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Minimal crystallographic descriptors of sorption properties
in hypothetical MOFs and role in sequential learning
optimization
Giovanni Trezza 1, Luca Bergamasco 1, Matteo Fasano 1 and Eliodoro Chiavazzo 1✉

We focus on gas sorption within metal-organic frameworks (MOFs) for energy applications and identify the minimal set of
crystallographic descriptors underpinning the most important properties of MOFs for CO2 and H2O. A comprehensive comparison
of several sequential learning algorithms for MOFs properties optimization is performed and the role played by those descriptors is
clarified. In energy transformations, thermodynamic limits of important figures of merit crucially depend on equilibrium properties
in a wide range of sorbate coverage values, which is often only partially accessible, hence possibly preventing the computation of
desired objective functions. We propose a fast procedure for optimizing specific energy in a closed sorption energy storage system
with only access to a single water Henry coefficient value and to the specific surface area. We are thus able to identify hypothetical
candidate MOFs that are predicted to outperform state-of-the-art water-sorbent pairs for thermal energy storage applications.
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INTRODUCTION
Metal-organic frameworks (MOFs) are crystalline compounds
consisting of metal ions and organic linkers, characterized by
tunable porosity and incredibly high surface area1. Due to their
properties, MOFs have recently attracted remarkable attention in a
wide range of different fields, including gas/vapor separation2,
reaction catalysis3, drug delivery4, energy storage, and heat
transformations5,6. Given their nature as porous adsorbent
materials, intensively active research is focused on the use of
MOFs for CO2 capture, towards the development of effective
technologies for mitigating greenhouse gas emissions7. Recently,
MOFs have been also employed in adsorption-based atmospheric
water harvesting driven by solar thermal energy8,9. In general,
when dealing with applications of engineering relevance, different
inlet gas streams, variable operating conditions, and target
properties tailored per each specific case make it challenging to
identify an ideal MOF crystal for all applications10, thus leading to
a fragmented case-by-case optimization problem.
Hence, MOFs require proper and efficient methods for tailoring

their features according to target properties of interest in each
specific application. The latter is everything but an easy task. In
fact, due to the myriad of degrees of freedom for MOFs structure
and composition, more than 100 trillion compounds have been
hypothesized11, while almost 100,000 have been synthesized so
far12. High-throughput computational screening and machine
learning have been recently adopted to analyse large MOF
datasets13. Such computational tools allow us to identify
significant correlations between nanoscale features and observa-
ble macroscale properties14,15, and to select the most suitable
crystal for a given application case. A few representative examples
are provided by gas-gas separation (D2/H2

16, O2/N2
17, CO/N2

18,
CO2/H2

19, ethane/ethylene20, and other gas mixtures21), the
enantioselectivity of chemical compounds22, gas adsorption
(CO2

23, CH4
24, H2

25, thiol26, organosulfurs27, and acetylene28),
and combinations thereof29,30. Several computational explorations
of MOFs datasets have been carried out also for biomedical (drug

delivery31), mechanical (CO2 Brayton cycle32 and osmotic heat
engine33), and energy applications (heat pumps/chillers34,35 and
thermal energy storage36).
In this context, modern sequential learning (SL) algorithms are

emerging as particularly efficient tools for exploring the material
high-dimensional (crystallographic) feature space. In particular,
while evaluating an objective black-box function through
demanding physical or numerical experiments, SL tools can
provide a well-orchestrated procedure to rationally navigate the
high-dimensional parameter (feature) space37,38. Thus, given an
initial pool of evaluation points, one can sequentially choose the
next experiment to carry out39,40, without relying on naive random
guessing. Rather general techniques have been proposed in the
area of material science holding the promise to accelerate
materials discovery and research41, with a number of Authors
reporting successful use of SL approaches in this field. Aggarwal
et al.42, by means of optimal experimental design, successfully
characterized a substrate under a thin film. Seko et al.43 found the
compound with the highest melting temperature in a given
ensemble of candidate materials with less attempts than a naive
random choice. Kiyohara et al.44 accelerated the search of a stable
interface structure with respect to a traditional brute force
approach. Dehghannasiri et al.45 efficiently guided experiments
to design the shape memory alloy with the lowest energy
dissipation at a given temperature. Needless to say that the
identification of the parameter space is a very important
preliminary step when implementing SL algorithms. Here, we
choose to specifically focus on MOFs properties as gas/vapor
sorbent materials, since those are particularly relevant for energy
applications.
The first important objective of this work is the identification of

the minimal set of MOFs features (or descriptors) ruling critical
adsorption properties in the low-coverage regime, i.e., the Henry
solubility coefficients for both CO2-MOFs and, importantly,
H2O-MOFs working pairs. The above minimal set represents the
important crystallographic features underpinning a given
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adsorption property of interest. In this sense, each minimal set of
descriptors can be regarded as the genetic code for a given
property, and it is identified as described below.
First, we curate and enhance MOF data from a recently

developed library made of 8206 compounds generated compu-
tationally46. Each Crystallographic Information File (CIF) represent-
ing a given material is first featurized by means of 1557 Classical
Force-field Inspired Descriptors (CFID)47 taking into account both
chemical and structural parameters. Subsequently, we train and
validate regression models of target properties involved in heat
storage applications, such as Henry coefficients and working
capacity. These models are obtained by means of a Random
Forest-based pipeline, with hyperparameter tuning in five fold
cross-validation. The final ranking and selection of the minimal set
of descriptors is performed by evaluating the importance of each
feature on the models outputs by means of the Tree SHAP
interpretation algorithm48.
Upon identification of the above crystallographic genetic code

of sorption properties in MOFs, we investigate its role when using
SL algorithms. Therefore, we compare the performance of three
different SL methodologies aiming at maximizing H2O and CO2

Henry coefficients, and CO2 working capacity: (a) random Forests
with Uncertainty Estimates for Learning Sequentially (FUELS49); (b)
kriging algorithm50; (c) COMmon Bayesian Optimization Library
(COMBO)51. For each SL methodology, we compare several
strategies for choosing the next material to test, combining the
exploration of high-uncertainty regions with the exploitation of
high-performing candidates. Importantly, we analyse the SL
performance using both the minimal subset of features (from
the pipeline and SHAP analysis) and a larger set of variables, to
highlight how the identification of descriptors affects the
minimum number of experiments needed to pick out a MOF
with the highest value of the desired property. In Fig. 1 the above
procedure is schematically represented.
We highlight that sorption-based engineering applications rely

upon sorbent material characterization in a wide coverage range.
However, when a large number of hypothetical sorbents (here
MOFs, but in principle also zeolites52,53 or other materials54) have
to be evaluated as potential candidates, only low-coverage
characterization (i.e. Henry coefficient) is often accessible thus
making challenging any optimization of crucial figures of merits of
engineering relevance. We thus formulate a procedure aiming at a
fast evaluation of one of the most important figures of merit in
closed water-sorption seasonal thermal energy storage applica-
tions, namely the material-based specific (stored) energy. Unlike
traditional sensible or latent systems55, the above sorption-based
energy storage technologies have the advantage to be loss-free.

Our procedure can thus be used in SL-based (or other)
optimization/screening processes of MOFs even under incomplete
knowledge of the entire isosteric field of the candidate working
pairs. Applied to the database of over 5000 computationally
generated (hypothetical) compounds by ref. 46 (developed for
different purposes), our procedure identifies MOFs that can
possibly outperform state-of-the-art sorbent materials for thermal
energy storage.

RESULTS
In this work, a crucial source of data on MOFs stems from the
dataset of Boyd et al.46, where important sorption properties (e.g.,
the Henry coefficients for CO2 and H2O, the working capacity for
CO2, and the specific surface area) have been computed by DFT-
based simulations for over 8000 potential MOFs. Capitalizing on
the above comprehensive study, we construct machine learning
(ML) models capable of accurately predicting MOFs solubility of
both CO2 and H2O as well as CO2 working capacity and surface
area. The above models enable us to achieve the first key result of
this work, namely the identification of the minimal set of
crystallographic-based descriptors56 ruling these sorption and
geometric properties in MOFs.
Moreover, a systematic comparison of SL approaches on the

above MOFs database reveals important conclusions on the
performance of the different regression schemes adopted and,
most importantly, the role played by the selection of the feature
space to be explored. Those conclusions are also supported by
results obtained on a highly-controllable synthetic dataset, as
discussed in detail in Supplementary Note 1.
It is worth stressing that properties reported in ref. 46 only

characterize MOFs in the Henry regime and are not sufficient to
describe the equilibrium sorption properties in the high coverage
regime. However, when targeting important engineering applica-
tions such as seasonal thermal energy storage, key figures of
merits of the storage plant (e.g., the material-based specific
energy) critically rely upon the access to the entire isosteric field of
the chosen sorbent-sorbate pair or, equivalently, to the knowl-
edge of equilibrium adsorption isotherms at several temperature
values57,58. The latter isotherms describe the adsorption properties
(at equilibrium) of sorbents in a wide range of coverage values,
from the Henry regime up to the saturation pressure of the
sorbate fluid.
Therefore, in this work, we also propose an approach enabling

us to optimize one of the most important engineering figures of
merit of MOFs for seasonal thermal energy storage applications
(i.e., material-based specific energy in an ideal closed sorption
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Fig. 1 Overview of the protocol to identify and test the minimal set of ruling crystallographic descriptors of sorption properties in
several sequential learning algorithms. Over 5000 hypothetical MOFs from ref. 46 are first featurized by CFID, with the corresponding full set
of descriptors provided to a ML regression pipeline for a preliminary descriptor reduction and ML model training of sorption properties of
interest. The Tree SHAP interpretation algorithm is thus used to finalize the identification and ranking of a reduced subset of ruling descriptors
of the chosen property). Several sequential learning schemes are tested using both the full set of descriptors and the reduced one for a
comprehensive comparison.
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cycle, see Methods, subsection Water-sorption thermal energy
storage, and Results, subsection Optimization under incomplete
access to the isosteric field of candidate MOFs-water working
pairs), even if only an incomplete set of sorption properties are
(experimentally or numerically) accessible. Based on the latter
optimization procedure, we are finally able to identify potential
MOFs candidates for seasonal thermal energy storage that can
possibly outperform most of the current state-of-the-art sorbent
materials.

Descriptors of sorption properties in MOFs and their use in SL
algorithms
We constructed four MOFs datasets, each one with the same 1557
features and a different target property among Henry coefficient
for CO2 (8194 data entries), working capacity for CO2 (8202 data
entries), Henry coefficient for H2O (8202 data entries), and surface
area (5028 data entries). The different number of data entries are
due to missing values for some of the chosen properties in the
available database by ref. 46.
The above database also reported, for all the compounds, both

the crystallographic file (used to extract the 1557 CFID47 by means
of Matminer56) and a list of DFT-computed properties, among
which we have only considered the abovementioned adsorption
properties of interest. More specifically, the computed 1557
explanatory variables (also referred to as descriptors) proposed by
Choudhary et al.47 consist of a set of both chemical (e.g., average
chemical properties over the elements in the cell, average atomic
radial charge) and structural (e.g., distribution functions) quan-
tities. More details on descriptor sub-categories are reported in
Table 1.
We have trained four different ML models by means of a

Random Forest-based pipeline with hyperparameter tuning in five
fold cross-validation to predict the Henry coefficient for CO2, the
working capacity for CO2, the Henry coefficient for H2O, and the
surface area, achieving coefficients of determination of R2= 0.785,
R2= 0.590, R2= 0.874, and R2= 0.924, respectively. We have used
80% of each dataset to train the models, and the remaining 20%
to validate them. Since the Henry coefficient values span a few
orders of magnitude, the corresponding ML models have been
developed in terms of the natural logarithm of those properties.
During the data preprocessing routines, each of the four trained
pipelines (i.e., feature reduction and ML with hyperparameter
tuning, see Supplementary Note 10 for details) already drops a
significant number of the 1557 features, thus confirming that
many of the initially selected descriptors do not significantly affect
the chosen adsorption properties. More specifically, the final
models include 237 descriptors for the CO2 Henry coefficient, 236
descriptors for CO2 working capacity, 177 descriptors for the H2O
Henry coefficient, and 234 descriptors for surface area.

Then, the Tree SHAP routine48,59 allows to identify the most
meaningful descriptors as those accounting for the 75% of the
cumulative curve over the coefficients of importance. The SHAP
routine identifies the most meaningful features for the trained
models among the reduced set of descriptors retained by the
trained pipelines after the preprocessing. In particular, the impact
of a descriptor depends on the comparison between the output of
a model trained with that feature and another model output,
trained without that feature (see Methods, subsection Model
training and choice of descriptors). The coefficients of importance
are thus computed over the testing set, i.e., over samples the
model has never encountered during the training.
Overall, starting from the original 1557 Classical Force-field

Inspired Descriptors, 33 items for the CO2 Henry coefficient, 62 for
the CO2 working capacity, 15 for the H2O Henry coefficient, and 14
for the surface area are found to explain 75% of the corresponding
regression models. Furthermore, we have repeated an analogous
procedure with AutoMatminer60, which allows us to automatically
train and validate a complete pipeline—feature reduction, data
cleaning, and machine learning—with automatic hyperparameter
tuning, without cross-validation. Results are reported in Supple-
mentary Note 2. Models performances with the corresponding
cumulative importance curves of the ruling descriptors are
reported in Fig. 2. The H2O Henry coefficient is key for the
computation of the specific material energy in a MOF-based
thermal energy storage plant (as discussed below in Results,
Optimization under incomplete access to the isosteric field of
candidate MOFs-water working pairs). Hence, for the H2O Henry
coefficient only, we also report a few experimental values
corresponding to real MOFs to compare with numerical predic-
tions of hypothetical MOFs. In particular, numerical predictions
happen to follow a good agreement with the experimental values.
This aspect is key for material screening purposes and is further
highlighted in the Discussion section below.
Importantly, Fig. 3 shows the SHAP rankings of the five most

meaningful descriptors for each of the properties of interest. Table
2 summarizes the physicochemical meaning of the identified
descriptors, based on the complete list by Choudhary et al.47. The
entire list of variables, together with their cumulative importance,
the trained models, and the datasets on which they have been
trained are publicly available online (see Data availability and
Code availability).
As far as the four properties of MOF are concerned, the

identification of those important descriptors represents per se an
advancement of knowledge on sorption mechanism in MOFs and
an important contribution to this work.
Focusing our attention on the top three descriptors in terms of

importance, we notice that:

● As far as the Henry coefficient for CO2 (see Fig. 3a) is
concerned, such a property happens to be mainly ruled by the
volume per atom, the nearest neighbor distribution, and an
elastic constant. The former descriptor is the volume of a cell
divided by the number of atoms in the cell, thus mainly
representing a geometrical feature of the MOF crystal. The
nearest neighbor distribution can also be regarded mainly as a
geometry feature strictly related to the crystallographic
structure. The elastic constant is one of the elements of an
averaged 6 × 6 elastic tensor of the cell. In particular, for each
of the chemical elements of a cell, the elastic tensor of the
solid ground state structure at temperature 0 K is known. The
weighted average of those tensor entries over the chemical
elements of the cell are the elastic constants found by the
featurizer. To our best interpretation, the latter two quantities
effectively describe the chemical environment of the crystal
thus underpinning the sorbent-sorbate interaction potential.

● As far as the working capacity for CO2 (see Fig. 3b) is
concerned, this quantity is mainly ruled by nearest neighbor

Table 1. Components of classical force-field inspired descriptors
(CFID)47.

Descriptor name Total number

Chemical 438

Simulation cell-size 4

Radial charge 378

Radial distribution function 100

Angular distribution up to first nearest neighbor cutoff 179

Angular distribution up to second nearest
neighbor cutoff

179

Dihedral distribution up to first nearest neighbor cutoff 179

Nearest-neighbor distribution 100

Total 1557
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Fig. 2 Predictions and corresponding normalized cumulative curves for the coefficients of importance of the four Random-forest
regression models. Results are reported for a Henry coefficient for CO2, b working capacity for CO2, c Henry coefficient for H2O (with
experimental values for MIL-100(Fe)81,82, MIL-10181,83, MOF-801-SC68, MOF-80868, MOF-84168, Mg-MOF-7484,85), d surface area; model
performances are shown in terms of coefficient of determination R2, mean absolute error (MAE), and root mean squared error (RMSE), with the
size of training and testing sets Ntrain and Ntest, respectively.
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distribution and volume per atom. Therefore, as expected,
geometric features are playing a key role in determining the
maximum CO2 uptake into the crystal.

● As far as the Henry coefficient for H2O (see Fig. 3c) is
concerned, we found that that quantity is mainly ruled by an
elastic constant, radial distribution function, and nearest-
neighbor distributions. As such, as opposed to the CO2 case
above, we can observe that descriptors more related to the
chemical environment are needed this time since a polar
molecule is interacting with the MOFs structure.

● Finally, for the surface area (see Fig. 3d), we found that it is
mainly ruled by volume per atom, packing fraction, and
nearest neighbor distribution, thus showing the prominence
of geometrical features similar to the case of the above
working capacity.

Upon the identification of the above lists of descriptors, we
have compared the performance of SL algorithms for the sorption
properties of interest using both the reduced set of important
descriptors (i.e., those explaining the 75% of the models
predicting CO2 Henry coefficient, CO2 working capacity, and H2O
Henry coefficient, respectively) and a larger set of 100 descriptors

composed by the previous and some additional (non-
meaningful) ones.
In particular, for the aforementioned sorption properties, we

have chosen the non-relevant features as the ones obtaining the
least scores in the SHAP ranking. SL was adopted to find the
maximum property value among a random subset of 500 samples
from the original datasets (over 8000 MOFs), starting from a pool
of 100 points with the lowest target property. Unexpectedly, SL
optimization in the space of relevant descriptors does not ensure,
in general, faster convergence of the procedure to the optimum
property value (this is also confirmed by results in the synthetic
case reported in Supplementary Note 1). Those six spaces (two
domains for each of the three properties) are reported in
Supplementary Note 9, as t-SNE projections over two compo-
nents61. Furthermore, among the three methodologies examined,
both Random Forest- and COMBO-based methods were able to
provide always a faster convergence to the optimum value as
compared to the random choice strategy. Results are shown in
Fig. 4. As Ling et al. point out49, a pure exploitative strategy—RF-
MEI, K-MEI, COMBO-PI—performs better when, already in the very
first steps, the model is able to predict with high accuracy the
value of the property of interest; conversely, a pure explorative
strategy—RF-MU, K-MU—is more proper if the optimum is
somehow very different with respect to all the other candidates,
while the remaining strategies are a trade-off between those two
extremes—RF-MLI, K-MLI, and COMBO-EI.
We notice that, over different regression methodologies—even

with the same acquisition function—the performance ranking, in
general, changes. For instance, in the case of the Henry coefficient
for H2O in Fig. 4c, among the Random Forest-based strategies, RF-
MLI is the top performer, followed by RF-MEI and RF-MU, for both
15- and 100-dimensional input spaces; the very same ranking
applies for Kriging based acquisition functions, K-MLI, K-MEI, and
K-MU. In the case of working capacity for CO2 in Fig. 4b, instead,
among the Random Forest-based strategies, RF-MEI is the top
performer, followed by RF-MU and RF-MLI; on the contrary, the
same ranking does not apply for Kriging based strategies, since
K-MEI is the top performer, followed by K-MLI and K-MU, for both
62- and 100-dimensional input spaces. An intermediate case is
represented by the Henry coefficient for CO2 in Fig. 4a, where the
ranking of Random Forest-based strategies (RF-MLI, RF-MEI, RF-MU,

Feature value Feature value

Feature value Feature value

Low High Low High

Low High Low High

-0.5 0.0 0.5 1.0 1.5
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SHAP value (impact on model output) SHAP value (impact on model output)
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Fig. 3 The five most important features according to SHAP ranking for each of the properties of interest. Results are reported for a Henry
coefficient for CO2, b working capacity for CO2, c Henry coefficient for H2O, d surface area. In each panel, for each feature (i.e., each line), 1639,
1641, 1641, and 1006 dots are shown respectively, representing the entire testing sets used for computing the related SHAP values (impacts
on the model output, horizontal axes); the color represents the corresponding feature value, the features are sorted according to the mean
over the absolute SHAP values.

Table 2. Physicochemical meaning of the most relevant CFID
descriptors47.

CFID descriptors Meaning

“jml_atom_rad” atomic radii

“jml_C-m” m-th elastic constant of an element from JARVIS-
DFT

“jml_polzbl” polarizability

“jml_vpa” volume per atom of the cell

“jml_pack_frack” packing fraction

“jml_rdf_#” #-th descriptor of a radial distribution function

“jml_nn_#” #-th descriptor of nearest neighbor distribution

“add”, “mult”, “divi” addition, multiplication, quotient between
different descriptors
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both 33- and 100-dimensional input spaces), is preserved over the
Kriging methodology only for the 100-dimensional space (K-MLI, K-
MEI, and K-MU), but not for the 33-dimensional (K-MEI, K-MLI, and
K-MU). Among COMBO-based acquisition functions, COMBO-PI and
COMBO-EI always require a similar number of evaluations, except
in the 100-dimensional input space of Henry coefficient for CO2,
and the 100-dimensional input space is consistently better
performing than the corresponding low-dimensional one.
This brief comparison shows that no general rule is valid a priori

for SL, neither in terms of regression methodology, nor in terms of
acquisition function, nor in terms of dimensionality of the
problem, albeit selecting relevant descriptors.

Optimization under incomplete access to the isosteric field of
candidate MOFs-water working pairs
Without losing generality, here we aim at investigating the
expected performance of hypothetical (i.e., computationally
generated) MOFs for an important energy engineering applica-
tion, namely water-sorption seasonal thermal energy storage (see
also the Methods section, subsection Water-sorption thermal
energy storage). The most challenging aspect of this task consists
in the access to the entire isosteric field of each candidate MOF-
water pair for estimating the engineering figure of merit of
interest. Clearly, for a large number of MOFs candidates, this is

challenging and time-consuming both computationally (typically,
only the Henry low-coverage regime is reported in literature
works62,63) and experimentally64. In this section, we specifically
focus on such a challenging aspect. We envision an efficient
optimization procedure that is capable of searching MOFs with
the largest expected figure of merit of engineering relevance
(either by SL, if materials are sequentially synthesized/computed,
or by accessing readily available databases65). As far as seasonal
thermal energy storage applications are concerned, here we focus
on the highest specific energy of MOF-water working pairs among
the compounds reported in ref. 46. An overview of the proposed
methodology is schematically reported in Fig. 5.
As detailed in the Methods section (subsection Water-sorption

thermal energy storage), the ideal thermodynamic cycle of a
closed sorption thermal energy storage system is completely
defined by four operating temperatures. In this study, we assume
TA= 308 K (the minimum temperature on the user side), TC=
353 K (the maximum temperature on the source side), TE= 278 K
(the average winter temperature), TF= 303 K (the average summer
temperature). Those temperature values are reasonable for space
heating applications in temperate climates64. Given the Antoine
equation, the equilibrium water vapor pressures pE= 866.2 Pa at
the evaporator and pF= 4231.6 Pa at the condenser are also
uniquely defined considering the average winter and summer
temperatures, respectively. We decided to evaluate and maximize

Fig. 4 Number of evaluations before converging to the maximum for the SL algorithms, normalized with respect to the random choice
(corresponding to 200 experiments), for three sorption properties of MOFs. Results are reported for a Henry coefficient for CO2, b working
capacity for CO2, c Henry coefficient for H2O; the initial set consists of the same worst 100 candidates (in terms of the target property) from a
random subset of 500 samples of the original dataset.
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over the database one of the most important engineering
quantities in a thermal energy storage plant, namely the cycled
heat per unit of material weight. While full details on the adopted
models are given in the Methods section (subsection Water-
sorption thermal energy storage), in the following we report and
discuss the main simplifying assumptions in our approach:

● A key quantity to be estimated is the H2O working capacity. That
quantity is related to the available adsorption sites nTOT per unit
of dry sorbent mass. Boyd et al.46 reported only the CO2 working
capacity, while no data are available on the maximum H2O
uptake. Nonetheless, we can rely on other related properties, such
as the specific surface area of MOFs. To this end, we notice that
Chaemchuen et al. have reported H2O working capacity for a pool
of 66 MOFs5. A good correlation between the water uptake and
the surface area (i.e., the available internal surface per gram of dry
adsorbent) can be observed for typical MOFs used in the energy
engineering field, and this is also in line with results found by Xu
et al.66. In this work, on the basis of that correlation, we impose a
linear regression for finding the constant of proportionality
between water uptake and surface area (water uptake= η×
surface area). This yields η ¼ 3:875 ´ 10�4 gH2O m

�2. More details
can be found in Supplementary Note 4. We also notice that,
without a loss of generality, if more accurate values of the water
uptake are available (e.g., from numerical simulations of
adsorption experiments) the above assumption on the uptake-
internal surface correlation can be fully relaxed.

● Henry coefficients eHðT0Þ for H2O are listed at the reference
temperature T0= 298 K with units of molH2Okg

�1
MOF bar

�1, thus
representing the moles of adsorbed H2O per kilogram of dry MOF
per bar of H2O vapor. In our approach, we adopt the
Frumkin–Fawler–Guggenheim (FFG) model to estimate the
adsorption isotherm over the entire range of coverages only
relying upon such Henry coefficient. However, as discussed in the
Methods sections (subsection Water-sorption thermal energy
storage), the FFG equation requires H(T0) in units of Pa−1: we have
thus converted eHðT0Þ (readily available from ref. 46) to H(T0). Let
ns, mMOF and pH2O be the number of adsorbed water moles, the
mass of the hypothetical MOF, and the pressure of water in the
vapor phase, respectively, it holds:

eHðT0Þ ¼ ns
mMOFpH2O

: (1)

The approximation of the low-coverage regime yields the
linear relationship between the coverage and pressure, namely
θ ¼ HðT0ÞpH2O. Since the number of adsorbed water moles is

related to the molar based total number of adsorption sites as
ns= θnTOT, it follows:

HðT0Þ ¼ eHðT0Þ MMOF

nTOT=nMOF
; (2)

with mMOF ¼ MMOFnMOF, MMOF the molecular weight of the
MOF, and nMOF the total number of moles. Furthermore, the
molar based total number of adsorption sites nTOT corresponds
to the maximum number of water moles nMAX;H2O that can be
adsorbed, and the following relationship holds:

nMAX;H2O

nMOF
¼ mMAX;H2O

mMOF

MMOF

MH2O
; (3)

where MH2O is the molecular weight of water and mMAX;H2O
denotes the maximum mass of water that can be adsorbed.
The ratio mMAX;H2O=mMOF is related to the H2O working
capacity of the MOF and it is equal to ηS, where η is the
constant of proportionality between the uptake and the
surface area S. A comparison of Equations (3) and (2) yields:

HðT0Þ ¼ eHðT0ÞMH2O

ηS
´ 10�8; (4)

which is the final conversion formula of the Henry
coefficient for H2O from measure units of molH2O kg

�1
MOF bar

�1

into Pa−1. Here, the factor 10−8 appears because
½MH2O� ¼ gH2O mol�1

H2O, ½η� ¼ gH2O m�2, ½S� ¼ m2g�1
MOF, and

so ½eHðT0ÞMH2O=ðηSÞ� ¼ gMOF kg
�1
MOF bar�1.

● A crucial quantity for heat transformation is the isosteric heat
of adsorption qst. Due to the Clausius–Clapeyron relationship
(see Equation (7) in the Methods section, subsection Water-
sorption thermal energy storage), at least two adsorption
isotherm curves (at TA and at TC) are needed to estimate the
corresponding qst. In our database, though, the Henry
coefficients are only available at T0. In order to reconstruct a
second adsorption isotherm for the same MOF-water working
pair, we decided to resort to the potential theory of Polanyi,
thus exploiting the basic notion that all adsorption isotherms
are self-similar when rescaled with respect to the Polanyi
potential function. Details are provided in the Supplementary
Note 5. More specifically, the Polanyi potential is defined as:

A ¼ �RT ln
psðTÞ
p

� �
; (5)

where ps(T) is the saturation pressure of water at
temperature T, while p is the pressure of the vapor phase on

ith descriptor
jth

rotpircsed

Sequen�al Learning

Experimental (or numerical) 
evalua�on of incomplete set of 

proper�es (i.e. solubility, uptake)

Es�mate of the desired 
figure of merit (i.e. specific energy)

Available 
literature data

Thermodynamically consistent adsorp�on model 
(i.e. Frumkin-Fawler-Guggenheim)

Polanyi isotherm scaling

Op�mum in 
discre�zed 

descriptor space

Fig. 5 Suggested procedure for estimating the specific energy of hypothetical MOF-water working pairs when only an incomplete
knowledge of the isosteric field is experimentally or numerically accessible. By the knowledge of Henry coefficient for H2O at a certain
temperature from literature data, an isotherm is obtained by Frumkin–Fawler–Guggenheim; the Polanyi potential is used for scaling to
different temperatures. When two isotherms of interest are identified, upon the definition of the necessary environmental conditions and the
use of an incomplete set of properties (e.g., solubility, uptake), the corresponding specific stored energy can be computed. SL algorithms can
be employed for optimizing the desired figure of merit/properties in a discretized descriptor space.
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the adsorbent surface67. Since, at a given pressure p, the
Polanyi potential is a constant of the sorption pair, we have
computed A at T0 in a range from 10−4 Pa up to ps(T0)=
3157 Pa (Antoine equation for water); then, in the θ− p chart,
we have rescaled the abscissa p of the isotherm obtained at
the temperature T0 according to p ¼ psðTÞ exp A=ðRTÞð Þ, for
getting the new curves at TA and TC. We have finally computed
the isosteric heat by means of the Clausius–Clapeyron
relationship:

qst ¼
R
3

TCTA

TC � TA

X3
i¼1

ln
p2ðθiÞ
p1ðθiÞ

; (6)

where the points 1 and 2 represent the intersections of an
isosteric transformation with the two isotherms respectively at
TA and TC. We have repeated the procedure for three coverage
values (i.e., θ1= 0.4, θ2= 0.5, θ3= 0.6) and averaged them.

● Finally, upon determination of the low- and high-temperature

adsorption isotherms curves at TA and TC, the coverage span
Δθ during the discharge phase can be determined as detailed
in the Methods section, subsection Water-sorption thermal
energy storage. As for the estimate of the isosteric heat, this
requires for all the compounds the rescaling of the horizontal
axis in the θ− p chart of the isotherm obtained at
temperature T0 according to the Polanyi potential theory.

We have thus computed the following objective function SqstΔθ,
which recovers the cycled heat up to a constant, over the entire list
of 5028 potential MOFs with positive surface area in ref. 46. The
MOF with the highest predicted specific energy turned out to be
the compound with the chemical formula C96H48O28N8V4 and
referred to as “str_m5_o18_o28_sra_sym.72” in the database (see
also the molecular rendering in Fig. 6b), with Henry coefficient at
298 K of 6110:54molH2O kg

�1
MOF bar

�1 (or equivalently, 6.89 × 10−4

Pa−1) and surface area S ¼ 4118:79m2 g�1
MOF. Figure 7 shows also

the ideal expected thermodynamic cycle related to this optimal
potential MOF.
We observe a coverage span Δθ= 0.653, an isosteric heat qst ¼

48:95 kJmol�1
H2O with an objective function value of

Fig. 6 Hypothetical MOFs ranked with respect to the specific energy. a 2D chart with the entire set of 5028 hypothetical MOFs in the
database by Boyd et al.46, where the first two SHAP ranked descriptors for the H2O Henry coefficient are represented and the best four MOFs
sorbents for the adsorption/desorption based thermal storage application are highlighted. b 3 × 3 × 13 replications of the respective
crystallographic cells (C atoms: gray; H atoms: white; O atoms: red; N atoms: blue; V atoms: green).
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1:32´ 105 kJm2 mol�1
H2O g

�1
MOF. That quantity can be directly related

to specific energy: upon multiplication by the constant η=MH2O

(η ¼ 3:875 ´ 10�4 gH2O m
�2,MH2O ¼ 18:02gH2O mol�1

H2O), we obtain
a value of 2:83´ 10�3 GJ kg�1

MOF. Furthermore, we can compute the
theoretical density ρMOF of the crystal knowing the mass of the cell
(1965.21 u= 3.263 × 10−21 gMOF, as from the database) and its
volume (5.335 × 10−21 cm3, as from the CIF file), leading to ρMOF=
0.612 gMOFcm−3. As a result, the volume-based energy density turns
out to be 1.73 GJm−3. For the sake of comparison, Fig. 6a shows a
2D map where the two axes represent the two most important
descriptors according to the SHAP ranking for the Henry coefficient
of H2O: the four top-performing potential MOFs are highlighted and
the corresponding crystallographic cells are depicted in Fig. 6b.
Moreover, Table 3 shows the ten most performing potential MOFs
ranked in terms of specific energy. Interestingly, those compounds
are all Vanadium-based, mostly due to values of the Henry
coefficient for H2O in the optimal range, which produces a good
coverage span Δθ over the thermodynamic cycle.
As depicted in Fig. 8 the four top-performing hypothetical MOFs

are predicted to have (material-based) specific energy values
among the highest available in the literature for sorption thermal
energy storage under similar operating conditions. A more
extensive comparison is shown in Supplementary Fig. 11, where
estimates of the specific energy for real MOFs by means of the FFG
model are also reported.

DISCUSSION
Sequential learning (SL) algorithms can in principle dramatically
reduce the number of evaluations needed for finding the
optimum of an unknown function as compared with a naive
random choice and, as such, they are emerging also as effective
tools for material optimization and discovery. In this work,
focusing on metal-organic frameworks (MOFs) and some of their
crucial adsorption properties (both with H2O and CO2 as sorbate
fluids), we have addressed a number of critical aspects related to
the discovery of the minimal set of important crystallographic
descriptors for SL-based optimization algorithms. We have shown
that the general protocol for sorting out the minimal set of ruling
descriptors for a given adsorption property is based on two steps:
(i) construction and training of the machine learning (ML) model
which identifies the number of ruling descriptors; (ii) evaluation of
the relative importance of each explanatory variable on the
chosen output by the SHAP analysis. We found that, as long as the
set of such ruling descriptors (for a given property of interest) is
included among the exploration space features, convergence
performance is not affected, although the computational burden
of an SL algorithm also depends on the dimension of the
parameter space to be explored: taking into account only the
most relevant features may be in fact beneficial in that respect.
Furthermore, based on the several examples provided here (i.e.,
Henry coefficient for CO2, working capacity for CO2, and Henry
coefficient for H2O as well as the synthetic example discussed in
the Supplementary Note 1), we have consistently noticed that the
COMBO algorithm always performs better than random guessing.
Furthermore, we recognize that full access to the adsorption

properties of hypothetical MOFs in the entire coverage regime (as
requested in important applications of engineering relevance) is
very challenging both experimentally and computationally. This
holds particularly for water-MOFs working pairs, that are promis-
ing for a number of energy applications. Hence, we formulate a
general and efficient computational screening procedure of
hypothetical MOFs which, only relying upon the adsorption
properties reported in Fig. 2, is capable to estimate important
figures of merit for sorption-based seasonal thermal energy
storage. Remarkably, our procedure suggests that some of the
MOFs hypothesized in the database by ref. 46 (developed for
completely different purposes) can possibly outperform most of
the state-of-the-art water-sorbent compounds. Interestingly, those
compounds are all Vanadium-based, mostly due to values of the
Henry coefficient for H2O in the optimal range, causing a good
coverage span over the thermodynamic cycle. It is worth noticing
that the above MOFs screening for thermal energy storage
applications critically relies upon the prediction of the Henry
coefficient for water.

Fig. 7 Adsorption/desorption based thermal energy storage cycle
for the potential MOF ‘str_m5_o18_o28_sra_sym.72’ with water,
in the coverage-pressure plane. The isotherms TA= 308 K and TC=
353 K are shown. Surface S, isosteric heat qst, and coverage span Δθ
over the cycle are reported, giving an objective function SqstΔθ ¼
1:32 ´ 105 kJm2 mol�1

H2O g
�1
MOF or equivalently 2:83 ´ 10�3 GJ kg�1

MOF,
which corresponds to 1.73 GJm−3.

Table 3. Top ten potential MOFs in terms of specific energy from the database by Boyd et al.46.

Database name Brute formula Molecular weight Surface area Specific energy

(u) (m2 g�1
MOF) ( ´ 10�3 GJ kg�1

MOF)

“str_m5_o18_o28_sra_sym.72” C96H48O28N8V4 1965.21 4118.79 2.83

“str_m5_o3_o18_sra_sym.73” C88H36O20N8V4 1729.03 3888.89 2.57

“str_m5_o6_o18_sra_sym.82” C68H36O20V4 1376.76 3577.31 2.44

“str_m5_o6_o18_sra_sym.92” C69H38O20V4 1390.79 3473.55 2.40

“str_m5_o7_o18_sra_sym.115” C76H32O20N4V4 1524.85 3428.98 2.36

“str_m5_o7_o18_sra_sym.133” C72H36O28V4 1552.81 3384.12 2.34

“str_m5_o7_o18_sra_sym.136” C72H40O20N4V4 1484.87 3362.19 2.31

“str_m5_o7_o18_sra_sym.20” C76H36O24V4 1536.85 3340.13 2.22

“str_m5_o7_o18_sra_sym.124” C72H40O20N4V4 1484.87 3355.61 2.22

“str_m5_o6_o18_sra_sym.17” C70H40O19V4 1404.82 3189.28 2.22
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Therefore, for the latter property only, we have also considered
a number of real MOFs and their reported experimental values
have been compared with the corresponding numerical values. It
is worth stressing that finding both the experimentally evaluated
property values and CIF file from the same publication is a non-
trivial task, sometimes possibly leading to not necessarily
consistent data. Furthermore, even for the three MOFs (i.e.,
MOF-801-SC, MOF-808, and MOF-841) considered in this study
with experimental and computational data extracted from the
same reference source, there is no guarantee that the tested
material corresponds perfectly to the related CIF file, and
discrepancies can always occur as demonstrated by the same
Authors of ref. 68. Moreover, the CIF files needed to extract the
descriptors are always very ideal if compared with the experi-
mentally tested crystals. Possible defects in real compounds can
be related to any chemical changes, leading to variation in the
hydrophilic nature of the material69–71. Nonetheless, we observed
that, while discrepancies can be found, the ML-based predictor of
the Henry coefficient consistently shows a good agreement with
the experimental values. Importantly, the numerical predictions
based on the identified descriptors can selectively distinguish
among MOFs with higher or lower values of the Henry coefficient.
We believe that the above results represent an important step
toward efficient MOFs screening and optimization, not only with
respect to intrinsic materials properties but also (and importantly)
with respect to figures of merit of engineering relevance for
applications such as thermally driven water harvesting from the
air, water-sorption thermal energy storage, and solar cooling.
Clearly, we are also aware that our approach is based on a

number of approximations and it still requires additional
research activities. First, we notice that a large set of hypothetical
MOFs may be characterized by properties (e.g., Henry coeffi-
cients) whose values span several orders of magnitude. Hence a
unique ML model, as used in this pipeline, may achieve a high
coefficient of determination if its logarithm is considered.
Nonetheless, the computation of the coverage span Δθ depends
directly on the Henry coefficient, which may thus be affected by

a relatively high error. Furthermore, additional simplifying
assumptions that have been used in our approach include fixed
parameters such as the constant of proportionality between the
specific surface area and the water working capacity, as well as
the steepness coefficient β in the FFG model. Without losing
generality, those assumptions could be relaxed in the near future
relying on more sophisticated models. One possible way to cope
with those challenges (not necessarily the only possible strategy)
may be a preliminary classification of the hypothetical MOFs
based on properly trained ML classifiers, with the purpose of
assigning a given compound of interest to a specific category
(e.g., the set of MOFs with Henry coefficient of similar magnitude,
similar β, etc.). Afterward, property predictions on each MOF
category can be possibly performed with higher accuracy.

METHODS
Water-sorption thermal energy storage
In this work, we focus on the use of potential MOFs for water-sorption-
based thermal storage applications.
Physical adsorption processes are based on weak and reversible

interactions between the (solid) sorbent material and the corresponding
adsorbate, i.e., the fluid72. Those phenomena are relevant to thermal
energy engineering as sorption/desorption in solid sorbents can be
accompanied by a significant amount of energy exchange. In the
following, the solid sorbents are MOFs, while water is the adsorbate.
To allow desorption of an infinitesimal number (dn) of moles of

adsorbate from the adsorbent surface, a given amount of heat dQ= qst dn
has to be provided to the system, where qst (with units of kJ/mol) denotes
the isosteric heat. Since the process is reversible, the same amount of heat
dQ is released by the dry sorbent when dn moles of fluid at a pressure p,
initially in the vapor phase, are adsorbed. Furthermore, we define load X as
the ratio between the mass of adsorbate and the mass of dry sorbent. A
process characterized by constant load X is referred to as an isosteric

Fig. 8 Comparison between the expected specific energy for several materials. Specific energies are shown for different desorption
temperatures TC both for the optimum MOFs identified in this work (either standard environmental conditions, i.e., evaporation temperature
TE= 278 K and condensation temperature TF= 303 K, or with conditions of TE= 283 K and TF= 293 K, adsorption temperature TA= 308 K
always) and for several water-sorbent materials in the literature6,64,86,87.
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transformation and the popular Clausius–Clapeyron relationship yields:

∂ ln p

∂ � 1
T

� � !
X

¼ qst
R
; (7)

where T is the absolute temperature and R= 8.314 J mol−1K−1

denotes the gas constant73. Therefore, an isosteric transformation in
the Clapeyron chart (ln p vs− 1/T) is a curve with local slope qst/R.
Similarly, the adsorbate isosteric curve has a slope ΔH(vap)/R, where
ΔH(vap) is the molar enthalpy for liquid-vapor phase change of the
adsorbate.

Closely related to load X, the coverage θ is defined as the ratio between
the number of already occupied adsorption sites ns and the total available
number of sites nTOT. At equilibrium and at a given temperature T, the
coverage θ depends on the pressure p of the vapor phase according to an
adsorption isotherm, whose shape depends on the sorbent/adsorbate pair.
MOFs/water pairs are known to show typical S-shaped isotherms in the θ−
p chart (i.e., type V of the IUPAC classification74). Thus, in this work, we
make the assumption that the Frumkin–Fawler–Guggenheim (FFG) model
can be used conveniently for describing analytically the MOFs-water
adsorption isotherms:

θ ¼ HðTÞp expðβθÞ
1þ HðTÞp expðβθÞ ; (8)

where β ¼ nEp
RT rules the steepness of the S-shape, n denotes the

neighboring binding sites and Ep represents the additional binding
energy due to lateral interactions67. We have used the FFG model to
interpret eight experimental isotherms of real MOF-water pairs and
achieve a proper choice of β. In particular, for each curve, we have
identified the best value of β in terms of a least-squares approach;
then, we have taken the mean over those eight values, ending up with
β= 3.4. More details can be found in Supplementary Note 6. Finally, H
(T) is the Henry coefficient for the specific sorbent/adsorbate pair (with
units Pa−1) at a given absolute temperature T.
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High-T heat 
from adsorp�on

pE

Valve open

Low-T heat          
from condensa�on

High-T heat     
for desorp�on

pF

Saturated 
adsorbent

Valve closed

Dry
adsorbent

HEAT RELEASE PHASE

HEAT ACCUMULATION PHASE
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Fig. 9 Schematic of a closed water-sorption thermal energy storage system. The cycle underlying the heat accumulation and successive
release is represented.

Fig. 10 Schematics of ideal adsorption/desorption thermal energy
storage cycle. a Ideal cycle in the Clapeyron chart. b Same ideal
cycle in the coverage-pressure chart, between the two limiting
isotherms passing by θ(p, TA) and θ(p, TC).
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A schematic of a closed water-sorption thermal energy storage system is
shown in Fig. 9. These systems are based on a reactor, containing the solid
sorbent, connected with a condenser/evaporator by means of a valve57.
Such chemical apparatus follows a seasonal closed-cycle completely
defined by four temperatures: TA (the minimum temperature on the user
side), TC (the maximum temperature on the source side), TE (the average
winter temperature), and TF (the average summer temperature). The two
pressures pE (evaporator) and pF (condenser) are related to the absolute
temperatures TE and TF, respectively, through the Antoine equation for
water saturation pE;F ¼ 133:2 ´ 10A�B=ðCþTE;F�273Þ, where A= 8.07131,
B= 1730.63, C= 233.42675. Hence, the ideal thermodynamic cycle of a
closed thermal energy storage process (see Fig. 10) is based on the
following four steps:

1. The sorbent/adsorbate is heated isosterically up to a temperature TB,
corresponding to a pressure pF in the condenser (line AB).

2. Heating of the pair continues at constant pressure pF and desorbed
vapor flows to the condenser through the opened valve. In the
condenser, the adsorbate rejects the condensation heat into the
environment while condensing until the maximum temperature of
the heat source TC is reached (line BC). The condition of the
minimum load is reached and the valve gets closed.

3. Keeping the valve closed, the system in contact with the
environmental temperature cools isosterically during the storage
period (line CD) down to temperature TD, corresponding to the
evaporator pressure pE.

4. During the discharge phase of the heat storage system, the valve is
opened to let the adsorbate evaporate and reach the reactor. During
this isobaric transformation (line DA), the heat of adsorption QDA,
also known as cycled heat, is released.

One of the most important figures of merit for energy storage systems is
the specific stored energy, namely the maximum energy that can be stored
per unit of mass of the plant or of the material76. Clearly, at fixed material
(or plant) mass, the higher the cycled heat the higher the specific energy of
the storage system. In this view, the choice of the solid sorbent material for
a given adsorbate is key for maximizing the cycled heat in the ideal
thermodynamic cycle. We thus perform below a material screening aiming
at the maximum value of the following cycled heat (i.e., the released heat
during the DA process in Fig. 10):

QDA ¼
Z A

D
qst dns ¼

Z A

D
nTOTqst dθ � nTOTqstΔθ; (9)

where we have used the definition of the heat of adsorption dQ= qst
dns, coverage θ= ns/nTOT and the approximation qst � const.

Sequential learning
Typical steps in any SL algorithm consist in (i) constructing a regression model
over known data, (ii) using a strategy to suggest the best-unmeasured point to
test, (iii) enlarging the known dataset with this tested point, and (iv) iterating
up to the tested candidate meets the needed specification. Let D ¼
fðx1; y1Þ; ¼ ; ðxn; ynÞg denote a set of n training data, where xi 2 Rd and
yi 2 R represent the i-th vector of descriptors and its known response,
respectively. Let {xn+1, …, xm} denote the (m− n) d-dimensional arrays of
descriptors with unknown responses {yn+1, …, ym}. To find the location x* of
the maximum y*, we would need the exact model y= f(x). However, given the
restricted set D of training data, only a surrogate model y ¼ f̂ ðxjDÞ can be
constructed. Hence, for each unmeasured point i= n+ 1, …, m, different
regression methodologies (here FUELS-Random Forest, kriging and COMBO-
Gaussian processes) can be used to estimate the response f̂ ðxiÞ in terms of a
mean value μ(xi) and the corresponding uncertainty σ(xi), indicating the
robustness of the prediction. To measure the performance of any combination
regression model/query strategy, we put ourselves in the practitioner’s
perspective, who is interested in a unique sequence of points to be tested,
and not in an average over more paths (as, for instance, shown in ref. 49). To
achieve this, for those regression models not allowing a deterministic
prediction (i.e., Random Forest and COMBO), at each step we have repeated
100 times the choice of the next point to query, picking the most preferred
one. A comprehensive comparison of the above methodologies is reported in
the Results (subsection Descriptors of sorption properties in MOFs and their
use in SL algorithms), and the complete details on the adopted algorithms can
be found in the Supplementary Notes 7 and 8.

Model training and choice of the descriptors
The first issue to be addressed when applying SL to material optimization
is computation and selection of relevant features (or descriptors). The
descriptor issue is critical in materials science77,78 as well as in other
computational fields79. In this work, we first investigate to which extent the
choice of a minimal set of relevant descriptors is critical for the fast
convergence of SL algorithms.
To this end, before even implementing SL procedures, we decided to

perform a preliminary feature pruning for discovering the most meaningful
ones in terms of the target property. We use the entire dataset (both
descriptors and target property) to train and validate a Random Forest-
based pipeline—feature reduction and machine learning—for regression,
with hyperparameter tuning in five fold cross-validation. More details can
be found in Supplementary Note 10.
Upon model training and validation, we detect the most important

features thanks to the Tree SHAP algorithm, which is optimized for tree-
based models such as Random Forest48,59, thus quantifying to which
extent a given feature impacts the output. The latter methodology is based
on the classical Shapley value, which has in game theory its original field of
application. There, the problem of assigning, in a cooperative game, a
proportional reward to each player is addressed based on the real
contribution provided to the common objective of the coalition. In a
model, given F the set of all features and its generic subset S⊆ F, the
importance of the i-th descriptor depends on the comparison between the
model fS∪{i} trained with that explanatory variable, and another model fS
trained without that feature; then, the difference between the predictions
fS∪{i}(xS∪{i})− fS(xS) is computed, where xS∪{i} and xS represent respectively
the values of the input feature over the subsets S ∪ {i} and S. This difference
is weighted over all possible subsets S and the importance value of the i-th
feature turns out to be

ϕi ¼
X

S�Fnfig

jSj!ðjFj � jSj � 1Þ!
jFj! f S∪ figðxS∪ figÞ � f SðxSÞ

� �
; (10)

where ∣⋅∣ denotes the number of elements. Because of the huge
number of possible descriptor subsets S of a set F, the classical Shapley
values of Equation (10) are, in general, computationally challenging.
Nonetheless, the Tree SHAP realization we have employed in this work
is able to explain efficiently tree-based models, such as Random
Forest.
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