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Uncovering material deformations via machine learning
combined with four-dimensional scanning transmission
electron microscopy
Chuqiao Shi1, Michael C. Cao 1,2, Sarah M. Rehn3, Sang-Hoon Bae4,5, Jeehwan Kim6, Matthew R. Jones 1,3, David A. Muller 2,7 and
Yimo Han 1✉

Understanding lattice deformations is crucial in determining the properties of nanomaterials, which can become more prominent
in future applications ranging from energy harvesting to electronic devices. However, it remains challenging to reveal unexpected
deformations that crucially affect material properties across a large sample area. Here, we demonstrate a rapid and semi-automated
unsupervised machine learning approach to uncover lattice deformations in materials. Our method utilizes divisive hierarchical
clustering to automatically unveil multi-scale deformations in the entire sample flake from the diffraction data using four-
dimensional scanning transmission electron microscopy (4D-STEM). Our approach overcomes the current barriers of large 4D data
analysis without a priori knowledge of the sample. Using this purely data-driven analysis, we have uncovered different types of
material deformations, such as strain, lattice distortion, bending contour, etc., which can significantly impact the band structure and
subsequent performance of nanomaterials-based devices. We envision that this data-driven procedure will provide insight into
materials’ intrinsic structures and accelerate the discovery of materials.
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INTRODUCTION
Recent advances in the synthesis of materials have led to well-
behaved material structures at the nanometer scale. Atomic
structure and deformations in these nanomaterials determine
their chemical, electronic, and optical properties, affecting their
efficiency and performance in their targeted applications. For
example, epitaxial growth of optically tunable heterostructures in
III–V semiconductors1–3 and two-dimensional (2D) materials4–8 can
lead to local strain and dislocations, which greatly affect the
electronic and optical properties due to changes in the local band
structure. Even within nanomaterials comprised of a single crystal,
such as structurally designed anisotropic metallic nano-plates or
prisms9–11, the local bending or deformations also play an
important role in determining their optical responses and catalytic
behaviors. To study these fine features in the materials, conven-
tional high-resolution transmission electron microscopy and
annular dark field scanning transmission electron microscopy
(ADF-STEM) have been utilized to reveal the local atomic
structure2,3,7. While the limits of the electron microscope
resolution are constantly being pushed12, a common restriction
on these imaging techniques is the limited field of view in the
sample. As studying the overall structural information of the
materials is crucial for mass production and large-scale processing
for applications in next-generation devices, techniques such as
nanobeam electron diffraction13–15 that can map large sample
areas have attracted tremendous attention for their potential in
determining the sample structure on a large scale.
Although nanobeam electron diffraction has been used for

decades to acquire electron diffraction patterns from a large
sample area, this technique was limited by conventional charge-

coupled device detectors, which are too slow to collect detailed
structural information across the entire sample. However, the
development of fast direct electron detectors16 now allows the
collection of a momentum-resolved nanobeam diffraction pattern
at each scanning position in a STEM experiment (Fig. 1a), thus
generating four-dimensional (4D) data (Fig. 1b). Therefore, the
technique enabled by these detectors is often referred to as 4D-
STEM17. Among the direct electron detectors, the electron
microscope pixel array detector (EMPAD)18 has high dynamic
range and sensitivity, capable of recording quantitative diffraction
patterns without saturating the center beam or cutting off the
weak diffracted spots. Using the EMPAD in scanning nanobeam
diffraction mode, strain profiles in 2D materials have been
mapped across a micrometer scale with sub-picometer preci-
sion19. Although many works14,20–23 have been reported to further
improve accuracy and precision, this approach relies heavily on
prior knowledge of the sample structure. For instance, before
applying any strain or phase mapping approach, one needs to
determine where and how to place masks on the diffraction
patterns. This process varies from sample to sample. Acquiring this
information from a large quantity of data from diverse samples
makes it difficult to generalize 4D-STEM for materials with
unexpected lattice deformations, which usually have a large
impact on material properties and device performance.
Recently, machine learning has emerged as a promising method

applied in microscopy24–30 due to its capability in analyzing
complex patterns in large datasets. Specifically, unsupervised
learning, which does not require training data, has been utilized
to identify the stacking order31 and twin boundaries32 in materials.
To further extend unsupervised learning for deformation and fine
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structure study, we utilized a divisive hierarchical unsupervised
clustering architecture for rapid and semi-automatic 4D data
analysis and feature mapping according to intrinsic characteristics
and similarity (Fig. 1c). This approach complements the existing
strain mapping approaches by providing a rapid and automatic
initial analysis of the 4D data (usually < 10min), as well as
uncovering unexpected but significant fine structures and
deformations in the materials.

RESULTS
Architecture of divisive hierarchical clustering
The process’s overall scheme is described in Fig. 1. After the data
acquisition, three main steps are used to process the 4D data:
preprocessing the diffraction patterns, hierarchical clustering of
the data, and visualizing the results.
Preprocessing involves aligning and masking the diffraction

patterns. Alignment corrects the drift in the diffraction patterns
caused by slightly misaligned beam tilt when scanning large areas
(Supplementary Fig. 1). To do that, we align the center of mass
(CoM) of the center beam. We added a circle mask in the center of
each diffraction pattern to select the center beam (Supplementary
Fig. 1b). Then, the CoM of the center beam was calculated with
sub-pixel precision, followed by moving the diffraction pattern
towards the center of the detector (Supplementary Fig. 1a). We
repeated these three steps until the standard deviation of the
CoM in all scanning positions, as well as the error between the
CoM and the center of the detector, becomes smaller than 0.01
pixel. This step avoids the confusion caused by the translational
shift of the diffraction patterns due to reasons other than the
intrinsic sample structure.
Masking contains two parts, where the first part uses a ring mask

to mask out the low-angle scattering as well as the zero-padded
regions caused by the alignment. We determined the inner and
outer radius through plotting the standard deviation (STD) of
diffraction pattern. In the example data (Supplementary Fig. 2a, e),
the bright center beams always show highest STD due to the high
intensity. From the rotational STD plots (Supplementary Fig. 2b, f),
we were able to identify the diffraction area and set the inner/
outer radius to block the background and the noise (Supplemen-
tary Fig. 2c, g). The second part selects the diffraction regions

where the crystal information is stored. In this part, we select the
features based on the STD of the intensities in the remaining area.
The regions with high STD (30% of the highest) among the ring-
masked dataset are selected in each diffraction pattern (Supple-
mentary Fig. 2d, h) and flattened as a feature vector, which is used
in the following cluster analysis. The optimal percentage (30%) was
determined by experience, as shown in Supplementary Fig. 3. Thus
far, this threshold applies for both thin 2D materials (Supplemen-
tary Fig. 3b) and thicker nanoprisms (Supplementary Fig. 3e). As a
result, the preprocessing step helps organize the 4D datasets so
that our method will mainly extract structural information from the
datasets, while avoiding any ambiguity caused by the microscope
misalignment and background.
The hierarchical clustering architecture is illustrated in Fig. 1c. A

single round of clustering is insufficient to determine all the
features in the 4D dataset due to features at varying length scales.
Initial clustering separates large scale features, typically different
materials in the sample, since they cause more noticeable
differences in the diffraction pattern. However, diffraction patterns
within these initial clusters then have more subtle differences
caused by small-scale features, which cannot be separated
through a single clustering round. To extract these features at
different scales, we employ a divisive hierarchical clustering
architecture to cluster the diffraction patterns in the 4D dataset.
The divisive architecture is a top-down approach, which starts
from the whole dataset, and then clustering is performed
recursively when moving down the hierarchy.
In a single round of clustering, we compared different

unsupervised learning methods and identified that K-means33

exhibited the optimal performance considering combined accu-
racy and speed (Supplementary Table 1 and Supplementary Fig.
4). The K-means algorithm is a common clustering method that
divides our real-space points, each represented by a feature
vector, into K clusters through minimizing the variance (squared
Euclidean distance) within each cluster. To automatically deter-
mine the number of clusters, or the K, especially when little prior
knowledge about the datasets was presented, we utilize the elbow
method34 to determine the K number in each round clustering
(Supplementary Fig. 5). In the elbow method, we calculated the
total within-cluster sum of squares (WSS) and plotted the error
curves according to the number of clusters (or K). Since we do not

Fig. 1 Schematic of unsupervised learning of 4D-STEM datasets. a Schematic of the EMPAD operation, where a diffraction pattern is
recorded at each scanning position. b A 4D dataset that contains a full diffraction pattern at each pixel in the real-space map. Scale bar,
500 nm. c Schematic of the divisive hierarchical clustering workflow on diffraction patterns in the 4D data. d Visualization of the clustering
results, where the features are mapped back to real space (top) to determine their distribution, and the diffraction patterns are projected onto
a lower-dimensional manifold space (bottom) for visualization.
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need precise WSS values, we adopted the faster but negligibly less
precise Mini-Batch K-means method (Supplementary Fig. 4e) to
determine the elbow point.
Finally, since each diffraction pattern represents one pixel in real

space, the labels from the clustering results can be mapped back
to real space for a better understanding of the material structures.
As shown in the top panel of Fig. 1d, the clustering result is
visualized in a real-space color-coded map, with each color
representing a single structural feature characterized in a cluster
of similar diffraction patterns. Alternatively, we can also visualize
the data distribution in a low-dimensional manifold structure
(Fig. 1d, bottom panel). The manifold structure is the projection of
the high dimensional diffraction patterns to 3D space for
visualization, which is achieved by the recently developed uniform
manifold approximation and projection (UMAP)35. The lower
dimensional manifold structures can assist in the visualization of
the distribution and variance of the clusters, which can be used to
determine the differences in major physical parameters. Through
real-space and manifold structure visualization after clustering, we
can map the fine deformations to better understand the
distribution of structural features in the sample.

Deformations in WS2–WSe2 lateral heterojunction
To test the accuracy of our clustering architecture, we applied our
approach to 4D datasets of 2D epitaxial lateral heterojunctions, which
contain strain-engineered structures that enable tunable optical
properties19. The sample is composed of an outer and inner region of
WS2 and a middle region of WSe2, which is not apparent in its ADF-
STEM image (Fig. 2a) as the tungsten atoms dominate the ADF
contrast. During the clustering, structural features at different scales
within the entire flake have been uncovered hierarchically. After
three rounds, as shown in the dendrogram (Fig. 2b), fine
deformations have been uncovered in the sample.
The real space map from the first two rounds of clustering is

shown in Fig. 2c, where the method effectively separated the
background, WS2, and WSe2 (Supplementary Fig. 6a–c). The crystal-
line samples are distinguished from the amorphous substrate in the
first round of clustering, which is intuitively obvious. In the second
round, the WSe2 and WS2 are differentiated by the diffraction spots
spacing caused by the lattice mismatch between WS2 and WSe2
(Supplementary Fig. 6d). The real space map from unsupervised
learning provides a precise interface between WS2 and WSe2 with
defects (Supplementary Fig. 7), which were not recognized in the
ADF images. The two separated clusters of WS2 and WSe2 in the
manifold structure (Fig. 2f) indicate that the lattice constant changes
across the junction are discrete. We measured the lattice constant of
each diffraction pattern in the junction sample, and the histogram
(Fig. 2i) confirms the discrete change. Using the measured lattice
constant as the ground truth, our clustering results provide a 99.9%
accuracy for the discrete feature.
In the third round of clustering, the sub-clusters of WS2 and WSe2

from the second round are analyzed to reveal finer features. Our
method separates the WS2 cluster into two sub-clusters, where the
real space map shows a rotational periodicity of the material with
graded interfaces (Fig. 2d). The mean diffraction patterns (Supple-
mentary Fig. 6e, f) of each sub-cluster display a slight rotation in the
reciprocal lattice (Supplementary Fig. 6g), which corresponds to
different lattice rotations in real space. Unlike the discretely separated
WS2 and WSe2 clusters from the previous round, these two clusters
are mixed in the manifold representation (Fig. 2g), indicating that the
rotation angle changes continuously. We measured the rotation
angle of each diffraction pattern in WS2, and the histogram (Fig. 2j)
confirms the capability of our method to identify continuous
structural distortions in materials. The measured accuracy of
clustering this continuous feature is 84%.
Meanwhile, the WSe2 cluster is separated into four clusters, and

the real space map is shown in Fig. 2e. The averaged diffraction

patterns of each cluster differ in the intensity of the second order
spots (Supplementary Fig. 6h–k), caused by lattice tilts (or ripples)
in the sample36,37. Specifically, three separate regions in the
corners show different directional ripples since the second-order
diffraction spots along one direction display a much stronger
intensity than the other two directions (Supplementary Fig. 6i–k).
In contrast, the area close to the center is a flat region where all
the second-order spots have similar intensity (Supplementary
Fig. 6h). The 3D manifold structure of the WSe2 cluster (Fig. 2h)
shows that the tilts in the ripple area are continuous. The results
we achieved here are consistent with literature where the ripples
form to relax the strain induced by WS2–WSe2 lattice mismatch19.

Uncovering minor ripples in WS2–WSe2 superlattices
To test how sensitive our method is for minor deformations in
materials, we utilized a coherent 2D superlattice sample which
contains a much smaller ripple structure with an aspect ratio of
~1/30 in narrow WSe2 stripes8. Using our method on the entire
superlattice sample (Fig. 3a), structural features at different scales
were uncovered hierarchically. Our method identified different
flakes in the first round of clustering (Fig. 3b). Then lattice
differences between WS2 and WSe2 were illustrated in the second
round (Fig. 3c). The next few rounds unveiled directional uniaxial
strain (Fig. 3d and Supplementary Fig. 8a–e), as well as minor
ripples hidden in the WSe2 (Fig. 3e and Supplementary Fig. 8f–k).
Due to the coherency in the superlattice, the ripples presented
here are much smaller than what we observed in the WS2–WSe2
lateral heterojunction sample, indicating the capability of our
hierarchical approach for identifying minor deformations in
materials. Finally, the manifold structures of the zoomed-in
dataset from each round of clustering provide a view of each
cluster and subcluster in data space (Supplementary Fig. 9).

Uncovering bending contours in silver nanoprisms
Unlike 2D materials, thicker samples usually present more
complex deformations and lattice distortions, which result in
more challenges in understanding their local structure. We use our
method to investigate the deformations in silver nanoprisms,
which have been widely studied due to their optical properties
that show great potential in many applications9–11. The silver
nanoprisms were drop casted on an amorphous carbon support-
ing film followed by air drying, which introduced internal
deformations due to the surface tension. The ADF-STEM (Fig. 4a)
shows an entire flake of a micrometer-sized silver nanoprism,
which is known to be single crystal with the [111] zone axis
perpendicular to the flat surfaces. Here, we show that our machine
learning approach can elucidate deformations in nanoprism flakes
in a facile and semi-automated way (Supplementary Fig. 10).
First, the same preprocessing of 4D data was performed on the

nanoprism datasets (Supplementary Fig. 11). Focusing on a corner
of the nanoprism (Fig. 4b), the first round of clustering
distinguishes the sample from the amorphous supporting film
(Supplementary Fig. 12a) due to the obvious difference between
the amorphous film (Supplementary Fig. 12b) and the nanoprism
(Supplementary Fig. 12c) in the diffraction patterns. The following
round of clustering identify the contours in the nanoprism flake
(Supplementary Fig. 12d–f). To further investigate the deforma-
tion, we clustered the contour data into smaller sub-clusters and
identified the two sides of the contour (yellow and orange in
Fig. 4c), which is consistent with the general structure of a
bending contour. From the averaged diffraction patterns (Supple-
mentary Fig. 12h, i), the difference between the two sides of the
bending contour in diffraction space is the intensity variation in
the conjugate diffraction spots, which can be explained as the
incident electron beam approaching the atomic planes at different
angles at two different bending sides. On each side, the Bragg
condition in one direction is fulfilled, and the diffraction of the
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incident beam would result in strong corresponding diffraction
peaks (Supplementary Fig. 13a). By placing masks on the
conjugate diffraction spots to form virtual dark-field (DF) images
(Supplementary Fig. 13b), the high contrast contours in the virtual

DF images are consistent with the previously reported experi-
mental DF-TEM images in silver nanoprisms. In addition, our
simulated diffraction patterns (Supplementary Fig. 14) suggest
that the thickness variations can be detected due to the distinct

Fig. 2 Clustering results on WS2–WSe2 lateral heterojunction. a ADF-STEM image of the WS2–WSe2 junction. Scale bar, 500 nm.
b Dendrogram of the unsupervised learning workflow. c–e Real space maps from the unsupervised learning results showing different
compositions and deformations in the sample. f–h 3D manifold structure displaying the data distribution in each round of the clustering.
i Histogram of measured lattice constants of WS2 and WSe2 color-coded with results in the second-round clustering. j Histogram of measured
rotation angles of WS2 color-coded with results in the third-round clustering of WS2.
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diffraction intensity, confirming the uniformity of the thickness in
our Ag nanoprism (10 nm from previous publication11).
In the manifold structure (Fig. 4d–f), the data is first segmented

into two main clusters (Fig. 4d), amorphous background (black)
and nanoprism (dark purple). Further sub-clustering on the
nanoprism cluster separated the ring-like appendage (bending
contour) from the original sample manifold as the new-subcluster
(Fig. 4e). The thin asymmetric shape of the bending contour
manifold (Fig. 4f) indicates a continuous deformation, which is
shown in the diffraction pattern as an intensity change in the two
conjugate diffraction spots.

Clustering real space images for virtual imaging
Conventionally, we represent 4D-STEM datasets in real-space
major order (x, y, kx, ky). However, we can also view the data in
momentum-space major order (kx, ky, x, y). Instead of a 2D array of
diffraction patterns, we can visualize the 4D dataset as a 2D array
of real-space images generated from diffraction pattern intensities
at a single momentum-space coordinate (Fig. 5a). Due to this
property of 4D datasets, our hierarchical method could also be
extended to clustering these real-space images (Fig. 5b), aimed at
analyzing the data from a different dimension. However, the
quantitative intensity of real-space images varies dramatically
across the diffraction space. Consequently, the clustering results
are dominated by the intensity effect, overpowering the actual
feature information shown in the contrast (Supplementary Fig.
15a). To uncover the actual features, we normalized the real space

image as an additional preprocessing step before clustering
(Supplementary Fig. 15b), which provides similar intensity in the
real space images for better recognition of sample features using
our method. Followed by the hierarchical method, the real-space
features in different momentum-space pixels can be uncovered.
We re-investigate 4D data of the WS2–WSe2 superlattices using

this clustering approach to segment the diffraction space into
multiple clusters (Fig. 5c). This method works by effectively placing
virtual objective apertures in the diffraction space, which can
accurately select the diffraction coordinates based on their
generated real-space image similarity. In each cluster, the
averaged real-space image shows results equivalent to different
modes in STEM, including virtual bright-field (BF) (Fig. 5d) and DF
(Fig. 5e, f) images. The DF images of different flakes are separated
(Fig. 5e, f) according to their different lattice orientations (cyan
and yellow in Fig. 5c). Compared with the hierarchical clustering
on diffraction patterns (Fig. 3), the results from clustering real-
space images provide crystal information that is stored in
momentum-space. However, we observed striping in the BF
image (Fig. 5d) generated from pixels in the center beam. Upon
further investigation of the data (Supplementary Fig. 15c, d), we
found the stripes are caused by the center beam alignment in the
pre-processing of the 4D data, which indicates the importance of
more accurate alignment of the beam tilt for 4D nanobeam
electron diffraction mode in STEM.
The virtual imaging through unsupervised learning can not only

be used on 2D materials but also bulk materials. We investigated

Fig. 3 Clustering results on WS2–WSe2 superlattices. a ADF-STEM images of the 2D multi-junction superlattice with a zoomed-in area shown
in the inset. The ADF contrast is dominated by heavy tungsten atoms, thus no superlattice structure appears. Scale bar, 500 nm. b Real-space
map of the clustering results from the 4D dataset of the WS2–WSe2 multi-junction sample, where different flakes are identified from the
substrate. c Zoomed-in real-space maps of the multi-junction sample area shown in the red box in (a). d Real-space map of the sub-clustering
results in WSe2 with two colors indicating different strain profiles. e Real-space map of another clustering round on each subcluster in (d),
providing more structural details of lattice ripples in WSe2 due to the strain.
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the epitaxial InGaP grown on GaAs, where the complexity of strain
and dislocations in the InGaP layer create challenges to
quantitatively understand the material structure from conven-
tional methods (ADF-STEM image in inset of Fig. 5h). As the strain
profile in the material dramatically affects its properties and
performance, uncovering the complicated crystalline structure in
the film becomes crucial. For such complex materials, our real-
space clustering approach segments the reciprocal space into six
parts. A BF image (Fig. 5i) is generated from the segment where
the center beam is located (green part in Fig. 5h). A low-angle ADF
(LAADF) image (Fig. 5j) is reconstructed from low scattering angles
between the center beam and first order diffraction spots (dark
blue part in Fig. 5h), which highlights the amorphous carbon
protecting layer on top of the film due to the amorphous
scattering ring formed at this low angle. In addition, higher angle
areas that exclude the diffraction spots (light blue part of Fig. 5h)
display elastically scattered electrons that roughly represent the
thickness of the sample (Fig. 5k). The remaining three clusters
indicate the crystallinity of the thin film, providing virtual DF
images of three lattice orientations (Fig. 5l–n). From the diffraction
map (Fig. 5h), we conclude that Fig. 5l, m show small tilts possibly
caused by the lattice strain in InGaP, while Fig. 5n displays a twin
domain formed in the film.

DISCUSSION
We intend to compare different dimension reduction methods
and determine the most efficient one for our application. The
EMPAD records 128 × 128 diffraction patterns so each pattern has
16834 pixels. However, the useful structural information is

concentrated only in the diffraction spots, which is a small part
in the whole pattern. A condensed representation of the data
significantly improves computational speed and feature selection.
In the preprocessing step, we chose to place STD masks on
diffraction patterns to reduce the data size. However, there are
more elegant approaches to reduce the dimension of the data
such as Principal Component Analysis (PCA) and UMAP, but they
are not desirable for our hierarchical clustering method.
PCA computes the principal components based on matrix

factorization but since it is applied to the whole dataset, only the
main difference is captured while the minor differences are ignored.
For example, when applying the hierarchical clustering on the PCA
components of the WSe2–WS2 junction in Fig. 2, the WSe2 and WS2
samples can be separated in the first two rounds (Supplementary Fig.
16b). However, in the next round of clustering, the rotations cannot
be captured (Supplementary Fig. 16c) unless we re-apply PCA on
each sub-cluster before each round clustering, which takes more
time and memory. The need to re-apply dimension reduction on
each sub-cluster makes PCA undesirable for our clustering method.
The other feature extraction method we tested was UMAP, which

approximates the features in low-dimensional manifold space.
Compared with PCA, UMAP can capture both the major and minor
features in the sample. However, the clustering results show striping
artifacts (Supplementary Fig. 16d), while the real deformation
features are hidden. Due to this artifact, we do not use UMAP as a
dimension reduction method but only as a visualization method.
In addition, there are alternative clustering methods besides K-

Means, including Agglomerative clustering, BIRCH clustering, Spectral
clustering, etc. To quantitively compare the efficiency and perfor-
mance of different clustering methods, we created the ground truth

Fig. 4 Clustering results of silver nanoprisms. a ADF-STEM image of a silver nanoprism placed on amorphous SiNx supporting film. Scale bar,
500 nm. b Zoomed-in ADF image from the white box in (a). Scale bar, 200 nm. c Real space map of the final cluster and sub-cluster results.
d–f Manifold structure of the data in each hierarchical clustering process.
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label on the WS2 cluster from the manually measured rotation map
(Supplementary Fig. 4a). We set the positive rotation angle as label 1
and the negative rotation angle as label 2. Then we cluster this
dataset with different methods, record the time and calculate the
accuracy. Based on the results shown in Supplementary Fig. 4, the
Mini-batch K-means method is the fastest. However, due to the
random initialization of this algorithm, the clustering results are not
stable. The spectral clustering provides the best accuracy but takes a
much longer time. Considering the tradeoff between time and
performance, K-means was chosen as the clustering method in each
round of the hierarchical clustering architecture.
Here, we summarize the combination of different dimension

reduction and clustering methods on the WS2 dataset. The time
and accuracy of each method are shown in Supplementary Table
1, which proved the STD selection and K-means are suitable for
our hierarchical clustering architecture.
Finally, Our method demonstrates a quick initial analysis of 4D-

STEM data and allows for easier and quicker discovery of
unexpected deformations in a crystalline sample. However, our
approach does not focus on providing highly accurate maps of
such deformations, due to the limitation of clustering data. The
method provided high accuracy (>99%) for discrete features, but
only showed a reasonable accuracy (>80%) to distinguish a
continuous deformation (Supplementary Table 1). Nevertheless, it
is sufficient to inform users of the existence of such continuous
features and provide a quick initial analysis of the 4D data, but
further processing of the 4D data is required to quantitatively
map them.

We also evaluate the precision (or consistency) of the K-means
approach by running the algorithm 100 times on the same dataset
with random initial clustering centers. The testing datasets contain
continuous features. The result (Supplementary Fig. 17) shows that
88% of the total runs possess an accuracy above 75% for this
continuous feature, indicating the reliability of the approach.
In summary, we have demonstrated a method using divisive

hierarchical unsupervised machine learning to perform initial
analysis of 4D-STEM datasets, which may accelerate and automate
the study of lattice deformations in materials. We have applied
this method to extract such features from different 2D lateral
heterojunctions, thicker 3D materials, and cross-sectional crystals.
The purely data-driven analysis uncovers different types of
material deformations in the samples, such as strain, lattice
distortion, bending contour, etc. Combined with highly accurate
mapping techniques, our method may lead to a crucial step
towards a fully autonomous method for the analysis of subtle
lattice deformations. In addition, this approach may be potentially
expanded to broader material systems or other imaging
techniques that generate large and multidimensional datasets,
benefiting the development of future materials, techniques, and
applications.

METHODS
EMPAD data acquisition
All 4D-STEM datasets were acquired on an aberration-corrected Thermo
Fisher Titan Themis. The 4D datasets of the 2D lateral heterojunction were
acquired at 80 kV. A 1.6 mrad convergence angle was used, leading to a

Fig. 5 Clustering results on real space images in 4D-STEM datasets. a Visualizing 4D data in a momentum-major order, where each pixel in
diffraction pattern can be considered as a real-space image. Scale bar, 500 nm. b Schematic of the divisive hierarchical clustering architecture
on real space images. c Map of hierarchical clustering results in diffraction space on a WS2–WSe2 superlattice. d–g Mean real-space images of
the superlattice in each cluster. d Displays the image from dark blue area in (c), which represents a virtual BF image; e, f are the images from
light blue and yellow portions in (c), corresponding to DF images for different flakes. g Sums all other areas in (c), indicating a thickness
variation in the sample. hMap of hierarchical clustering results in diffraction space on a cross-sectional InGaP/GaAs crystal, with an ADF image
displayed in the inset. Scale bar, 200 nm. i–n Mean real-space images of the sample in each cluster. i corresponds to the center beam, the
green area in (h), and shows a virtual BF image; j, k are from the dark blue and cyan area in respect, which are from the amorphous carbon
and thickness effect in the sample; l–n are virtual DF images for the cross-section, showing strain effects and twin grains.
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~3 nm probe size. More experimental details can be found in our previous
work19. The 4D datasets collected on the silver nanoprism sample and
cross-sectional semiconductors were acquired at 300 kV. For 80 kV electron
beam, 151 analog-to-digital units (ADUs) correspond to one microscope
electron per pixel, while for 300 kV electron beam, 579 ADUs represent one
electron per pixel18. For all the datasets, an exposure time of 1.86ms (1 ms
acquisition time along with 0.86ms readout time) was employed when
acquiring the EMPAD 4D datasets. The estimated dose rate is ~105

e− Å−2 s−1. The scan size in real space (the number of pixels the beam scan
across) can be set from 64 × 64 to 512 × 512. The scan size of the data used
in this paper was 256 × 256.

DATA AVAILABILITY
The data that supports the findings are available at https://zenodo.org/communities/
hanlab-rice/.

CODE AVAILABILITY
Codes are available at https://github.com/Chuqiao2333/Hierarchical_Clustering.
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