained genetic algorithm and neural
network potential
Shuang Han 1, Giovanni Barcaro2, Alessandro Fortunelli 2, Steen Lysgaard 1, Tejs Vegge 1 and Heine Anton Hansen 1✉

The structural stability of nanoalloys is a challenging research subject due to the complexity of size, shape, composition, and
chemical ordering. The genetic algorithm is a popular global optimization method that can efficiently search for the ground-state
nanoalloy structure. However, the algorithm suffers from three significant limitations: the efficiency and accuracy of the energy
evaluator and the algorithm’s efficiency. Here we describe the construction of a neural network potential intended for rapid and
accurate energy predictions of Pt-Ni nanoalloys of various sizes, shapes, and compositions. We further introduce a symmetry-
constrained genetic algorithm that significantly improves the efficiency and viability of the algorithm for realistic size nanoalloys.
The combination of the two allows us to explore the space of homotops and compositions of Pt-Ni nanoalloys consisting of up to
4033 atoms and quantitatively report the interplay of shape, size, and composition on the dominant chemical ordering patterns.
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INTRODUCTION
The world’s energy future is toward the transition from fossil fuels
to renewable energy sources. Bimetallic nanoparticles (NPs) are a
class of heterogeneous catalysts that are widely used in energy
conversion due to their superior catalytic activity and selectivity
compared to their bulk and monometallic counterparts1–6. To
study the catalytic properties of a bimetallic NP, the prerequisite is
that the structure has to be thermodynamically stable. In the
context of a nanoalloy (NA), the stability is governed by many
factors including size, shape, chemical composition and chemical
ordering. Complementing experimental methods, atomistic simu-
lations offer great opportunities in the study of the structural
properties of NAs, as thermodynamic stability can be accurately
quantified. Global optimization methods are commonly used in
computational studies to search for stable structures through the
large space of all homotops and compositions of a NA system.7

A genetic algorithm (GA) is a metaheuristic global optimization
method inspired by the idea of natural selection and survival of
the fittest. Over the years, the GA has been developed as a robust
and efficient tool for finding the optimal shape and chemical
ordering of a NA8–11. Due to the large number of required energy
evaluations, analytical models have been used as the primary
energy calculator in the GA. Radillo-Díaz et al.12 employed the
Gupta many-body potential13,14 in the GAs to investigate the
structural properties of Pt-Ni NAs with less than 30 atoms and
found that Pt0.5Ni0.5 and Pt0.75Ni0.25 NAs exhibit strong Pt and Ni
surface segregation, respectively, whereas no clear segregation is
found in Pt0.25Ni0.75 NAs. Yang et al.15 performed GAs on Pt1−xNix
NAs with sizes of 38, 55, 147, and 309 atoms employing the Gupta
potential and found that the most stable structures are
icosahedral NAs with the composition of Pt0.45Ni0.55. Using an
embedded-atom method16,17 (EAM) in combination with the GA,
Oh et al. conducted a computational study on Pt-based binary
truncated octahedrons (TOhs) with 1654 atoms at fixed composi-
tions and the predicted stable chemical orderings are in good

agreement with experimental observations. Lysgaard et al.18

employed the effective medium theory19 (EMT) potential in a
GA, searching for stable stoichiometry and chemical ordering of
the 309-atom Cu-Au icosahedral NA and found that the most
stable structure is a Cu0.44Au0.56 NA with Cu core and Au shell. By
incorporating a bond centric (BC) model20, Dean et al.21 recently
developed a GA that can predict stable binary NA structures of any
size, shape and composition. An alternative global optimization
method employing the SMATB potential is also proved to be
efficient and exhaustive22. Despite the fact that these analytical
models are very fast to evaluate, they can yield spurious local
minima for NAs due to poor description of the PES23. To improve
the reliability of the result, GAs incorporated with density
functional theory (DFT) calculations have also been performed in
recent years24–29. However, almost all DFT-based GAs are limited
to particle sizes of <50 atoms due to the high computational
demand.
The trade-off between speed and accuracy of the energy

calculator has always been a major concern for the GAs. While
accurate DFT calculations can be performed on small NAs, a
compromise of speed over accuracy seems to be the only option
for larger NAs. One solution toward this dilemma is to incorporate
a DFT-trained machine learning (ML) model into the GA. Jennings
et al.30 proposed an active learning scheme where a Gaussian
process regression model is used in conjunction with the GA and
achieved a 50-fold reduction in the number of energy evaluations
for the 147-atom Pt-Au NA compared to a full DFT-based GA.
Zhang et al.31 performed a ML-accelerated GA on the 38-atom Pt-
Au NA by training the SchNet32 model on-the-fly. Despite the fact
that these active learning schemes minimize the required DFT
calculations by a large margin, they are still inapplicable to large
systems where DFT relaxations are intractable. An alternative
solution is to fit a ML force field on small clusters and apply it on
larger systems. The high-dimensional neural network potential
(NNP) proposed by Behler and Parrinello33,34 has shown good
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transferability beyond the sizes of the reference NAs in the
training set35–37. The NNP has already been used in combination
with the GA in recent studies on nanoclusters38–40, yet the studied
systems remain relatively small. With the energy basins being
evaluated at DFT-level accuracy while the computational cost w.r.t
the number of atoms N being reduced from O(N3) to O(N), it is
even more beneficial to use the NNP for larger NAs.
One of the merits of GA is that it can efficiently locate the full

convex hull of a A1−xBx NA system in a single run. From the
convex hull one can get useful information such as the vertices
representing the lowest mixing energy (or excess energy) at each
stable composition. For a binary NA, the mixing energy per atom is
defined as [Eq. 1]41,42

Emix ¼ 1
N

EAB � NA

N
EA � NB

N
EB

� �
(1)

where N is the total number of atoms, NA and NB are the numbers
of atoms of type A and B, respectively, EAB is the total energy of
the relaxed NA, EA and EB are the energies of the relaxed pure NPs
A and B, respectively.
A traditional generation-based GA for searching the convex hull

starts by generating a random population of binary NAs.
Throughout the GA run, the population size remains the same
in each generation. The candidates of the population perform
genetic operations including mutation, permutation and crossover
to procreate offsprings which evolves a generation. Cut-splice
crossover11,43 is a typical crossover operator which acts by
juxtaposing two parts from each participating parent and thereby
creating two offsprings with inherited properties. A mutation (or
permutation) operator introduces a random structural or chemical
change to a chosen parent so that the offspring can gain new
traits compared to its parent. All the individual candidates are
ranked in accordance with their mixing energies. Candidates with
lower mixing energies are assigned with higher fitness scores. We
employ a fitness function that follows a niching routine44, where
the fittest candidates for each composition are equally weighted.
This forces each NA to only compete with other NAs with the
same composition, thereby ensuring that the population can
maintain diversity in composition. The niche GA evolves toward an
optimal population in which all candidates across all compositions
are low in mixing energy.
As the size of the NA increases, the efficiency of the GA itself also

becomes a bottleneck. It becomes especially challenging to perform
a niche GA across all compositions for a large NA given the
enormous search space. An effective acceleration of sampling can
be achieved by enforcing constraints based on symmetry con-
siderations, as realized in the class of ‘grouping’ approaches41,45–47.
Here we combine GA with grouping approaches, thus managing to
exploit the advantages of both techniques. In detail, we have
developed a GA variant based on the rotational and reflectional
symmetries of the NAs, namely symmetry-constrained genetic
algorithm (SCGA), to adapt to the dire needs of an efficient
structural optimization tool for NAs comprising thousands of atoms.
The SCGA still follows the typical workflow of a traditional GA,
except that the population in each generation now only consists of
NAs with symmetric chemical orderings.
In general, the chemical ordering of a binary NA can be

classified either of mixed or segregated types. Mixed patterns can
be found in both extended multicomponent systems and NAs,
where the components are distributed either randomly or in a
regular arrangement as in L10 and L12 chemical ordering patterns,
see Fig. 1(a) and (b) for illustrative depictions. Besides mixed
patterns, NAs are also known to be particularly prone to phase
segregation due to size confinement. 4 typical segregated
patterns are illustrated in Fig. 1: (c) core-shell, where one
component at the core is surrounded by a shell of a different
component; (d) multi-shell, where multiple shells are populated

with alternating species; (e) patchy, where one component
appears as islands of atoms, forming a patchwork-like nanos-
tructure; and (f) Janus, where the nanostructure is bisected into
two distinct phases comprising different components.
The common ground of all patterns depicted in Fig. 1 except

the randomly-mixed pattern is that the geometric shape and
chemical ordering are both reproducible when rotating around
one of their symmetry axes. From this we come to the definition of
symmetric in the context of NA47—both the shape and chemical
ordering being rotationally invariant to at least one Cn axis by an
angle of 2π/n. Most NPs have a multitude of Cn axes, often with
multiple C2 axes and a few higher order symmetry axes. In this
work, we only consider higher order symmetries, around which a
symmetric chemical ordering is more likely to present in a stable
NA. Figure 2 shows all unique Cn axes of fcc, icosahedral and
decahedral NPs excluding their C2 axes.
To further classify the symmetries of different types of

symmetric NAs, we introduce the concept of three basic
symmetries: spherical, cylindrical and planar47. To exploit the
symmetry of a symmetric NA, a set of atom groups, which we here
name as symmetry-equivalent groups (SEGs), can be chosen with
caution so that all atoms are of the same type in each group. The
atoms in a symmetric NA can be grouped under different criteria
depending on the symmetry that one wants to exploit. Assuming
the Cn axis is aligned to the z direction, the SEGs divided by the
three basic symmetries are then defined as
spherical: constant distance to the geometric center;
cylindrical: constant horizontal distance to the z-axis;
planar: constant z-coordinate.
According to these definitions, the L10 NA shown in Fig. 1(b) has

both cylindrical and planar symmetries, whereas the segregated
patterns in (c), (d) and (e) only have spherical symmetry, and the
Janus pattern in (f) only has planar symmetry. For many systems
such as Pt-Ni, Janus-like phase separation is known to be highly
unlikely due to the size mismatch. Therefore it is useful to also

Fig. 1 Snapshots of typical chemical ordering patterns for binary
NAs. These include mixed patterns a random, b ordered, and
segregated patterns c coreshell, d multi-shell, e patchy, f Janus. All
patterns are shown as cross sections cutting along the symmetry
axes of the NAs.

Fig. 2 Snapshots of NPs with their C (n > 2) symmetry axes. Three
most common motifs are shown: a fcc, b icosahedron, and
c decahedron.
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take into consideration the reflectional symmetry and single out a
high symmetry subset from planar symmetry with the definition of
mirror planar: constant vertical distance to the xy-plane.
However, the examples depicted in Fig. 1(b)–(f) are all highly

symmetrical. In reality, NAs with lower symmetry can still be
favored over the highly symmetrical ones. Given that the degree
of symmetry is inversely related to the number of SEGs divided by
it, we can introduce additional symmetry definitions with more
SEGs to account for NAs with lower symmetry. One way to achieve
this is by combining two of the three basic symmetries47. This will
always result in a circular symmetry regardless of the intersection
between any two of the sphere, cylinder and plane symmetries.
The SEGs divided by circular symmetry is thereby defined as
circular: constant horizontal distance to the z-axis and constant

z-coordinate.
Similar to mirror planar symmetry, we can also introduce a high

symmetry subset for circular symmetry with the definition of
mirror circular: constant horizontal distance to the z-axis and

constant vertical distance to the xy-plane.
In most cases, there are only so many atoms that are perfectly

located on a constant surface. Thereby we generalize the
definition of a constant surface by introducing a tolerance
measurement for each SEG. The tolerance can be interpreted as
the largest allowed difference between the distance metrics of the
closest-to-center atoms in two adjacent SEGs, where the type of
distance metrics is determined by the criterion of the symmetry. A

comprehensive summary of these NA symmetries can be found in
Supplementary Table 2. As can be seen, the number of circular (or
mirror circular) SEGs are much more than those divided by basic
symmetries, hence exists much more unique symmetric NAs. This
is also the reason we neglect the lowest symmetries such as two-
fold rotation, mirror and inversion symmetries, as the search space
is not significantly reduced.
SCGA is a GA variant specifically designed for symmetric NAs,

where the genetic operators are adapted in a way that the
symmetry of the NA is always preserved. To achieve this, one must
first provide the SEGs given by the symmetry that one wants to
exploit. A SCGA starts by randomly generating an initial population
of symmetric NAs, then applying symmetry-constrained operators to
procreate offsprings with inherited symmetry. Compared with a
traditional GA, the SCGA adds the constraint that the atoms in each
SEG must have the same type of element for every candidate
throughout the run.
The obvious advantage of a SCGA over a traditional GA is that it

only explores a drastically reduced subspace of NA structures. To
quantify the difference, we can calculate the number of all
homotops of an N-atom binary NA at a composition of AnBN−n as
[Eq. 2]

Hn ¼ N!
n!ðN � nÞ! (2)

However, the number of symmetric homotops at a certain
composition is system-specific. As an alternative, we can calculate
the sum of the number of homotops at each composition. For a
binary NA system the total number of homotops across all
compositions is given by [Eq. 3]

HN ¼ 2N (3)

In contrast, the total number of symmetric binary NAs across all
compositions can be written as [Eq. 4]

H�
N ¼

X
n

2KCn
(4)

where KCn is the number of SEGs around a Cn axis.
As an example, we illustrate the number of homotops at each

composition of a TOh260 binary NA in Fig. 3(a). It is common to
perform multiple SCGA runs in parallel w.r.t different symmetry
axes. In the case of TOh260, we consider symmetric homotops
with threefold and fourfold mirror circular symmetry, each
constituting 22 SEGs. As can be seen, when approaching the 1:1
composition, the number of symmetric homotops only accounts
for about 1/1070 of the number of all homotops. As the particle
size becomes larger, the total number of homotops across all
compositions becomes astronomical due to the combinatorial
explosion as described in Eq. (3). As a result, the SCGA becomes
more advantageous, reaching a reducing factor of 101160 when
the number of atoms exceeds 4,000, as manifested in Fig. 3(b). The
significant reduction of the search space makes it possible to
perform global optimization on large NAs at a reasonable
computational cost. Also, searching through the whole space of
homotops will inevitably encounter duplicates due to the self-
symmetry of the NPs, whereas every symmetric homotop is
unique by definition. We want to add that the validity of the
results obtained by the SCGA should not be a major concern given
the fact that the ground states of NAs are either perfectly
symmetric or highly symmetrical in most cases.
With the combination of the NNP and the SCGA, our scheme

aims to predict stable NA structures with DFT-level accuracy at any
given size, shape and composition, thereby bridging the materials
gap between theory and experiment. Among various reported
bimetallic nanocatalysts, we resort to the Pt-Ni NA as our target
system since it has received considerable attention due to the low
material cost of Ni, as well as the exceptional electrocatalytic
properties for the oxygen reduction reaction (ORR)48–51. It has

Fig. 3 Comparisons of the search space for all homotops (blue)
and the subspace for symmetric homotops (orange). The number
of homotops are plotted in logarithmic scale w.r.t. a the composition
of a TOh260 binary NA and b the number of atoms in the NA. The
green and red curves in the inset of (a) shows the number of
symmetric homotops with threefold and fourfold mirror circular
symmetry, respectively.
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been shown that Pt-Ni NAs can be applied to hydrogen
production52–54, proton exchange membrane fuel cells
(PEMFCs)55–58 and metal-air batteries.59 However, despite exten-
sive studies in experiments, the structural stability of Pt-Ni NAs in
relation to size, chemical composition and chemical ordering still
remain controversial. In the present work, a NNP is constructed to
represent the high-dimensional potential energy surface (PES) of
the Pt-Ni bimetallic system. The NNP is then employed in
conjunction with the SCGA to determine the optimal chemical
orderings of PtxNi1−x NAs across all compositions in a wide range
of sizes, encompassing the most interesting ones in view of
applications, i.e., from 1.5 to 5 nm in diameter and in the most
favorable shapes.

RESULTS AND DISCUSSION
In this section, we first describe the construction of the NNP for Pt-
Ni NAs including four main steps: structure sampling and
resampling, and NNP training and validation. In the second part
of the section, we report quantitatively the results of the stable Pt-
Ni NAs from 1.5 to 5 nm obtained by NNP-based SCGA runs. We
then carry out a comprehensive analysis of the favored chemical
ordering as a function of shape, size and composition, followed by
a comparison of our results with previous experimental and
theoretical findings on Pt-Ni NAs. Technical details for the
reference first-principles calculations, the construction of the
NNP and the SCGA runs can be found in the Methods section.

Construction of the neural network potential
To construct an initial training set for the NNP, a small set of
monometallic motifs are prepared as prototypes. To ensure the
diversity and versatility of the training set, we include NPs, surface
slabs and bulk structures in these prototypes. This is especially
important for applications on large NPs, in which the inner core
becomes more bulk-like and the facets closely resemble extended
surfaces. For bulk structures, 4 space groups are considered: I4/
mmm, P4/mmm, Pm3m and R3m. For surface slabs, we include 8
Miller indices reported to be exposed on pure Pt and Ni NPs60:
(100), (111), (110), (221), (311), (322), (331) and (332). For NPs we
consider the three most abundant structural motifs—fcc, icosahe-
dron (Ih) and decahedron (Dh), together with their derivatives
formed by various truncations, all depicted in Supplementary Fig.
5. The sizes of these NP prototypes are strictly restricted to be no
larger than 210 atoms so that all DFT calculations are still relatively
efficient. On the other hand, no NPs under 100 atoms are
considered in the prototypes as they often exhibit strong
quantum effects and complex spin multiplicities, which could
significantly bias the PES fit on larger particles.
To extensively sample the configurational space of Pt-Ni alloys,

semi-grand canonical Monte Carlo (SGCMC) simulations are
performed for all prototypes with an EAM potential61 using the
implementation in LAMMPS.62 Since the chemical potential
difference between the two species, Δμ, is fixed in each SGCMC
simulation, we hence carry out SGCMC simulations at various Δμ
to account for various compositions. The SGCMC simulations are
coupled with canonical molecular dynamics (MD) simulations to
also sample the structural space. As a result, we have sampled
more than 26,000 Pt-Ni alloy structures with random chemical
orderings from the monometallic prototypes, including more than
20,000 NAs. The detailed hybrid MC-MD simulations are described
in Supplementary Note 1.
Despite extensive sampling of Pt-Ni NAs using hybrid MC-MD

simulations, the sampled structures either favor limited types of
chemical orderings (e.g., core-shell and multi-shell in the case of
EAM for Pt-Ni), or do not exhibit any strong ordering at all. Therefore
it is important to also sample NAs with a variety of symmetries
displayed by their chemical orderings. In this work, we use the

symmetric NA generator implemented in the Alloy Catalysis
Automated Toolkit (ACAT)63 to generate NAs with circular and
mirror circular symmetries from the prototypes. This allows us to
sample more than 29,000 symmetric NAs with various degrees of
symmetry. When generating symmetric NAs, we always align the z
direction to the corresponding Cn axes depending on the shape.
It is still a daunting task to perform DFT calculations on all

55,000 sampled Pt-Ni alloy structures. Query by committee (QBC)64

is a good way to refine the training set without losing too much
diversity. In this work, we combine a bootstrap ensemble with a
batch-based QBC scheme to efficiently screen images in the training
set. We use the serial version of RuNNer34,65 to minimize the
computational cost of constant training and retraining of all NNP
models in the ensemble. A detailed description of the QBC
resampling can be found in Supplementary Note 2.
As manifested in Supplementary Table 1, after the first round of

QBC resampling, the number of images in the training set has been
reduced to more than 17,000. The training set has been further
refined to 6828 images by repeating another round of QBC
resampling with a reduced batch size. A third trial resampling has
been carried out with a smaller batch size, but the accuracy of the
NNP fit on the reduced training set is unable to meet the target
energy convergence criterion 3meV ⋅ atom−1. Therefore, we use the
database after the second QBC resampling as our final training set.
We have calculated the energy and forces of each structure in

the resampled database using DFT. To estimate the accuracy of
the DFT-trained NNPs, the resampled database have been split
into a training set and a test set with a ratio of 9:1. Table 1 shows
the energy and force root-mean-square errors (RMSEs) of the
training and the test sets for different neural network (NN)
architectures after 30 epochs of training. We use the NN
architecture of two hidden layers each containing 20 neurons as
our final model since it provides the best compromise between
accuracy and efficiency. With this model, the final energy RMSEs
for the training and the test sets are 1.54 meV ⋅ atom−1 and
1.77meV ⋅ atom−1, respectively, while the force RMSEs for the
training and the test sets are 69.07 meV ⋅ Å−1 ⋅ atom−1 and
69.40 meV ⋅ Å−1 ⋅ atom−1, respectively. As manifested in the parity
plots in Supplementary Fig. 6, the PES located by the NNP is in
good agreement with DFT. Also, there is no observable difference
in performance between the NNP predictions on the training and
the test sets, indicating that the model is not overfit. The NNP is
further validated on an independent test set, as demonstrated in
Supplementary Note 3.

Table 1. Energy and force RMSEs for six different NN architectures.

NN architecture ERMSE
train ERMSE

test FRMSE
train FRMSE

test

10-10 (p-p) 4.46 4.41 75.63 75.80

10-10-10 (p-p-p) 2.00 2.20 75.59 75.75

15-15 (p-p) 1.72 1.96 71.25 71.31

15-15 (s-s) 1.70 1.85 72.06 72.19

15-15 (t-t) 1.67 1.84 71.79 71.94

15-15-15 (p-p-p) 1.71 1.95 71.05 71.37

20-20 (p-p) 1.54 1.77 69.07 69.40

20-20-20 (p-p-p) 1.58 1.81 68.52 69.06

The architectures are denoted by the number of neurons and the
activation functions (p= softplus, s= sigmoid, t= hyperbolic tangent)
used in the hidden layers. The RMSEs are obtained from the training and
test sets after 30 training epochs. The units for the energy and force RMSEs
are meV ⋅ atom−1 and meV ⋅ Å−1 ⋅ atom−1, respectively.
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Structural analysis
To search for the convex hulls of Pt1−xNix NAs of various shapes
and realistic sizes, we have performed SCGA runs employing the
NNP for TOh, cuboctahedron (COh), Ih and Dh NA motifs with 36
representative magic numbers ranging from 140 to more than
4000 atoms. Both fcc and Dh motifs have (111) and (100) facets
exposed, while Ih motif only has (111) facets exposed. We do not
consider other fcc motifs such as cube and octahedron, as Pt-Ni
NAs in the size range of 3–5 nm are most frequently found to be
cubo-octahedral in experiments.66,67 The resulting convex hulls
and the corresponding ground-state (global optimum) structures
are depicted in Supplementary Figs. 12–17. All the stable Pt-Ni
NAs at stable compositions are collected at the vertices of each
convex hull.
We first look at the chemical composition in the 1st, 2nd and 3rd

outermost shells of each stable NA. In Fig. 4 we plot the Ni content
as a function of both size and composition. The number of atoms in
each NP is converted to the diameter by an approximation of D=
0.315N1/3 for better visualization, where D is defined as the diameter
of a sphere with the same volume as the particle. As can be seen,
surface segregation of Pt with subsurface segregation of Ni is
favored by all three motifs in most concentration regions. The Pt
surface segregation is not a surprise since Ni possesses comparable
surface energy to Pt68 but a much smaller atomic radius.
Interestingly, as the particle size increases, the Pt enrichment on
the surface becomes more severe, whereas the subsurface becomes
more mixed. We also notice that the Ih motif also exhibits Pt
enrichment in the 3rd outermost shell. This is confirmed by
analyzing the Pt content in each concentric shell of the most stable
Ih Pt-Ni NAs at various sizes and nine representative compositions,
as depicted in Supplementary Fig. 8. In addition, the Ni content
tends to increase gradually as the shell moves toward the core.
Next, we investigate the ordering patterns for the bulk-like core

of Pt-Ni NAs, i.e., all concentric shells excluding the strongly
segregated surface and subsurface. Considering the complexity of
chemical orderings, it is important to quantify the degree of
intermixing of the two components in each SEG of a binary NA.
Herein, we introduce a normalized mixing order parameter with
the definition adapted from a previous paper47 as [Eq. 5]

Smix ¼ 4
K

XK
i¼1

xAi x
B
i (5)

where K is the number of SEGs, xAi and xBi are the mole fraction of
metal A and metal B in the ith SEG, respectively. Mixed patterns
often have medium to high Smix, whereas segregated patterns
tend to have very low Smix values. For example, a perfect core-shell
or multi-shell Ih NA has a Smix of 0 if the atoms are grouped by
spherical symmetry, which is inherently present in the concentric

shells. If we group the atoms by planar symmetry, a perfect
layered (including Janus) NA also has a Smix of 0, while rock salt
structure represents a perfectly mixed pattern with a Smix of 1.
The ordering parameters Smix for the three basic symmetries—

spherical, cylindrical and planar—are plotted against both size
and composition in Supplementary Fig. 9. In general, Pt-Ni NAs
show a trend of intermixing as the size becomes larger. For
instance, 1.5–3.5 nm Ih and Dh Pt-Ni NAs exhibit strong chemical
orderings with spherical and cylindrical symmetries respectively,
but both become less segregated after the diameter exceeds
3.5 nm. However, strong chemical ordering with planar symmetry
is present in both stable fcc and Dh Pt-Ni NAs at almost all
compositions and sizes, indicating an inclination of forming
layered ordering patterns.
Figure 5 depicts the putative ground-state structures (herein-

after referred to as ground-state structures for simplicity) of
2–5 nm Pt-Ni NAs with fcc, Ih and Dh motifs considering all
possible compositions. It is not a surprise that the ground-state
structures of all motifs have symmetry around their highest order
symmetry axes, e.g., C4 over C3 for fcc and C5 over C3 for Ih. The
ground state of the 2 nm TOh Pt166Ni148 exhibits an L12 phase in
the inner core. As the size becomes larger, the inner planar layers
have a strong tendency of forming the L10 phase, in which the
number of heterobonds between layers is maximized. The
ground-state structures of Dh Pt-Ni NAs also show similar L10
layered phase present in the inner bulk-like region. With the
additional cylindrical symmetry, they exhibit onion-like patterns in
the direction perpendicular to the C5 axis. The ground-state
structures of Pt-Ni NAs with Ih motif also form onion-like multi-
shell patterns in the direction perpendicular to the symmetry axis.
However, unlike fcc and Dh, there is no strong ordering present in
the direction along the symmetry axis. Despite the discrepancies
between different motifs, all ground-state structures of Pt-Ni NAs
have segregated Pt-skin and Ni-subskin in common, therefore
higher Pt concentration than Ni.
Finally, we study the structure crossover of Pt1−xNix NAs of

various motifs, as well as the evolution of the ordering pattern as a
function of the particle size at various compositions. Direct
comparisons of the energetics of NAs with different compositions
and sizes are made by introducing the structural transformation
inertness, Δ69,70, defined as [Eq. 6]

Δ ¼ EAB � NAEAbulk � NBEBbulk
N2=3

(6)

where N is the total number of atoms, NA and NB are the number
of atoms of type A and B, respectively, EAB is the total energy of
the NA, EAbulk and EBbulk are the per atom potential energies of the
bulk metals A and B, respectively, which are calculated to be

Fig. 4 Surface and near-surface Ni contents in all lowest-energy Pt-Ni NAs collected from the SCGA at each stable composition and each
size (in diameter) employing the NNP. The a 1st, b 2nd and c 3rd outermost shells are shown for each NA. Square, circle and diamond
markers denote fcc, Ih and Dh motifs, respectively.
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−5.46 eV ⋅ atom−1 for fcc Pt and −4.95 eV ⋅ atom−1 for fcc Ni
by DFT.
The structural transformation inertness of pure Pt and Ni NPs at

all magic numbers is shown in Supplementary Fig. 10. Apparently,
Ni NPs are more stable than Pt NPs, and the thermodynamic
stability of a NP is proportional to the particle size. The TOh motif
is favored by Pt NPs in the whole size range from 1.5 to 5 nm,
followed by Dh. The Ih motif is strongly disfavored by Pt,
becoming even less stable than COh after the particle size exceeds
2 nm. On the other hand, Ih is stable up to size of 3 nm for Ni NPs
and then plateaus. The energy differences between different
motifs of Ni NPs are not as distinct as in Pt NPs. The TOh motif is
still favored at almost all sizes from 2 to 5 nm, while Dh becomes
more stable than Ih after the diameter exceeds 2.7 nm.
The structural transformation inertness of the lowest-energy Pt-Ni

NAs with representative Pt:Ni ratios of 4:1, 3:1, 2:1, 3:2, 1:1, 2:3, 1:2,
1:3 and 1:4 at all magic numbers is summarized in Fig. 6. In general,
TOh motif is always either the most or the second most stable motif
at all compositions and sizes. Noticeably, there is a competition
between TOh and Dh for Pt-Ni NAs at high Pt concentration, while Ih
becomes the competitor with TOh at high Ni concentration.
Inspecting the chemical ordering patterns allows us to rationalize
the stability competition between different motifs.

Starting with fcc Pt-Ni NAs at low Ni content (below 33% in Ni), Ni
starts populating the particle by segregating below the (100) facets
as a prodrome of the L10 ordering. As shown in Fig. 7(a), the
combined pattern of Pt-skin and Ni-subskin with very poor Ni in the
interior can have important consequences on the ORR catalytic
activity of these systems51,71. With a subsequent enrichment in Ni,
the fcc NAs evolves into L10 to maximize the number of
heterobonds between layers, determining a stabilization of NAs
characterized by a Pt-skin followed by a perfect L10 inner core, as
depicted in Fig. 7(b). In the same compositional range, Ih motif is
characterized by a Pt-skin followed by a rigorous subsurface
segregation of Ni and by patchy patterns in the internal shells46.
On the side of stability, Ih NAs are in general less stable than fcc NAs
due to the stress accumulated in the (Pt-rich) internal regions of the
particles. However, a crossover between TOh and Ih motifs takes
place when moving from 33 to 50% in Ni content. The rationale for
this crossover is that the TOh NAs accommodate the extra Ni in the
subsurface shell by keeping the unaltered L10 pattern in the core.
The L10 pattern is so stable that, when the subsurface sites are not
sufficient to accommodate all the extra Ni, the particle prefers to
decorate the surface with Ni rather than altering the interior. This Ni
enrichment simultaneously determines the destabilization of TOh
NAs due to the difficulty of stabilizing a complete subsurface shell of
Ni in a crystalline fcc motif, as well as the stabilization of Ih due to its
natural multi-shell structure and the stress release arisen from the
size mismatch between Pt and Ni. Interesting results are observed at
the composition of around 1:1, where Pt-Ni NAs with Ih motif are
remarkably more stable than those with TOh motif in almost the
whole size range considered, although an eventual crossing
between the two motifs (favoring TOh) seems to take place in the
region between 4.5 nm and 5 nm. When further increasing Ni
content, the scenario does not change much in terms of the strong
competition between TOh and Ih motifs. At Ni content of around
75%, an ordered L12 pattern appears in the interior of fcc NAs as
shown in Fig. 7(c), while Ni tends to populate the subsurface and the
whole interior of Ih NAs.
We then look into the specific compositions and sizes at which

Ih motif is stable. First, we notice that even a tiny amount of Pt
doping would significantly stabilize an Ih Ni NP, even at size of
5 nm. Among all the stable Ih ordering patterns, the flower-like
pattern present in the Ih923 Pt-Ni NAs at Ni concentrations of
50%, 60% and 67% is particularly interesting. As shown in Fig. 8,
the formation of two patchy patterns in the 3rd and 4th outermost
shells makes the Ih923 NAs distinctly more stable than TOh motif
at the same size around 3 nm. By analyzing the ratio of Pt-Ni
bonds within each concentric shell of the most stable Ih NAs at
the nine representative compositions, we confirm that the hetero-
bonding between Pt chains and Ni islands in the 3rd outermost
shell gives rise to the stabilization of Ih motif when the Ni
concentration is no <50%, depicted in Supplementary Fig. 11.
On a side note, Dh Pt-Ni NAs are always less stable than fcc and

Ih motifs in the whole compositional range, despite the noticeable
stabilization at high Pt concentration. COh is always the
unfavorable fcc structure compared to TOh due to the large
surface area of the less stable (100) facets.
As a general comparison, the oscillating concentration profile

for the near-surface region of the ground-state Pt-Ni NAs obtained
in this work, i.e., Pt segregation in the first and third outermost
shells and a Ni-enriched subsurface, is consistent with the
previous Monte Carlo simulations of segregation in Pt-Ni NAs
using the MEAM potential72, as well as the experimental findings
of sandwich-like structures present in the stable Pt-Ni (111) and
(100) surfaces71,73,74. Significant surface Pt enrichment in annealed
Pt-Ni NAs of various compositions has been reported experimen-
tally75–77, but a detailed dissection of the interior chemical
ordering is still lacking from experiments. According to the phase
diagram of bulk Pt-Ni alloy obtained both experimentally and
theoretically78–80, the L12 ordered phases are formed at Pt:Ni

Fig. 5 Cross sections of the putative ground-state structures of 2,
3, 4, and 5 nm Pt-Ni NAs obtained by the NNP-based SCGA.
a, b The fcc ground-state NAs cutting along and perpendicularly
through the C axis, respectively; c the Ih ground-state NAs cutting
along the C axis; d, e the Dh ground-state NAs cutting along and
perpendicularly through the C axis, respectively. Pt is gray, Ni
is green.
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ratios of 3:1 and 1:3, while the L10 ordered phase is formed at the
ratio of 1:1. As depicted in Fig. 7, the stable fcc Pt-Ni NAs obtained
in this work show similar trend in the interior region of Pt0.25Ni0.75
and Pt0.5Ni0.5, but some prefer a Pt-rich core over L12 in Pt0.75Ni0.25.
In fact, at Pt:Ni ratio of 3:1, we only observe the L12 phase in
relatively small fcc Pt-Ni NAs (≤586 atoms). It appears to us that
the fcc Pt-Ni NAs, at least in the size range of 2.8–5 nm, tend to
firmly hold the segregated pattern of Pt-skin and Ni-subskin when
decreasing the Ni content from 50 to 25%, which prevents the

subsurface Ni atoms from entering the interior to form the L12
pattern. On the other hand, when increasing the Ni content from
50 to 75%, some Pt atoms start to abandon the surface in order to
mix with Ni atoms and form the L12 phase in the interior.
Interestingly, our finding is in good agreement with a previous
global optimization study of COh561 and COh923 Pt-Ni NAs using
a tight-binding potential81, where only two ordered phases of L10
and L12 are found to be stable at Pt:Ni ratios of 1:1 and 1:3,

Fig. 6 Structural transformation inertness of the putative most stable Pt-Ni NAs obtained by the NNP-based SCGA with 4 most common
shapes and 9 representative compositions as a function of particle size (in diameter). The inertness of TOh, COh, Ih and Dh NAs is depicted
in blue, orange, green and red lines, respectively. The plotted compositions include Pt:Ni ratios of a 4:1, b 3:1, c 2:1, d 3:2, e 1:1, f 2:3, g 1:2,
h 1:3, and i 1:4. Cross sections cutting perpendicularly through the symmetry axes of the most probable shapes at 2, 3, 4, and 5 nm are also
shown. Pt is gray, Ni is green.

Fig. 7 Cross sections of the putative most stable TOh1654 Pt-Ni
NAs at 3 representative compositions obtained by the NNP-based
SCGA. The depicted structures are obtained by cutting along the C
axes of the most stable TOh1654 NAs at Pt:Ni ratios of a 3:1, b 1:1
and c 1:3. Pt is gray, Ni is green.

Fig. 8 Dissection of the flower-like pattern present in the putative
most stable Ih923 Pt-Ni NAs at Pt:Ni ratios of 1:1, 2:3 and 1:2
obtained by the NNP-based SCGA. The a 3rd and b 4th outermost
shells of the Ih923 NAs are shown. Pt is gray, Ni is green.
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respectively. However, one noticeable difference is that there is no
strong surface or subsurface segregation found in their work.
Lastly, we want to add that the experimental observation of Pt-Ni

NAs is most likely to be a mix of TOh and Dh motifs at high Pt
concentration, and a mix of TOh and Ih at medium to high Ni
concentration, with an unexpected Ih domination at around 1:1
composition. The present crossover analysis and the energetic
information provided above only aim to suggest the probable ratio
of each motif at each size and composition that should be observed
experimentally.
To summarize, we have devised a SCGA methodology based on

the rotational and reflectional symmetries of the NAs, and
integrate it with a NNP to predict the structures of stable Pt-Ni
NAs of various sizes, shapes and chemical compositions with high
accuracy and efficiency. We have trained an accurate NNP with an
energy training RMSE of only 1.54 meV ⋅ atom−1. We have
demonstrated the prominent predictive power of the NNP as
well as the efficiency and accuracy of the SCGA by multiple
validation case studies. Finally, we have integrated the NNP with
the SCGA to search for the full convex hulls of 36 Pt-Ni NA systems
with fcc, Ih and Dh motifs, and sizes from 1.5 to 5 nm, i.e., in the
most interesting size range for Pt-Ni NA applications in hydrogen
production, PEMFCs, and metal-air batteries52–59.
Based on the resulting convex hulls, we predict that for 1.5 to 5 nm

Pt-Ni NAs: (i) all motifs have strong Pt segregation to the surface (Pt-
skin) accompanied by Ni segregation to the subsurface (Ni-subskin);
(ii) Ih is the predominant motif at 1:1 composition for almost all
considered sizes, especially at around 3 nm thanks to the formation
of a flower-like ordering pattern; (iii) stable fcc motif forms sandwich-
like inner core along the symmetry axis, stable Ih motif forms onion-
like structure in the direction perpendicular to the symmetry axis,
while stable Dh motif forms a combination of both; (iv) TOh and Dh
motifs are mainly observed for stable Pt-rich NAs, whereas TOh and
Ih motifs are favored in equally-mixed and Ni-rich NAs; (v) the interior
of the stable fcc NAs exhibits the L10 ordered phase at the
composition around Pt0.5Ni0.5 NAs, while the L12 phase is only found
at the composition of Pt0.25Ni0.75 for medium-sized NAs.
These findings provide theoretical insight to the largely

unexplored structural stability of Pt-Ni NAs, with potential
implications on their catalytic activity52–59. Overall, our NNP-
based SCGA scheme allows for efficient and effective study on the
mixing behavior between a variety of metals. In addition, our
SCGA implementation is not limited by the number of metal
components in the NA, hence can be especially beneficial for
studying high-entropy alloys82,83. The rapid and accurate predic-
tions of the stable shape, chemical composition and chemical
ordering of realistic size NAs enable rational design of stable NA
catalysts used in real-word applications.

METHODS
Density functional theory calculations
All reference DFT calculations for the training set of 6828 Pt-Ni alloy
structures have been performed using the Vienna Ab initio Simulation
Package84,85 with the spin-polarized revised Perdew-Burke-Ernzerhof86

exchange-correlation functional. We have also performed convergence
tests w.r.t k-points and vacuum size. The convergence criterion is decided
by the target accuracy of the PES given by the NNP w.r.t. DFT, which is
<3meV ⋅ atom−1. According to the results shown in Supplementary Fig. 7,
a vacuum layer of 8 Å is sufficient for Pt-Ni NAs. For bulk and surface slabs,
we use the same k-point density as that obtained from a conventional
4-atom bulk Pt-Ni unit cell (500 k-points per Å−3 of reciprocal cell). The Γ-
centered k-point grids are constructed for all NAs using the Monkhorst-
Pack scheme87. The ionic cores are described by the projector augmented
wave potentials88 and a plane wave cutoff energy of 500 eV is used for all
calculations. Gaussian smearing is used with a width of 0.1 eV and the
electronic energy convergence criterion is set to 1 × 10−6 eV.

Neural network potential
In the Behler-Parrinelo neural network framework, the total energy E of a
system σ with N atoms is given by the sum of all atom-wise contributions
governed by their local chemical environments, [Eq. 7]

EðσÞ ¼
XN
i

EiðσiÞ (7)

where σi is the local structure of the ith atom within a cutoff radius rc
sufficient enough to include all relevant interactions (6 Å in this work).
Atom-centered symmetry functions89 are used as local structure

fingerprints to be fed into the input layer of a NNP. In this work, we
employ both radial (type 2) and angular (type 3) symmetry functions
defined as [Eqs. 8–9]

G2
i ðrijÞ ¼

X
j≠i

e�ηðrij�rsÞ2 � f cðrijÞ (8)

G3
i ðrij ; rik ; rjk ; θjikÞ ¼ 21�ζ

P
j≠i

P
k≠i;j

ð1þ λ cosðθjikÞÞζ � f cðrijÞf cðrikÞf cðrjkÞ

�e�ηðr2ijþr2ikþr2jk Þ
(9)

where j and k are the two neighboring atoms of the central atom i, rij, rik, rjk
are the interatomic distances between every two atoms, θjik is the
interatomic bond angle centered at atom i. The form of radial symmetry
functions is characterized by the two parameters η and rs, whereas the
form of angular symmetry functions is determined by three parameters η, ζ
and λ. The cutoff function fc is defined as [Eq. 10]

f cðrijÞ ¼
1
2 � ½cosðπrijrc

Þ þ 1�; if rij< ¼ rc
0; if rij>rc

(
(10)

The training of the NNPs has been carried out with a Kalman filter90 using
the n2p291,92 implementation. The parameters for the radial and angular
symmetry functions used in this work can be found in Supplementary Tables
3, 4. All possible elemental combinations are considered for each parameter
set, leading to 106 symmetry functions in total.

Symmetry-constrained genetic algorithm
Symmetric NAs are evolved during a SCGA by performing random
symmetry-constrained genetic operations on the SEGs. As depicted in Fig.
9, we have implemented three genetic operators for the SCGA:
GroupSubstitute randomly selects one of the groups and change

the type of all atoms in that group to another type. This mutation operator
inevitably changes the composition of the NA;
GroupPermutation takes two random groups of different atom types

and swap the type of all atoms in one group with the other. The
composition can be fixed by only allowing swaps between two groups
with identical number of atoms;
GroupCrossover takes two parents, concatenates the atoms in the

first half subgroups from mother with those in the second half subgroups
from father. The crossover point is chosen by an algorithm instead of the
mid point if the composition is meant to be fixed in the SCGA. One clear
advantage of group crossover over the traditional cut-splice crossover is

Fig. 9 Schematics of the genetic operators for the SCGA. G1 to G6
denote the 6 groups divided by a certain symmetry criterion. The
type of all atoms in a group always remains the same. Groups
depicted in different colors are populated with different types
of atoms.
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that the operation does not involve direct atom manipulation, which
potentially speeds up the GA and at the same time avoids creating
distorted or unphysical structures by splicing particle parts together. This is
especially advantageous when employing the NNP in the GA since the
relaxation of distorted structures are more likely to fail due to extrapolation
of the NNP.
All genetic operators for the SCGA are implemented in ACAT63 and used

in conjunction with the GA module of Atomic Simulation Environment93

(ASE). The SCGA is first validated by benchmarking against a baseline
(traditional GA), as demonstrated in Supplementary Note 4. Next, we have
performed SCGA to search for full convex hulls of Pt1−xNix NAs with mirror
circular symmetry around their symmetry axes.
To start with each SCGA run, we initialize a population of random

symmetric NAs by randomly populating SEGs with Pt or Ni atoms using a
symmetric NA generator. we then use the NNP calculator with the FIRE94

optimizer for small particles (<1000 atoms) or the L-BFGS95 optimizer for
larger particles to efficiently locate energy basins (local minima) of each
candidate. The force convergence criterion is set to 0.01 eV ⋅ Å−1 for particles
with <500 atoms, 0.05 eV ⋅ Å−1 for particles with 500–1000 atoms, and 0.1 eV
⋅ Å−1 for particles with more than 1000 atoms. Next, the relaxed candidates
are ranked according to their fitness given by− Emix. Parents are selected
based on their ranks (roulette wheel selection)10 to breed a new generation
by performing mutation or crossover. The local optimization, selection and
genetic operation processes are reiterated until convergence.
SCGA runs have been performed in parallel w.r.t. C3 and C4 axes for fcc,

C3 and C5 axes for Ih, and C5 axis for Dh motifs. For NAs with more than
1000 atoms, C3 axis are abandoned for fcc and Ih motifs for simplification,
and additional fixed-composition SCGA runs probing both high and low
concentrations are performed since the symmetric NAs at medium
concentration quickly becomes too dominant in the population after few
generations of full convex hull search. A SEG tolerance of 1 Å is used for all
SCGA runs. Group substitute, group permutation and group crossover
operators are used in all SCGAs with a ratio of 3:4:3. For the group
substitute operator, we mutate only one SEG if the number of SEGs K is
<20, mutate two if 20≤K≤50, and mutate three if K > 50. When initializing
the SCGA runs, the population size is always set to half of the number of
atoms in the NA. For NAs with <300 atoms, the SCGA converges when
there are no change in the population for five consecutive generations.
Looser convergence criteria are set for larger NAs.

DATA AVAILABILITY
The majority of the data generated in this study are openly accessible on our Zenodo
repository.96 The repository includes: (i) the dataset consisting of the initial 55,982 Pt-
Ni alloys sampled by EAM; (ii) the final DFT dataset consisting of 6828 resampled Pt-
Ni alloys used for training the NNP; (iii) all stable Pt-Ni NAs (vertices on the convex
hulls) obtained by the NNP-SCGA runs; (iv) all the input files and scripts for hybrid
MC-MD simulations, QBC resampling, DFT calculations, NNP training, NNP-SCGA runs
and convex hull analyses.

CODE AVAILABILITY
A code for generating symmetric NAs and running the SCGA is freely available on
GitLab.63 We note that both the symmetric NA generator (acat.build.
ordering.SymmetricClusterOrderingGenerator) and the group opera-
tors (acat.ga.group_operators.GroupPermutation / GroupCrossover)
have the option of fixing or varying the composition, which allows the user to
perform the SCGA for NAs at a certain composition or across all compositions.
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