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MODEL, GUESS, CHECK: Wordle as a primer on active
learning for materials research
Keith A. Brown 1✉

Research and games both require the participant to make a series of choices. Active learning is a process borrowed from machine
learning for algorithmically making choices that has become increasingly used to accelerate materials research. While this process
may seem opaque to researchers outside the field of machine learning, examining active learning in games provides an accessible
way to showcase the process and its virtues. Here, we examine active learning through the lens of the game Wordle to both explain
the active learning process and describe the types of research questions that arise when using active learning for materials
research.
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A challenge common across research, whether computational or
experimental, is deciding which experiment to perform next.
While many of these choices are made ad hoc by a researcher in
front of an instrument, there is a community, with roots tracing
back centuries, that studies how to optimally select experiments1.
Widely used strategies include one factor at a time (OFAT)
optimization and selecting experiments evenly across the avail-
able parameter space (e.g., grid-based searching). In contrast with
strategies that select all experiments before performing an
experimental campaign, active learning is a branch of machine
learning in which experiments are selected sequentially using
knowledge gained from all prior experiments2,3. Encouragingly,
recent studies have reported that active learning outperforms
both design of experiments that define a set of experiments at the
outset and experiments guided by human intuition4,5. Indeed,
examples of active learning in materials research have blossomed
in recent years6–11. One area that has especially shown a spotlight
on this trend is autonomous experimentation in which a robotic
system is used to carry out experiments that are chosen by active
learning12. Such systems have emerged in a broad range of fields
including mechanics13,14, biology15,16, chemistry17,18, nanotech-
nology19, and microscopy20,21. In light of these advances in
autonomous experimentation, and the demonstrated advantage
of active learning, it is increasingly clear that there are tremendous
opportunities for applying concepts of active learning in a wide
range of research fields.
Despite the benefits of adopting active learning in research,

there are still hurdles associated with learning how to implement
active learning and communicating the advantages to researchers
far removed from the fields of machine learning or data-driven
science. Interestingly, the introduction and rapid popularization of
the word game Wordle produced by Josh Wardle provides a
fascinating platform for overcoming both of these challenges. In
Wordle, the player has six guesses to identify a specific five-letter
word. After each guess, feedback is provided about whether each
letter is present in the target word and whether the letter is in the
correct location. Part of the popularity of this game stems from the
fact that it can only be played once a day, which further raises the
stakes of each guess. At a glance, this game shares some
extremely salient connections to experimental selection during a

research campaign. First, a Wordle player can guess any five-letter
word, meaning that there is a large, but finite, parameter space
that is known ahead of time. This is often true in a research
campaign where the knobs that can be turned are known, even if
their importance has yet to be determined. Second, the budget of
available experiments is limited—to six by the programmer in
Wordle—and by the natural constraints of time and other
resources in research. Finally, the goal of Wordle, to identify the
target word, mirrors the goal of finding a maximum or minimum
property in some parameter space, which is a common task in
many research studies. Despite these similarities, the goals of
Wordle and research often have meaningful differences. For
example, a researcher may not know when they have found the
best experiment, the goal of a research campaign is often to learn
the behavior of some property rather than simply find its extrema,
and there can be more than one best experiment in a parameter
space. Those caveats aside, the task of optimization is extremely
common and an obvious first step in any more complex
research goal.
Given the similarities between Wordle and research campaigns,

it is our hope that one can gain insight into active learning and
motivation for adopting it more generally by studying active
learning in Wordle. Taking inspiration from a Bayesian optimiza-
tion formalization of active learning, we can lay out an iterative
cycle for selecting and interpreting guesses (Fig. 1A). The first task
is to define a surrogate model that encompasses our knowledge
about the system. As part of this, we must define the parameter
space, which for Wordle, amounts to identifying all valid five-letter
words, of which we identified 12,478. To illustrate why active
learning is needed to play Wordle, given a parameter space this
large, selecting guesses uniformly at random from the available
words means that the player will win only 0.05% of the time. In a
materials research campaign, defining the parameter space is akin
to identifying all available materials and the valid ranges of
experimental or computational parameters that can be tuned.
Once we have defined the parameter space, we need to build a
surrogate model of our belief about the space. In Wordle, this can
be the belief of whether a given word is possibly correct, which is
initially uniform for all available words. This surrogate model is
implemented as a look up table in which each word is assigned a
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probability that it is the correct word. If a given word is ruled out
then its probability is set to 0 and the rest of the space is
renormalized. More complex and versatile surrogate models, such
as Gaussian process regressions, can be constructed that leverage
the idea that points close to one another in parameter space
should behave similarly, but a simple look up table is sufficient for
illustrating the process. In either case, this surrogate model is
updated as experiments are performed, which in Wordle amounts
to ruling out words that are inconsistent with the responses to
prior guesses. To show the value of iteratively incorporating this
knowledge, if a player randomly selects words from this ever
narrowing field of possibilities, they will win Wordle 85% of the
time. This striking shift in outcomes illustrates the value of
selecting each experiment using all available knowledge.
Randomly guessing from the words that remain in contention

takes advantage of the information from the results of previous
guesses, but not the information embodied by the parameter
space itself. A major goal in active learning is determining the
expected value of a given guess. In a materials research campaign,
this could be related to a materials property, such as its Seebeck
coefficient or fracture toughness. In Wordle, the value of a given
word is related to how much it helps identify the correct word.
Given this, there are many different ways to value a potential
guess (Fig. 1B). Three examples include (1) assigning a score to
each word based on how common the letters in the word are, (2)
prioritizing words that allow the player to eliminate the most
words, or (3) targeting words that lead to the most possible
outcomes and therefore the most unique information. Each choice
represents a decision-making policy that assigns a value to any
given point in parameter space based on the current state of the
surrogate model. Here, we find that selecting words based on how
many possible words they eliminate or how much information
they provide leads to victory >90% of the time, showing a ~5%
improvement over randomly selecting from the available words.
However, choosing based on the commonality of letters actually
performs worse than randomly selecting from potential winners,
highlighting the importance of choosing a decision-making policy
wisely. As shown by this example, the benefits and risks associated
with choosing different decision-making policies is both highly
impactful on the pace of learning and a fascinating lens through
which to view materials research.

Part of the value of active learning is that it opens the door for
the algorithm to make choices based on relationships inside the
data that might be difficult for human users to intuit. Concep-
tually, this can amount to selecting experiments that themselves
are not likely to lead to high performance but improve chances for
future success. To apply this concept in Wordle, consider choosing
between two words as potential guesses: word 1 has some
probability of being a winning word but would provide little
actionable information if it is not the target word. In contrast, word
2 has already been ruled out from being a winning word, but the
response from this word would on average greatly increase the
player’s chance of success by providing actionable information
such as ruling out other words. This latter approach, namely
selecting the words with the most possible outcomes even among
those that have been ruled out produces success a remarkable
99.7% of the time. This interesting result can be conceptualized as
coming from the dichotomy between exploration and exploitation
in acknowledging that if your budget is known, which of course in
Wordle it is, it is beneficial to spend earlier guesses exploring
parameter space before focusing on regions in which success is
expected. In active learning, there are decision-making policies
that naturally balance exploration and exploitation such as the
expected improvement policy that selects points in parameter
space that are judged to be most likely to increase, in the case of
maximization, the current value of the maximum.
While analyzing the algorithmic process of sequentially select-

ing guesses for Wordle provides insight into the process for
materials development, it also raises a key shortcoming of purely
algorithmic active learning. The discussed algorithms assume that
all words initially have an equal chance of being correct, which
discounts the bias against esoteric words in the target word
selection by the game’s creator. There are two ways one could
envision trying to take advantage of this information. First, one
could imagine including information about word popularity as
prior knowledge in the active learning loop. This could amount to,
for example, weighting the initial probability of each word in
proportion to how often it is used in literature. It is also worth
emphasizing that prior knowledge has already been introduced by
only considering combinations of five-letter words that are English
words. Second, this could also be dynamically addressed using
human-in-the-loop (HITL) active learning in which the human-
machine partnership is leveraged to further accelerate the
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Fig. 1 Playing Wordle using active learning. A Diagram showing the anatomy of active learning in a game of Wordle. A surrogate model
describes the present belief about the system. During the first turn (N= 0), all words are assumed to be candidates for the winning word. Next,
a decision-making policy is employed to quantify the relative value of each word. Subsequently, the highest value word is guessed and the
response is used to update the surrogate model. This process continues until the correct word is found or the player loses. B Ranked order
evaluation of three decision-making policies for all words. Decision policies include ‘Eliminate’ in which each word’s value is estimated by the
number of words that could be eliminated if it was guessed, ‘Knowledge’ in which the value of each word is determined by the number of
unique outcomes that could arise from guessing the word, and ‘Letters’ in which the value of each word is based on the abundance of its
letters in the catalog of words. C Probability of different outcomes from playing Wordle guided by different strategies. Color indicates the
number of guesses required to find the correct answer with red indicating that seven or more guesses were required. Strategies are either
‘Hard’ in that they require that words are selected from those that have not been ruled out or ‘Normal’ in that all words can be selected.
‘Random’ indicates that words were selected uniformly at random. The code used to produce these results can be found at https://github.
com/kabrownlab/wordle.
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learning process. Generally, HITL entails finding a productive way
to combine the best attributes of each member of the partnership.
This has been productively used to outperform algorithms or
humans alone in fields including radiology22 and robotics23. In the
present example, HITL could entail using the algorithm to identify
a short list of high value words and allow the human to select
from these words as a way of considering the relative popularity of
each word. Advances in this area are particularly interesting in
materials research where the insight of researchers may be
difficult to quantify but could be productively employed through
such a partnership.
Formalizing the selection of choices, whether in games or

materials research, forces one to define and consider the goals
and important information present in a system. Because much
materials research still relies on relatively simple heuristics for
experimental selection, it is our hope that this comment, and the
broader efforts to introduce active learning into materials research
that it reflects, will spark the curiosity of new researchers and
engage them in the process of looking more deeply at how
experiments are selected. Such interest can be complemented by
easy-to-implement active learning packages in a variety of
programming languages and high quality tutorial articles24,25.
Along these lines, the code used to generate the results presented
in this work are posted at https://github.com/kabrownlab/wordle.
Perhaps most importantly, the incorporation of active learning
elevates the conversation and thoughts in the research enterprise.
For example, rather than thinking about which word to select in
Wordle, instead the player thinks about what defines a word’s
value. This level of discourse centered around selecting and
refining decision-making policies and surrogate models is an
exciting prospect for the materials community.

DATA AVAILABILITY
The code used to produce the data in this paper can be found at https://github.com/
kabrownlab/wordle.
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