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Machine learning sparse tight-binding parameters for defects
Christoph Schattauer 1, Milica Todorović2,3, Kunal Ghosh 2,4, Patrick Rinke 2 and Florian Libisch 1✉

We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several
machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parameterization.
Since Multi-layer perceptrons (i.e., feed-forward neural networks) perform best we adopt them for our further investigations. We
demonstrate the accuracy of our parameterizations for a range of important electronic structure properties such as band structure,
local density of states, transport and level spacing simulations for two common defects in single layer graphene. Our machine
learning approach achieves results comparable to maximally localized Wannier functions (i.e., DFT accuracy) without prior
knowledge about the electronic structure of the defects while also allowing for a reduced interaction range which substantially
reduces calculation time. It is general and can be applied to a wide range of other materials, enabling accurate large-scale
simulations of material properties in the presence of different defects.
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INTRODUCTION
Ab-initio calculations have become the method of choice for the
atomistic description of many materials1. However, relevant
physical properties of a crystalline material often depend not
only on its pristine structure but on various lattice defects2–6.
While advances in sample preparation for low-dimensional
materials have concurrently improved control over the occurrence
of such defects, their influence is still significant for many
investigations. Conversely, tailoring of material properties by
defect engineering7, chemical doping or functionalization inher-
ently introduces point defects into the material8. An accurate
description of how these defects modify the electronic structure of
a system is thus key for exploring potential applications of novel
materials.
While density-functional theory (DFT) typically yields a high-

level description for moderately sized systems, simulating realistic
devices used for measurements involves system sizes beyond the
realm of these methods. Tight-binding (TB) models offer a
quantum mechanical description for coherent electronic structure
simulations with a scalability far better suited to experimental
length scales9. For bulk systems, empirical tight-binding para-
meters10,11 can be fit against ab-initio (e.g., DFT) or measured
band structures (BS). More rigorous approaches aim for directly
calculating effective tight-binding Hamiltonians by projecting
DFT orbitals onto a suitably spatially localized basis12–14, as
implemented by the associated program package PAOFLOW15,16.
These approaches work very well for automatically finding
accurate bulk tight-binding descriptions of occupied orbitals that
are well described by a suitable, known localized basis. By
contrast, iterative methods such as maximally localized Wannier
functions (e.g., wannier9017–19) try to determine an optimal
localized basis, which often requires cumbersome convergence
procedures. Once converged, they typically yield TB models of
the highest quality20–24. A recent ML approach for high-
throughput investigation also produced accurate bulk TB para-
metrizations25 for pristine materials.

Computing accurate TB parameters for defect structures
presents a challenge to established parametrization approaches.
Simulating a defect requires large supercells to prevent artifacts
from interacting with periodic images and to ensure accurate
geometry relaxation at the edge of the supercell. In addition,
breaking translational as well as (some) point group symmetries at
the defect site vastly increases the number of independent TB
parameters. Empirical bulk parametrizations lack the flexibility to
describe defect systems with different local environments (e.g.,
different coordination numbers) than the pristine system26, while
Wannier projections become increasingly difficult to converge for
larger cells. The resulting TB Hamiltonians also lack sparsity, and
typically include finite long-distance interactions beyond even 5th

nearest neighbors22. Since the efficiency of TB models partly stems
from operating with sparse matrices, there is motivation to find
sparse TB representations with minimal loss of representability.
Simply truncating long-range interactions generally produces a
significant loss of accuracy22. A quantitative description of defects,
which is key to understanding their influence on the electronic
structure, thus seems out of reach using established parameter-
ization techniques.
In recent years, machine learning (ML) has facilitated new

research lines in materials science and chemistry27–38. Here, we
apply ML methods to generate TB parametrizations for defect
structures in novel materials. We aim for an ML based scheme that
achieves Wannier TB accuracy, while being automated and thus
easy to use. Ideally, we want to be able to tune the sparseness of
our machine-learned TB parameters at will to obtain a desired
balance of accuracy and efficiency. To remain accurate despite
fewer tuning parameters implied by improved sparsity, we will
adjust the parametrization to specific energy regions of interest
(i.e., close to the Fermi edge). We benchmark several test cases to
demonstrate the accuracy of our approach, its efficiency and the
effect of sparseness on accuracy and speed.
For simplicitly and focus on the ML technique, the graphene

benchmark system we consider features a comparatively simple
orbital structure, with only the pz orbitals contributing close to the
Fermi edge. To account for coupling between orbitals of different
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angular momenta or different atomic species, it is straightforward to
extend our scheme to distant-dependent, element-specific
Slater–Koster parameters. All directional and orbital contributions
are then accounted for by the well-known Slater–Koster formulas10,
while the distance-dependence still allows for the flexibility to
accurately describe defect structures. We showcase this extension
for a Se-divacancy in WSe2 in Supplementary Note 6.
This paper is structured as follows: we introduce a model for

mapping the desired TB Hamiltonian matrix to a vector of
parameters that is compatible with ML algorithms. After establishing
the necessary approximations and retrieval of DFT input data, we
compare the efficiency and accuracy of different ML techniques for
calculating TB parameters. We find multi-layer perceptrons (MLPs),
i.e., neural networks, to be optimal for the task at hand. We present a
detailed workflow of MLPs used for determining an optimal set of TB
parameters for a given atomic structure. We explicitly generate
parametrizations for two common defects (see insets in Table 2 and
the methods section “Methods” for calculation details) in single layer
graphene (SLG). The final section of this work focuses on validating
and testing our machine-learned parametrizations. We consider the
influence of defects on the local density of states, electronic
transport as well as the level spectrum of a smoothly confined
graphene quantum dot (GQD).

RESULTS
TB model
The TB approximation projects the Schrödinger equation for
electrons — a partial differential equation — onto a basis of
tightly bound (i.e., well localized) orbitals ij i at site i, yielding an
algebraic equation. A system with no orbitals can then be
described by a TB Hamiltonian

H ¼
Xno
i

si ĉ
y
i ĉi þ

X
hi;ji

γij ĉ
y
i ĉj : (1)

ĉyi ðĉiÞ are the creation (annihilation) operators of a quasiparticle at site
i with position ri, si ¼ ih jH ij i the onsite (diagonal) matrix elements
and γij ¼ ih jH jj i the hopping amplitudes between sites i and j. For
sufficiently localized orbitals, the magnitude of γij quickly decays for
increasing distance ri � rj

�� �� between orbitals. Omitting such elements
below a certain threshold (e.g., 1meV) makes H sparse.
Starting from a full DFT Hamiltonian, optimal values for si, γij can

be directly and exactly calculated using maximally localized
Wannier functions17–19,39. In practice, however, the final degree of
localization — i.e., the distance beyond which overlaps between

orbitals are smaller than the defined threshold — may be several
unit cells22. To obtain a more sparse description, one can directly
fit a small set of TB parameters si, γij to reproduce the DFT BS in an
energy region of interest. The second sum in Eq. (1) then only runs
over the n-th nearest-neighbor (NN) sites (Fig. 1a), where
ri � rj
�� ��< rNN with a cutoff radius rNN controlling the sparseness.
Without loss of generality, we restrict our analysis to two-

dimensional systems. We account for the Bloch phase of the
periodic wave function by adding corresponding phase factors in
the periodic images of the Hamiltonian. The periodic Hamiltonian
matrices Hðλx ;λyÞ determine the interaction of sites in the original
cell (0, 0) with sites in the periodic image of the cell (λx, λy)
translated along a linear combination of lattice vectors {λx ⋅ Rx, λy ⋅
Ry}. The entire Hamiltonian then reads

HðkÞ ¼
X
λx ;λy

eik�ðλxRxþλyRyÞHðλx ;λyÞ: (2)

Note that the set of si, γij entirely determines the matrix elements
of Hðλx ;λyÞ while the grouping into periodic cells just accounts for
the periodicity of the lattice. A system of interest is thus fully
described by a set of lattice vectors and parameters si, γij yielding
the Hamiltonian matrices fHðλx ;λyÞg. The indices λx, λy∈ [−m,m]
with m 2 N0 determine the range of non-zero interactions
between periodically shifted unit cells. In practice, we truncate
at ∣m∣= 1 given the large defect super cells in this work (see Fig.
1b).
Our objective is to use our TB Hamiltonian for transport

calculations of SLG in realistic device settings, i.e., SLG including
defects. We can therefore restrict the TB Hamiltonian to the
carbon pz orbitals, which determine the electronic structure of SLG
close to the Fermi energy (see Supplementary Information for
details).
Having reduced the TB Hamiltonian to only the pz orbitals of

carbon, we now consider a further reduction of the number of free
parameters for the TB Hamiltonian. If we were to only enforce
hermiticity, our TB Hamiltionian of Eq. (2) would feature noðnoþ1Þ

2 þ
4n2o independent parameters si, γij, which quickly gets out of hand.
Considering a medium-sized defect supercell with 70 orbitals this
would require ~25,000 independent parameters. We can however
employ the residual symmetries of a defect structure to further
reduce the number of parameters our ML model needs to
optimize. To obtain a robust framework, we aim for a simple
mapping between the hopping matrix elements γij and local
geometry information.
Finding such a simple mapping seems daunting as coordination

numbers of atoms around the defect site will in general differ
substantially from those in the bulk. A general mapping therefore
seems to require detailed information about the local chemical
environment. We avoid additional, complex geometrical para-
meters by exploiting that for the pristine bulk lattice, there are
only a few distances (the nearest-neighbor spacings, Fig. 4a) while
a relaxed defect geometry features many different distances. We
generate the γij purely as a mapping of distance γij ¼ γð ri � rj

�� ��Þ to
obtain an efficient and compact representation of the final TB
Hamiltonian. A sufficiently fine, discontinuous mapping between
atomic distance and hopping parameters essentially implies
assigning an individual hopping parameter to each unique
distance — except for degeneracies implied by symmetries,
which should, indeed, have the same hopping interaction. A
parametrization on distance alone thus yields a hermitian
Hamiltonian correctly accounting for symmetries by construction.
We can also simply choose a cutoff length rNN above which no
orbitals share a finite hopping value, to obtain a more sparse
description. We discretize the interval [0, rNN] into nc equidistant
bins l with l∈ [1, nc] using

γij ¼ γð ri � rj
�� ��Þ ¼ γl; l ¼ ceil

ri � rj
�� ��

Δr
; (3)

Fig. 1 Tight-binding model of graphene lattice. a Nearest-
neighbor interactions in a hexagonal graphene lattice. The central
gray atom has three first nearest neighbors (1NN, dark blue), 6
second-nearest neighbors (2NN, green), etc. b Interaction of a defect
supercell with its periodic images (defect region highlighted in
orange). The center cell itself is described by Hð0;0Þ, the interactions
to its neighboring cells by Hðλx ;λy Þ --- for large supercells only the
nearest-neighbor interactions between cells, i.e., λx, λy∈ {−1, 0, 1} are
non-zero.
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with Δr= rNN/nc the discretization step, and ceil(x) the ceiling
function picking the smallest integer l with l ≥ x.
We append a minimal set of onsite terms {si} (accounting for

symmetries) to the set of hopping values {γl} with l∈ [1, nc] to
obtain a full TB parameterization, denoted for brevity as {γl}. We
can then establish a bijective mapping from this list of interactions
to full Hamiltonian matrices and vice versa. rNN provides a tunable
parameter for the desired sparseness of our TB model (up to how
distant a neighboring orbital interacts with another one).
The number of bins nc controls the coarseness of the

discretization and can be adapted depending on the distribution
of inter-orbital distances in a given structure. As long as the
discretization Δr is fine enough, we only establish a convenient
way of simultaneously addressing all symmetry-related interac-
tions. For the two SLG defects we choose as benchmark systems,
we decrease Δr until the number of different γl no longer increases
(i.e., each value γl only addresses the hopping terms connected by
symmetry, Δr ≈ 10−4 Å). At first glance, this prescription for
grouping and setting the relevant interaction elements in a TB
Hamiltonian seems quite similar to introducing an exponential
dependence on distance in Slater–Koster parametrizations10,11,40.
However, the discrete distance-hopping map only decouples
symmetries and hermiticity from the parameter search and
introduces little to no unnecessary simplification — in particular,
it does not enforce a specific functional dependence on the
distance. We do not need to consider the local geometric
configuration (screening) of interacting orbital pairs as long as
the discretization is fine enough to distinguish all different
hoppings not related by symmetry. Indeed, we do not aim for a
smooth mapping γ(rij), but rather for a distinct hopping parameter
for all different couplings. Consequently, two neighboring values
γl and γl+1 can in principle take entirely different values.
From TB parameters {γl} one can easily calculate a TB BS by

diagonalizing the k-space Hamiltonian of Eq. (2) to obtain band
energies ϵTBb;k and eigenfunctions ψb;k

�� �
via the eigenvalue

problem:

HðkÞ ψb;k

�� � ¼ ϵb;k ψb;k

�� �
(4)

The full set of TB parameters thus straightforwardly yields a BS
with minimal numerical cost, (fγlg ! H ! ϵTBb;k½γl�).

Inverse band structure problem
Obtaining a BS from Eqs. (2) and (4) for a given Hamiltonian
Hðλx ;λyÞ is straightforward. However, to find the optimal Hamilto-
nian that best reproduces a given DFT BS fϵDFTb;k g we need to solve
the inverse problem (fϵb;kg ! H, Fig. 2). There is no straightfor-
ward (or unique) solution to this problem as highlighted by the
plethora of TB parametrizations for any given material. Since

fϵTBb;kg can be quickly evaluated, generating pairs of (arbitrary) sets
{γl, si} and the resulting BS fϵTBb;kg on the TB level is easy. We can
then use ML algorithms to identify the set of TB parameters which
produces a TB BS in closest agreement with DFT.
To select a ML algorithm suitable for the inverse problem, we

need to quantitatively compare different approaches. We grade
several ML approaches both in terms of computational efficiency
(how quickly do we arrive at an answer) as well as quality. To
obtain a quantitative criterion for the quality of a parametrization
we evaluate the difference of the final converged result to the DFT
BS fϵDFTb;k g,

δϵ½fϵb;kg� ¼
Xnk
j

Xnb
b

ϵb;kj � ϵDFTb;kj

� �2
: (5)

To tackle such a relatively high-dimensional, non-uniquely
solvable inversion problem, we test variations of gradientless
descent methods41,42 (GLD), both multilayer perceptrons (MLPs)
and convolutional neural networks (CNN) and Bayesian optimi-
zation via Gaussian process regression (GPR43) as possible
alternative methods. We include the conceptually most simple
gradientless descent as reference method to assess the benefit
of more intricate approaches. All our ML methods produce
reasonable parameter sets as exemplified by the small errors (δϵ)
in Table 1. Comparing also the time required to obtain a
parametrization, we observe considerable differences between
the approaches and therefore selected only the MLP for our final
benchmarks. Below we briefly introduce each approach and
discuss its pros and cons.
a. Bayesian Optimization trains a Gaussian process that maps

input TB parameters {γl} to the BS mismatch δϵ. An acquisition
function (see Supplementary Information for details) tailored to
minimize δϵ then decides which new ({γl}, fϵTBb;kg)-pair is added to
the data set. Such an active learning strategy results in compact
datasets. However, given the low computational cost of generat-
ing ({γl}, fϵTBb;kg)-pairs, the Bayesian optimization is dominated by
the high cost of GPR training (Table 1). In the high-dimensional
search space, the time saved by avoiding unnecessary evaluations
of the forward problem (i.e., TB→ δϵ mapping) is smaller than the
additional time needed to fit the Gaussian process.
b. Gradientless Descent is a zeroth-order, model-free optimiza-

tion technique41,42 that does not rely on an underlying gradient
estimate (such an estimate can get expensive to come by in high
dimensional spaces). It solves the inverse problem by repeated
application of the forward problem. Despite reasonable δϵ, the
extracted parametrizations seem to perform less convincing for
derived quantities (see Supplementary Information).
c. Multilayer Perceptrons are shallow feed-forward neural

networks. In previous work, some of us have shown that neural
networks can accurately predict spectra from the atomic
positions alone34. Here we demonstrate that multilayer percep-
trons (MLPs) can also solve the inverse problem directly by
mapping band structures onto TB parameters. We add
regularization via dropout layers and train them on
(fϵTBb;kg; fγlg)-pairs. We then make a final TB parameter prediction
for fϵDFTb;k g. In our investigations, MLPs outperform all alternative
approaches in accuracy at approximately equal or even lower
computational cost (Table 1). We attribute this to the strong
interdependence between the different TB parameters: an
almost identical BS can be described by several different
parameter sets, while changing only a single parameter (with
the others fixed) will substantially change the BS. Such a
structure is better represented by the fully connected network
as opposed to model-free optimization schemes optimizing the
different parameters individually.
d. Convolutional Neural Networks are reasonably deep, sparsely

connected neural networks that are designed for automatic
feature extraction from the input BS. CNNs excell at exploiting

Fig. 2 Schematic of the inverse BS problem. For a given
Hamiltonian, calculating a BS is trivial. By contrast, there is no
constructive algorithm to obtain a Hamiltonian from a BS. Using ML,
we aim to find such an inverse mapping from BS data (scalar energy
values ϵb,k for each band b and k-point k) to a minimal list of TB
parameters {γl, si} (for each distance and onsite class l) which
describes a full TB Hamiltonian H.
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correlations in their input data (e.g., the continuous lines forming a
BS). Despite a reduction of trainable parameters compared to
MLPs, the convolutional setups we benchmarked resulted in
significantly longer training times but slightly worse BS losses.

We provide more details on all candidate methods in
Supplementary Note 4, and focus on our final, most efficient
algorithm below.
In the following we provide a step-by-step guide to our ML

approach shown graphically in Fig. 3.

Data set generation
Before we can query our MLP to predict hopping parameters for the
DFT BS of a defect system we need to procure appropriate training
data in the form of BSs and their corresponding parameter lists. We
do so entirely on the TB level, i.e., without requiring any DFT input
by randomly sampling the vicinity of a reasonable initial guess in TB
parameter space. We first determine an initial distance-hopping map
γð ri � rj
�� ��Þ (used to create {γl, si} following Eq. (3)) based on the TB

parameters of the pristine material, to obtain an initial TB
Hamiltonian Hð0Þ

TB . We assume some reasonable parametrization of
the pristine material exists - it is far simpler to extract a 10th-NN TB
description for the bulk material than it is for a defect structure. For
materials where even the bulk cell proves challenging to wannierize,
one could resort to empirical or recent machine-learning
approaches25 for the initial parameter set. We initialize the
distance-hopping map γ(0)(δr) as a piece-wise linear interpolation
between the ten distance-hopping pairs extracted for the bulk
material (see blue line and red markers in Fig. 4). We have validated
this interpolated initialization for several defects in graphene and
found that already such a (physically unmotivated) prescription for a

Table 1. ML comparison: comparing performance [in terms of BS error
δε, see Eq. (5)] and time efficiency of several ML approaches to the
inverse BS problem of the double vacancy in SLG.

Method δϵ[−] Runtime [hh:mm]

Wannier 1.23 Ntrial × 00:50a

MLP 3.09 02:20

Convolutional Neural Network 3.48 60:00

Gradientless Descent 3.73 01:30

Bayesian optimization via GPR 6.2 > 24:00

Slater–Koster 54.72 –

Linear interpolationb 13.92 –

While the underlying data sets are not necessarily equal for the different
optimization algorithms we still find this to be a legitimate comparison.
aWhile wannier90 is impressively efficient for a single run, it will typically
require of the order of Ntrial ≈ 20 trial runs to identify correct parameters to
achieve convergence in our experience.
bIntroduced in Section “Data set generation” and Fig. 4.

Fig. 3 Schematic flow chart of ML algorithm. Produces a machine-learned TB parametrization of a defect system. The hued section on the
right can be replaced with an initial γ(SK) from Slater–Koster theory for materials with challenging bulk cells. Cornered green nodes represent
calculation processes and rounded blue nodes represent data.
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TB parametrization outperforms a common Slater–Koster parame-
trization of graphene (see Table 1 and dashed green line in Fig. 4).
Having obtained a starting guess for Hð0Þ

TB , we calculate the
training dataset by solving the forward problem (H ! ϵb;k) many
times with random fluctuations added to Hð0Þ

TB (see Supplementary
Information for details). We generate samples until further
increase of the dataset size no longer reduces the BS error. We
add relative and absolute noise to randomly selected parameters,
carefully choosing noise amplitudes to sufficiently explore the
relevant search space (for details see Supplementary Note 1). We
then train the MLP to correlate changes in the shape of bands to
corresponding modifications of values for specific TB parameters.

Multilayer perceptron model
As alluded to in Section “Inverse band structure problem”, we
adopt a multilayer perceptron to map BSs to TB parameters. The
MLP takes all BS data {ϵb,k} as 1D vector ð ϵ!k0 ; ¼ ; ϵ!knÞ and
outputs TB parameters as another 1D vector {γl} holding the
different hopping values for every distance as well as the minimal
set of onsite energies necessary for building the entire TB
Hamiltonian. We find optimal performance using three hidden
network layers and choose their sizes via linear interpolation of
the sizes for input- and output layers (see Supplementary
Information and Methods section for details).
The range of BS inputs and TB parameter outputs covers several

orders of magnitude. This wide spread necessitates Gaussian scaling
of both inputs and outputs across all samples. Drop-out regulariza-
tion (20% at the input layer) effectively avoids overfitting. By
applying the distance-hopping map procedure to TB Hamiltonians
of the two defect structures, we obtain a number of output
parameters that strongly varies with the desired sparseness of the
model (see Table 2). The sampling density of our BS in k space
determines the number of input neurons in our network. We find
sampling the Brillouin zone path with 30 points (i.e., 30 × no input
values for the network) to be a sufficient compromise between
resolving BS features while keeping the input layer size manageable.
We emphasize that we aim to train a single-use network that is

specifically tailored to one specific defect in a given material, as
opposed to training a general MLP for predicting parameters for
different defects. Such an approach would fail to capture the
peculiarities and details of the individual defects. Our training
approach is very robust and straightforward, enabling a much
faster workflow than manually converging a well-behaved

Wannier parametrization. Indeed, for large systems converging a
Wannier parametrization can even prove quite elusive, while our
MLP-based approach should still work.

Training
We train the MLP on Ns= 150,000 data points, since performance
converges and does not improve further by providing more
samples (see Supplementary Information). We use a custom loss
function that accounts for both parameter loss and BS mismatch
of the predictions:

L ¼ Lγ þ aϵLϵ (6)

Lϵ ¼
Xnb
b¼1

Xnk
j¼1

ϵðpÞb;kj
� ϵðtÞb;kj

� �2
(7)

Lγ ¼
Xnp

l

γ
ðpÞ
l � γ

ðtÞ
l

� �2
(8)

With aϵ as a weighting factor, ϵðtÞb ðkjÞðϵðpÞb ðkjÞÞ the true (predicted)

value of band b at k-point j and γ
ðtÞ
l , (γðpÞl ) the true (predicted)

value for the hopping (or si) of distance l, which we know for each
pair of random Hamiltonian and associated BS in the training set.
While an exact solution of the inverse band structure problem
implies zero parameter loss, Lγ ¼ 0, we find that adding a physical
observable, i.e., the actual BS mismatch Lϵ to the loss function
improves convergence. We achieve optimal performance for aϵ ≈
5 × 10−4 (see Supplementary Information).

Models for sparse parametrizations
The numerical effort in using a given TB parametrization strongly
depends on the sparsity of the TB Hamiltonian, i.e., the number of
non-zero hopping elements γij. To improve performance, one can
introduce a smaller cutoff length rNN requiring that all interactions
beyond the NN-th nearest neighbor are set to zero. We denote
this as xNN for the models generated in this work. Generating
sparser TB models barely requires changes to our ML workflow yet
enables vast performance gains for subsequent application of the
TB models (Eq. (11)). The initial parameters γ(0)(δr) can again be

Fig. 4 Distance-hopping map of interaction elements. We plot all
entries of a Wannier parametrization for the double vacancy defect
in SLG (black dots) with both a Slater–Koster based initialization
(taken from40) γ(SK)(δr) (dashed green line) as well as another
initialization γ(0)(δr) defined as piece-wise linear interpolation (solid
blue line) between the 10th-NN distance-hopping values (red
crosses) of a bulk singler layer graphene cell. The hoppings at
distance zero represent the onsite energies si.

Table 2. Sparseness of TB parametrization: number of independent
TB parameters for a given sparseness in both defect structures under
consideration.
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taken from the piece-wise linearly interpolated bulk parameters
(but cut off at rNN). We will end up with fewer individual
parameters (see Table 2) in a sparser TB description, generally
allowing for a less accurate fit. However, in many applications the
interesting physics is confined to a specific energy region, most
commonly around the Fermi edge. Depending on the desired
sparseness it proved beneficial to introduce additional weighting
wðϵðtÞb Þ into the BS loss function:

Lϵ ¼
Xnb
b¼1

Xnk
j¼1

ϵðpÞb;kj
� ϵðtÞb;kj

� �2
w ϵðtÞb
� �

(9)

ϵðtÞb ¼ 1
nk

Xnk
j¼1

ϵðtÞb;kj (10)

Restricting long-range interactions increasingly compromises the
accurate reconstruction of the entire band structure. We achieved
best results by focusing on the energy bands close to the charge
neutrality point (E= 0) by reducing the number of input bands for
the MLP (i.e., this mimics a step function for wðϵðtÞb Þ) all together
and thus reduce both network size and computational cost for
training. Employing a zero-centered Gaussian distribution with
appropriate width for wðϵðtÞb Þ achieves similar results at higher
computational costs.

Our machine-learned TB parameters cannot be directly verified
as they are no physical observables. Their exact values are not
necessarily unique so long as they are capable of accurately
reproducing derived quantities. We thus test the quality and
validity of our extracted parametrizations with respect to BS, local
density of states (LDOS), quantum transport and GQD-spectra
which we found to be highly sensitive to the local electronic
configuration of defects in recent work44.

Benchmarks
For each defect, we calculate the LDOS on both the TB and DFT level
thus enabling direct comparison to DFT results (as compared to the
additional benchmarks discussed below in which the Wannier TB
parametrization is the only reference). LDOS and BS are shown for
the double vacancy and flower defect in Figs. 5 and 6, respectively.
Our 10th-NN ML TB model displays excellent agreement with

the DFT BS (Fig. 5a) over a large energy window. While exact
symmetries are captured via the distance-hopping map, notice-
able disagreement regarding the exact width of some avoided
crossings prove as the most challenging aspects for the MLP. In
terms of the total density of states (DOS) the 10th-NN ML-TB-
model is on par with the Wannier-TB-model. While neither can
capture all the features of the ab-initio DOS both reproduce it
much better than general Slater–Koster models (see Figs. 5b and

Fig. 5 Electronic structure analysis of vacancy defect. a BS of the SLG double vacancy supercell along ΓMXΓ of both DFT calculation and
MLP TB-model. b pz-projected density of states of the supercell. c Cosine similarity of the local density of states between different TB models
and the DFT result. d LDOS at the three energies (left to right) indicated by veritcal dash-dotted gray lines in b and c for DFT, Wannier, MLP
respectively (top to bottom, colored boxes match line colors in b and c).

C. Schattauer et al.

6

npj Computational Materials (2022)   116 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



6b). Since the deviations to the DFT DOS are present for both the
machine learned and the Wannier parametrization we ascribe
them to approximations of the TB formalism rather than a
deficiency of our MLP algorithm.
The spatial information of the LDOS provides an even more

detailed comparison, which we analyze both visually (Figs. 5d–f and
6d–f) at relevant energies (indicated as dash-dotted vertical gray lines
in (Figs. 5b, c and 6b, c) and numerically via the cosine-similarity of
individually normalized LDOS distributions with respect to the DFT
results over the entire energy range (Figs. 5c and 6c). The results show
that the MLP parametrizations not only very well capture the total
DOS but also its spatial distribution (on par with Wannier) over a wide
energy range (see SuppIementary Information).
State-of-the-art modular recursive Green’s function methods

(MRGM)45 (see methods section “Methods”) profit immensely from
sparse Hamiltonian matrices. Applying our sparse ML-TB-
parametrizations to electronic transport calculations is therefore
especially interesting. We study the different TB-parametrizations by
embedding the defect supercells at five random but reproducible
positions within a 15nm wide zig-zag SLG ribbon of length≈130 nm
(Fig. 7b). Employing our MGRM code we obtain the energy-
dependent transmission T(E) which uniquely portrays the multiple
scattering events occuring in systems with several defects and
compare T(E) for the different parametrizations.

The 10th-NN ML-TB parametrizations accurately reproduce the
transmission signature T(E) for both defects (Fig. 7a, c). Our results
also highlight the limited transferability26 of Slater–Koster para-
metrizations to different defect geometries: While the SK-TB-
parameters for the double vacancy (Fig. 7a) produce a somewhat
useful transmission curve its performance degrades drastically
when applied to the flower defect (Fig. 7c).
Our sparser ML-TB parametrizations with interactions only up to

the 3rd- or 5th-nearest neighbor still outperform the SK-
parametrization. The loss in accuracy when enforcing very sparse
Hamiltonians (3rd-NN) is a priori hard to quantify. While the TB
description of the double vacancy seems more robust with respect
to restraining long-range interaction than that of the flower
vacancy (compare Fig. 7a and Fig. 7c) the 5th-nearest neighbor
parametrization seems to strike an appropriate balance between
computational performance gain

t10NNTransport : 10m42s

t5NNTransport : 1m26s

t3NNTransport : 0m49s

(11)

and accuracy.
Another highly sensitive probe of our parametrizations comes

in the form of smoothly-confined SLG quantum dots46,47. We

Fig. 6 Electronic structure analysis of flower defect. a BS of the SLG flower defect supercell along ΓMXΓ of both DFT calculation and MLP TB-
model. b pz-projected density of states of the supercell. c Cosine similarity of the local density of states between different TB models and the
DFT result. d LDOS at the three energies (left to right) indicated by veritcal dash-dotted gray lines in b and c for DFT, Wannier, MLP respectively
(top to bottom).
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consider the influence of nearby lattice defects on the level
spectrum of GQD’s44 as a benchmark for how well different TB-
parametrizations model the local electronic configuration.
Smoothly confining electrons in SLG retains the valley degeneracy
which, omitting spin, yields doubly degenerate states. In the
vicinity of a lattice defect this degeneracy is lifted as a function of
defect-GQD distance44 (see Fig. 8). The resulting level spectra as a
function of GQD displacement XT work as a unique fingerprint of
the electronic structure of a defect.
We again find excellent agreement between the Wannier and

the 10th-NN ML-TB parametrization. Conventional approaches
such as Slater–Koster heavily underestimate the induced valley
splittings Δτ and fail to capture the characteristic asymmetry of the
lowest splitting for the double vacancy (Fig. 8c, d). The sparse ML
parametrizations (3rd-NN or 5th-NN) still work quite well. Both
slightly underestimate the induced splittings but manage to
reproduce some of the asymmetry of the splittings for the double

vacancy. The sparse ML-TB descriptions work especially well for
the flower defect in this benchmark: qualitative agreement
remains excellent and the quantitative changes to the induced
valley splittings with increasing sparseness remain minor. The
Slater–Koster model highly overestimates splittings and fails to
reproduce several of the sharp avoided crossings.

DISCUSSION
The ML TB parametrizations yield accuracy on par with a full
Wannier description, yet at substantially reduced cost. Once the
sparseness levels are set, no human input or convergence issues
appear during the parametrization step, and the improved
sparseness greatly reduces computational demands in applica-
tions. The learning phase proceeds in an automated way,
allowing for high-throughput simulations of different defects.
More complicated materials such as transition-metal dichalco-
genides will require even more parameters, and thus grouping
of interactions by atom and orbital type. The same general
algorithm should again work to provide tailored defect models.
The comparatively poor performance (see Table 1) of effective

Slater–Koster methods strongly highlights the need for more
accurate defect descriptions tailored to the corresponding electronic
structure, which simply cannot be captured without additional DFT
calculations. The remaining minor discrepancies in the highly
sensitive GQD benchmark underline how the long-range interac-
tions dictated by the underlying physics ultimately determine the
accuracy of effective short-range descriptions: since we cut off long-
range hoppings in the TB Hamiltonian, the sparse parametrization
underestimates the range of the change in electronic structure
induced by the defect. As a consequence, energy splittings between
the two valley states are underestimated for small point defects like
a vacancy (Fig. 8): only a tiny fraction of the quantum dot
wavefunction (those few orbitals close to the defect) can actually

Fig. 7 Transport benchmark. Energy-dependent transmission T(E)
for different TB parametrizations of the a double vacancy and
c flower defect in SLG (vertically offset for clarity). b Scattering
density plots for the three lowest modes at E= 0.7 eV in the double
vacancy setup with ribbon-width and embedded defect positions
indicated.

Fig. 8 Quantum dot benchmark of vacancy defect. Level spectrum
landscapes calculated with different TB parametrizations of the
double vacancy in SLG compared against the Wannier parametriza-
tion [a MLP(10NN), b Slater–Koster, c MLP(5NN), d MLP(3NN)]. Inset
shows schematic sketch of the underlying system: we calculate the
level spectrum (orbital and valley quantum number, spin is omitted)
as a function of the position of an STM-tip (brown) induced
(smoothly confined) GQD relative to an embedded defect in a large
graphene flake (gray rectangle). Dotted gray lines represent the level
structure of a pristine GQD with doubly degenerate orbitals.
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contribute to the defect-induced energy shift. By contrast, an
extended defect like the flower (Fig. 9) is much better described.
Our comprehensive benchmarks (LDOS, transport, quantum

states directly influenced by the defects) clearly outline the
prowess of ML in obtaining DFT-quality results of defects in
devices without substantial additional cost beyond the initial DFT
calculation of the defect. Our sparse description of a defect system
can be understood as a constrained optimization problem where
ML offers elegant ways to find the sparse description with an
optimal balance between accuracy and efficiency.
We have successfully implemented a ML algorithm to derive a

TB Hamiltonian that accurately reproduces the BS details for
general defect supercell structures in SLG. Given our universal
treatment of symmetries and geometry information (distance-
hopping map) this method can be applied to arbitrary material
classes. This model requires a target BS and geometry information
as inputs and allows for optimization towards a predefined
sparseness of the desired TB description.
Our approach can be generalized to systems with relevant spin

texture by either introducing additional distance-hopping maps
(γ↑↑, γ↑↓, γ↓↓) or employ a split off spin-orbit coupling term. For
materials with a richer orbital structure (e.g., TMDs with dominant
contributions from five d-orbitals on the metal site and three p
orbitals on the chalcogen site) one may adopt a mixture of
Slater–Koster10 and discrete-distance-hopping-map approach by
following the usual scheme for the angle-dependent assignment
of interactions (i.e., direction cosines for the spherical harmonic
nature of the respective orbitals) but promoting the typical
Slater–Koster parameters (e.g., Vpp−σ, Vpp−π, Vpd−σ, Vpd−π, Vdd−σ,
Vdd−π, Vdd−δ, …) to discretized distance-dependent maps (in
principal identical to γ). An MLP can then learn these maps
following the same algorithm as outlined above. Using such a
scheme for Se divacancies in WSe2 accurately reproduces all
midgap defect states, including their different orbital characters
(see Supplementary Note 6).
The conducted benchmarks included DOS analysis, multi-defect

scattering in electronic transport calculations as well as simulations of
the defect-induced splittings in a GQD. We found both qualitative and
quantitative agreement of Wannier-TB-parameters (reference system)
and the ML TB parameters of our MLP based approach. Given the
considerably less complex input (energy values and atomic positions)
than required by state-of-the-art iterative projection based methods
(full DFT solution including Bloch states) our method should prove
better suited for high-throughput material analysis.

METHODS
Machine learning
Our proposed neural network architectures (MLPs and CNNs) may be
conveniently implemented via all common ML packages. We build our model
via TensorFlow (v2.2.0) and the KERAS API (v2.3.0-tf). Furthermore, we use the
Adam48 optimizer with a learning rate β ≈ 10−5.We use a train/validation split
of 75/25 of in total 200,000 samples. Learning rates β ≈ 10−5 with batch sizes
of 2048 result in a fully trained model after roughly 1500 epochs. The
Gaussian process regression employed in our Bayesian optimization scheme
are implemented via the scikit-learn python package49.

Density functional calculations
We perform DFT structural and electronic optimization with the VASP
software package50–53. The double vacancy real space cell measures 6 × 6
pristine unit cells whereas the flower defect is modeled in an 8 × 8 cell. Both
calculations encompass 25 Å vacuum in z direction and use a 3 × 3 × 1
Monkhorst-Pack k-space grid. Our exchange-correlation functional of choice
is Perdew–Burke–Ernzerhof (PBE) in a generalized gradient approximation.
Both geometries are fully relaxed (using a conjugate gradient algorithm) to
residual forces less than 10−2 eV Å−1. Plane-wave energy cutoff is set to
500 eV and the systems are electronically converged to δE ≈ 10−9 eV.

Maximally localized Wannier transformation
The benchmark TB descriptions for the defects in this work have been
generated with the Wannier9017–19,39 software package. The double
vacancy requires 175 Wannier functions initialized as atom-centered pz and
bond-centered s orbitals optimized with an outer energy window of
[−28.5 eV,12.4 eV] and an inner window of [−28.5 eV, −0.12 eV]. Disen-
tangling the conduction bands from those virtual bands not included in
the localized basis converges after 440 iterations while spread minimiza-
tion converges after 187,089 iterations. The slightly larger flower defect
requires 320 Wannier functions again initialized as atom-centered pz and
bond-centered s orbitals optimized with an outer energy window of
[−28.5 eV, 12.4 eV] and an inner window of [−28.5 eV, −0.12089 eV].
Disentangling converges after 599 iterations while spread minimization
converges after 99,980 iterations. In both cases, Monkhorst k-space grids
are taken over from the DFT calculations

Electronic transport
We evaluate transport in the Landau–Büttiker approximation using the
energy-dependent Green’s function G(E) of the scattering structure54. By
projecting G χ ij i onto the incoming wave in mode i we obtain a scattering
state (see, e.g., Fig. 7b). By sandwiching G between incoming mode i and
outgoing mode j we obtain the transmission tji / hχ j jGjχ ii, where the
proportionality factor is given by the square root of the relative group
velocities

ffiffiffiffiffiffiffiffiffiffi
vj=vi

p
. The total transmission is the sum of all squared

transmission amplitudes T ¼ P
tij
�� ��2.
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