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Emergence of local scaling relations in adsorption energies on
high-entropy alloys
Wissam A. Saidi1,2✉

Alloying has been proposed to circumvent scaling relations between the adsorption energies thus allowing for the complete
optimization of multistep reactions. Herein the fidelity of scaling rules on high-entropy alloy (HEA) surfaces is assessed focusing on
hydrogen-containing molecules, *AHx for A= C and N (x= 0, 1, 2, 3), A= S (x= 0, 1, 2) and A=O (x= 0, 1). Using an adsorbate- and
site-specific deep learning model to rapidly compute the adsorption energies on CoMoFeNiCu HEA surfaces, the energies of *AHx

and *A are shown to be linearly correlated if *A and *AHx have identical adsorption site symmetry. However, a local linear
dependence emerges between the configuration-averaged adsorption energies irrespective of the site symmetry. Although these
correlations represent a weaker form of the scaling relationships, they are sufficient to prohibit the optimization of multistep
reactions. The underpinning of this behavior is twofold (1) the nearsightedness principle and (2) the narrow distribution of the
adsorption energies around the mean-field value. While the nearsightedness is general for all electronic systems, the second
criterion applies in HEAs with relatively strong reactive elements. The present findings strongly suggest that alloys may not
generally enable the breaking of scaling relationships.
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INTRODUCTION
High-entropy alloy (HEA) nanoparticles bring exciting and yet
unexplored opportunities for designing new catalysts with tailored
properties. Notably, the carbothermal shock method1 allows for
the incorporation of multiple metal elements into single-phase
HEA nanoparticles. In addition, the recently-developed scalable
aerosol synthesis2 method takes a further step toward producing
HEA nanoparticles in bulk quantities with full potential for
industrial use. Initial findings strongly suggest that HEA nanopar-
ticles will constitute a paradigm shift in catalysis and energy
applications by virtue of their heterogeneous surface chemistry
that could simultaneously activate different reactions. In addition,
the essentially countless number of HEA compositions could allow
for the optimization toward the desired activity, selectivity, and
stability3–8. However, this unlimited degree of tunability of HEA
materials also challenges traditional approaches that rely on the
“Edisonian” trial-and-error approach in the design of catalysts.
Computational approaches based on quantum mechanical

density functional theory (DFT) are advantageous in the rational
design of catalysts. Central to the success of these methods is their
ability to easily compute the adsorption energy, i.e., interaction
strength between adsorbates and catalytic surfaces. The adsorp-
tion energies can uncover the reaction mechanism and energetics
at the molecular level9. In addition, developing the theory of
catalysis, the so-called volcano relationship, that links the catalytic
activity with adsorption energies and energies of reactions steps
has empowered DFT with practical and efficient pathways for
catalyst optimization10,11. However, despite the enormous meth-
odological, hardware, and software innovations, it is still
impractical for standard DFT approaches to characterize the
adsorption strength of a relatively large number of different sites,
which is required to yield an unbiased estimate of the catalytic
activity. In this respect, alloys in general and particularly HEAs,
represent a seminal challenge for standard DFT simulations12.

Machine learning (ML) approaches are revolutionizing many
aspects of our life and their influence on materials modeling is
becoming increasingly noticeable. For instance, ML enables
significantly faster predictions of material properties than DFT
methods, thus contributing to a paradigm shift in materials design
where big data, artificial intelligence, and materials modeling are
deeply entangled13–19. ML approaches have also been applied to
compute the adsorption energy on metal surfaces yielding results
that compare favorably with DFT calculations20–27. Rossmeisl and
co-workers introduced an ML approach to computing the
adsorption energy for HEA surfaces, which assumes that the
energy is a linear function of the number of metal elements
neighboring the adsorption site28,29. Also, in a recent study, Saidi
and collaborators developed an ML model based on deep neural
networks (DNN) to rapidly compute the adsorption energy for HEA
surfaces. This DNN model showed high fidelity and was applied to
optimize the composition of CoMoFeNiCu HEA catalysts toward
ammonia synthesis and decomposition30. In addition, this study
rationalized recent experimental results8, which demonstrated
that the Co25Mo45Fe10Ni10Cu10 composition yields a high catalytic
activity toward ammonia decomposition.
HEA surfaces require rethinking the tools and approaches

developed for uniform surfaces31. Particularly, HEA surfaces are
characterized by a spectrum of adsorption energies due to the
enormous number of chemical environments that can be realized
on the surface. Hence, it is not clear how to gauge their catalytic
reactivity. Rossmeisl and collaborators introduced an exciting idea
to assess surface reactivity based on the average adsorption
energy that accounts for both the likelihood of realizing specific
atomic arrangements on the surface, as well as their reactivity28.
Thus, this probabilistic approach would ensure the high likelihood
of having reactive sites on the surface. I posit that this concept of
averaging is not new in catalysis. Nørskov and co-workers first
introduced interpolation in the Periodic Table where bimetallic
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alloys on a volcano plot are located between the corresponding
two constituent metals32, suggesting that the adsorption strength
is averaged-out. However, I note as well that the “probabilistic”
definition of the activity based on averaging is not consistent with
the traditional approach that relies on the local geometry of
reactive sites to define the surface catalytic activity. While recent
studies have shown that the probabilistic approach can explain
enhanced catalytic activities of complex alloys in agreement with
experimental results29,30,33, more investigations are warranted to
reconcile the ‘local geometry’ and the ‘probabilistic’ approaches
for defining surface reactivity.
Scaling relationships between the adsorption energies of atoms

and molecules are well known for metal surfaces and have been vital
in the modern theory for catalyst design and optimization34–42.
Ultimately such dependencies can be rationalized based on bond
order conservation principles. Abild-Pedersen and collaborators used
DFT to show that the adsorption energy ΔEx of *AHx (A= C, N, O, S
with x= 0, 1, 2, 3) on different transition metal surfaces is linearly
correlated with the corresponding adsorption energy of the central
atom *A, irrespective of whether *A and *AHx have the same or
different adsorption site symmetries43. These trends are derived
based on the d-band model, which stipulates that ΔEx is proportional
to V2

ad where Vad is the Hamiltonian matrix element between the
adsorbate and meta d states. The implications of these dependencies
are multitude. First, these linear correlations, in addition to the
Brønsted–Evans–Polanyi (BEP) relationship44 and the existence of
competing rate-determining steps, explain the volcano relationship
for hydrogenation and dehydrogenation reactions where the
catalytic activity can be optimized using only the adsorption energy
of the central atom43. For instance, in the case of ammonia synthesis
and ammonia decomposition, nitrogen adsorption energy is a viable
descriptor for catalyst optimization32,36,43,45,46. Also, from a practical
point of view, these correlations are helpful for catalyst screening as
only a single calculation is needed to uncover the adsorption
energies of all intermediates. In addition, the scaling relations explain
why it is challenging to fully optimize reactions with multiple
intermediates because if the adsorption energy of one active site is
optimized for one intermediate, it will negatively impact the
stabilization of other intermediates.
The development of strategies to break scaling relationships is

an active field of research in catalysis44,47,48. Notably, alloys even in
the highly dilute bimetallic limit (single atom alloys) are proposed
as an effective strategy for escaping the traditional scaling
relationships, thus allowing for the complete optimization of
multistep reactions31,44,49. For instance, a recent investigation on
IrPdPtRhRu HEA surfaces by the Rossmeisl group reported a linear
scaling relationship between *OH and *OOH but not between *O
and *OH31. This breaking up of the scaling relationship between
*O and *OH can be explained by differences in the adsorption site
symmetries. Namely, both *OH and *OOH prefer on-top adsorp-
tion, making the scaling relationship between them universal
irrespective of the surface composition. On the other hand, *O
prefers to coordinate to three surface atoms in a hollow site that is
different from the atop coordination of *OH, which breaks the
correlations between the adsorption energies if the surface
composition is not uniform31.
Herein I investigate the existence of scaling relationships in the

adsorption energies of hydrogen-containing molecules on HEA
surfaces focusing on CoMoFeNiCu HEA. Central to the present
investigations is developing a high-fidelity DNN model that can
resolve site-by-site the adsorption energy for *AHx on the HEA
surface. I show that correlations between *A and *AHx adsorption
energies only exist if *A and *AHx have identical adsorption site
symmetry. Thus, CoMoFeNiCu breaks the universal scaling
relationships, which hold on uniform metal surfaces where the
correlations exist irrespective of the adsorption geometry.
However, I show that a weaker form of the scaling relationship
emerges between the configuration-averaged adsorption energies

for a given HEA composition. I refer to these as local scaling
relationships. Importantly, these local dependencies impose
intrinsic limits on the tunability of the HEA composition toward
optimizing a catalytic reaction, similar to the case of uniform metal
surfaces. I posit that local scaling rules hold because of the
nearsightedness principle and the narrow distribution of the
adsorption energies around the mean-field value. While near-
sightedness is a general principle for all quantum mechanical
systems, the second requirement is in having strong adsorption
centers in CoMoFeNiCu, namely Mo, Fe, Co, and Ni. I demonstrate
that the local scaling relationships break in AgAuCuPdPt, which is
characterized by nonreactive noble elements. Contrary to general
beliefs, the present findings show that HEAs and likely other alloys
cannot be generally used to break the scaling relationships to
allow for the full optimization of multistep reactions.

RESULTS AND DISCUSSION
Development and validation of machine learning model for
adsorption energies
I employ a slab approach with (111) fcc termination to investigate
the interactions of *AHx with HEA surfaces. The DNN model for
adsorption energies employs a convolutional neural network as
done previously30. Briefly, the input layer of the convolutional
network is passed to two convolutional layers, followed by one
fully connected layer before passing to the output layer. The
features associated with each adsorption energy encode the
chemical environment of the adsorption site at four levels: (1)
element-specific features that include ionization energy, electro-
negativity, electron affinity, and the number of valence electrons;
(2) metal-specific features comprising of the Wigner-Seitz radius rs,
d-band center ϵd, d-band filling fd, coupling matrix elements
between adsorbate and metal d-states Vad; d ln2d=d ln rs, and
workfunction; (3) geometrical connectivity of the adsorption site;
and (4) overall composition of the HEA.
The training set for the DNN model is generated from ~25 k DFT

calculations of slab models with different chemical compositions
and different adsorption sites. The size of the database employed
for each model is shown in Supplementary Table 1. The initial
adsorbate anchoring configurations on the surface are guided by
the corresponding ones on pure surfaces and are somewhat
justified from counting unsaturated bonds43. Namely, for *A and
*AH (except *OH and *SH), the adsorbate attaches to the threefold
hexagonal-closed pack (hcp) hollow site. The face-centered cubic
(fcc) hollow site also has similar energy but is not investigated. The
initial *AH2 position is at the bridge site with twofold coordination,
while *AH3 and *OH are set at atop sites. Following structural
optimizations, all adsorbate configurations retained mostly the
initial symmetry. Because the DNN model is site-specific, I only
included configurations with the same site symmetry in the
training database.
Figure 1 shows a prediction parity plot for the *AHx adsorption

energy obtained from the DNN model and conducted on a testing
data set that was not included in the training and validation. The
DNN model is trained on 80%, validated on 10%, and tested on
the remaining 10% of the data set, all randomly chosen. Cross-
validation is also performed by generating five unique models
based on a different random selection of the training/validation/
testing sets. For consistency, all adsorption energies are measured
with respect to A2 (A= C, N, O, S) and H2 molecules. As seen from
Fig. 1, the DNN values generally exhibit good agreement with the
ground truth DFT energies where most of the DNN values fall
within 0.1–0.2 eV from the reference values. This error is
comparable to the intrinsic accuracy of the DFT approach
employed to generate the training data set. Importantly, there is
no systematic underestimation or overestimation of the DFT
energies. The small value of the mean absolute error (MAE), shown
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as an inset in Fig. 1, also reflects the overall quality of the DNN
predictions. The high fidelity of the DNN predictions further
validates the convolutional neural network hyperparameters,
training protocol, and the design of feature descriptors.

Assessing the validity of global linear scaling relationships
Using the DNN model, I next assess the fidelity of linear dependences in
the adsorption energies. To this end, I have generated 2500 random slab
configurations for 250 different alloy compositions to build a statistical
ensemble that can capture trends in the adsorption energies. I verified
that the findings are relatively similar using less/more (1500/5000)
configurations. The HEA compositions were selected by uniformly varying
the concentrations of the elements between 10% and 90%. I have
verified that all of these compositions satisfy the empirical constraints for
HEA stability namely, δr<6.6% and Ω ¼ TmΔSmixð Þ=jΔHmixj >1.1. Here
δr is the difference in atomic radius, Tm the melting temperature, ΔSmix

and ΔHmix the mixing entropy and enthalpy, respectively, and weighted
averages are defined in terms of the concentration (ci) as δr ¼
Pk

i;j cicj ri � rj
� �

ΔHmix ¼
Pk

i;j cicjHijTm;ΔSmix ¼ � kB
Pk

i ci lnci ; and

Tm
Pk

i ciT
i
m�

50,51.
For *AHx that adapts a different site symmetry than the

corresponding central atom *A, it is unclear how to correlate the
energies given the surface heterogeneity. Herein, I choose to
employ site-averaging over the three metal atoms located in the
first nearest-neighbor shell of the hcp site. Namely, for the bridge
(atop) symmetry, I average over the three different bridge (atop)
sites associated with the hcp site. As can be seen in Supplemen-
tary Table 2 and Supplementary Fig. 1, the adsorption energies
ΔEx for *AH (A= C and N) are found to correlate linearly with ΔE0

of *A despite some scatter of the data. This is similar to the pure
metal surfaces, and is also justified similarly considering that both

*A and *AH occupy the same lattice site (hcp), and hence have the
same chemical environment. On the other hand, the adsorption
energies of *AH2 and *AH3 (as well as *OH and *SH), which have
different adsorption site symmetry than *A, exhibit a significantly
weaker or no correlation with *A adsorption energy.
The findings show that the scaling relationships in HEAs are not

universal as in the case of metal surfaces, and only hold between
adsorbates that have the same site symmetry. This finding is
consistent with the breakup of the BEP relationship reported
before on traditional alloyed surfaces44. The underpinning of this
breakup is the heterogeneity of the surface that results in different
chemical environments between adsorbates occupying different
symmetry sties. Also, a similar breakup is reported for IrPdPtRhRu
HEA31. Namely, it was found that the adsorption energies of *OH
and *OOH are linearly correlated as both occupy the same atop
configuration while as the scaling relationship between *OH and
*O is no longer valid as *O occupies the hollow site that differs
from that of *OH31.

Emergence of local linear scaling relationships
The absence of a universal linear correlation between adsorption
energies of *A and *AHx that is site-independent suggests at first
that HEA surfaces can, in principle, be utilized for the full
optimization of multistep reactions31,52. However, I posit that this
is not necessarily the case. While the HEA surface has a broad
spectrum of adsorption energies that could be optimum for the
intermediates, the corresponding configurations must be highly
probable to maximize the catalytic activity28,29. Thus, in HEAs,
and alloys in general, it is imperative to examine the average
adsorption energy cΔE rather than singling out the most optimum
adsorption site. In the ensemble approach, cΔE can be computed
as cΔE ¼ Pns

ℓ fℓΔEℓ=
Pns

ℓ fℓ where the summation is over a large

DFT=DNN

DFT

DNN

± 0.2 eV

Fig. 1 Comparison between adsorption energy ΔEx predictions based on DNN and DFT ground truth values on the testing set for
CoMoFeNiCu. The adsorption site symmetry is color-coded as shown in the legend (top is light green, bridge is light blue, and hcp is light
red). For each adsorbate, the upper inset in each subfigure shows the differences between the DNN and DFT values, and the lower inset shows
the mean absolute error (MAE) for the overall accuracy of the model. All energies are in eV.
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number of random slab models (ns) with different atomic
arrangements. For a given configuration, f ¼ Q5

kc
Nk
k counts the

number of possibilities of generating a surface microstructure
with Nk metal atoms consistent with HEA composition ck
(dropped the configuration label l for clarity)28,29. The ensemble
approach for computing cΔE is equivalent to averaging over all
different adsorption sites on a surface provided that the
ensemble size is large enough (in practice, I found ns ~ 1000 to
be sufficient). While the existence of linear correlations between
cΔE is a weaker form of the global scaling relationships between
ΔE, these nevertheless could provide stringent conditions on the
optimization of the HEA composition to maximize the reactivity
toward a catalytic reaction28–30. I will refer to the correlations
between cΔE as local scaling relationships as these apply to
energies associated with different alloy compositions regardless
of the atomic arrangements.
I have computed cΔEx for *AHx using 250 different compositions

of the CoMoFeNiCu HEA. This corresponds to ~1.2 × 106 config-
urations per intermediate, which is impractical to compute with
standard DFT and is made possible thanks to the rapid
computation of the adsorption energies using the DNN approach.
As shown in Fig. 2a, there is a very strong linear correlation
between cΔEx x > 0ð Þ and cΔE0 that is site-independent, similar to
the case of pure metal systems43. This has two important
implications. First, from a practical point of view, I only need to

determine cΔEx for the central atom *A, and then I can use the
scaling relationships to compute the average adsorption energies
for *AHx. This would significantly save computational costs, thus
alleviating the need to develop a DNN model for *AHx. Second,
and most importantly, the local scaling relationships would
suggest an intrinsic limit on optimally binding different inter-
mediates simultaneously by tunning the HEA composition. Thus,
similar to the pure metal surfaces, optimizing cΔEx for one
intermediate, will concomitantly negatively impact the stabiliza-
tion of other intermediates. These findings explain, in part, the
recent experimental study, which showed that the adsorption
energy of nitrogen is a good indicator of catalytic activity for
CoMoFeNiCu HEAs toward ammonia decomposition8, as in the
case of pure metals30. Moreover, the existence of local scaling
relationships between *AHx and *A for A= C, N, O, and S strongly
suggests that the adsorption energy of *A is a good indicator, at
least for all hydrogenation and dehydrogenation catalytic reac-
tions in the CoMoFeNiCu catalyst system.
Supplementary Table 3 summarizes the analysis of the linear

fitting models. The quality of the fit can be assessed from the
prediction parameter r2 reported in the table and from Fig. 2a. The
intercept values depend trivially on the reference values that are
chosen to compute the adsorption energy (here, I used the dimers
A2 and H2). The fitting slopes for cΔEx vs. cΔE0 depend on the
number of the bonds between the surface and the adsorbate,
decreasing as x increases43. This explains the weaker dependence

(a) CoMoFeNiCu (b) AgAuCuPdPt
∆

∆
∆

∆
∆

∆
∆

∆
∆

Fig. 2 Scaling Relationships between Configuration Averaged Adsorption Energies. Local scaling relationships between the configuration-
averaged adsorption energies cΔEx for a CoMoFeNiCu and b AgAuCuPdPt. CoMoFeNiCu shows stronger correlations. All energies are in eV.
Fitting parameters are provided in Supplementary Tables 2 and 4.
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of cΔEx on the alloy composition as x increases. For transition
metal systems, it was shown based on the effective medium
theory that ΔEx ¼ γ xð ÞΔE0 þ ζ xð Þ for x > 0 where the slope
γ xð Þ ¼ xmax � xð Þ=xmax with xmax= 4, 3, 2, and 2 for C, N, S, and
O, respectively, is the maximum number of saturated bonds, and
ζ(x) is the fitting intercept43. Comparing the slopes shown in
Supplementary Table 3 for CoMoFeNiCu HEA to those of the
transition metal surfaces in ref. 43, I note that the HEA values are
larger and are generally in agreement for N, O, and S but less for C.
It is not clear what is the underpinning for the differences.
Notwithstanding, the trends found for CoMoFeNiCu HEA are on
par with those for transition metal surfaces43. For instance, for C
and N where there are more than two *AHx intermediates (xmax >
2), there is indeed a very high correlation between the slopes for
CoMoFeNiCu and those for transition metal surfaces. In addition,
as shown in Supplementary Table 3 the slopes for fitting
cΔE1against cΔE0decreases along the sequence A= C, N, S, and O,
also consistent with the behavior in transition metal surfaces43. In
summary, the results show that CoMoFeNiCu behaves similarly to
the uniform metal surfaces once the configuration-average cΔEx

rather than microstate adsorption energy ΔEx is considered in
analyzing the correlations.
It is interesting to understand the underpinnings for the

existence of the local linear scaling between cΔEx and correspond-
ing cΔE0 of the central atom. Such an understanding will determine
whether these findings are transferable to other HEA systems. I
hypothesize that these local dependencies are due to two main
factors. First, the nearsightedness principle which stipulates that
the adsorption energy tends toward the mean-field value where
atoms coordinated with each nearest-neighbor tend to the
average composition of the HEA28–30. As discussed in the
introduction, this is consistent with the concept of interpolation
in the Periodic Table proposed more than two decades ago32 to
motivate finding optimum combination of metal atoms for
catalytic applications. Second, the adsorption energies for a given
chemical composition should have a narrow distribution around
the mean-field value, as shown in Fig. 3a. See also Supplementary
Table 6 that quantifies the dispersion of the adsorption energies
using the interquartile (IQE) range. The nearsightedness in
electronic matter is a general concept that applies to all quantum
systems without long-range interactions53, e.g., nearsightedness
explains Pauli’s concept of the chemical bond and the “divide and
conquer” of Yang54. Hence, this requirement applies to all alloys.
However, I posit that the small dispersion of the adsorption
energies is not general to all alloy systems but is only associated
with systems with strong adsorption centers. For instance,
CoMoFeNiCu is characterized by highly reactive elements Mo,
Fe, and to a lesser extent Co and Ni.
To further investigate the range of applicability of local scaling

relationships in HEAs, I investigate AgAuCuPdPt that is character-
ized by noble and hence nonreactive elements. AgAuCuPdPt was
investigated before for CO2 and CO reduction reactions29. Using
the DNN approach, I develop a ML model for the adsorption
energies ΔEx for *AHx (A= C, N, O, S with x= 0, 1, 2, 3) to assess
the correlations. As demonstrated in the parity plot of Supple-
mentary Fig. 3, the DNN model has excellent predictivity of the
adsorption energies. Comparing the distribution of the adsorption
energies between CoMoFeNiCu (Fig. 1) and AgAuCuPdPt (Supple-
mentary Fig. 3), I note that CoMoFeNiCu binds all adsorbates more
strongly than AgAuCuPdPt. For instance, the medians of the
adsorption energy reported in Supplementary Table 6 show that
*C, *N, *O, and *S binds with −3.04, −0.81, −2.75, and −5.01 eV
on CoMoFeNiCu while the corresponding values are −2.07, 1.5,
−0.97, and −4.61 eV on AgAuCuPdPt. In addition to the
appreciably weaker interactions between *AHx and the surfaces,
the dispersion of the adsorption energies as quantified by IQR is
also appreciably larger on AgAuCuPdPt compared to the
corresponding values on CoMoFeNiCu. This is also apparent by

inspecting Fig. 3. Both factors lead to a larger relative dispersion of
the adsorption energies. Therefore, I do not expect the local
scaling relationships to apply to AgAuCuPdPt. Figure 2, in addition
to Supplementary Tables 4 and 5, shows that this is indeed
the case.
In conclusion, I have examined the scaling relationships for

hydrogen-containing molecules on HEA surfaces CoMoFeNiCu and
AgAuCuPdPt. I show that these relationships are not universal as
in the case of the uniform surfaces but only hold if *AHx occupies
identical adsorption site as *A. Importantly, I show that local
scaling relationships between the configuration-averaged adsorp-
tion energies hold irrespective of the site symmetry. Although
these relations form a weaker form of the linear scaling between
the adsorption energies, they are sufficient to show that
CoMoFeNiCu cannot break the scaling relationships. The existence
of these local dependencies is attributed to the nearsightedness
principle for electronic interactions, and the existence of relatively
strong adsorption sites in the HEA. In addition, I demonstrate that
in AgAuCuPdPt, the local form of the scaling relationships holds
less strongly than those in CoMoFeNiCu. The present study shows

(a) CoMoFeNiCu

(b) AgAuCuPdPt

Fig. 3 Adsorption Energies Histogram. Distribution of carbon
adsorption energies for 3 different HEA compositions in
a CoMoFeNiCu and b AgAuCuPdPt. The wider spread of the
adsorption energies in (b) is due to having noble nonreactive
elements.
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that HEAs and alloys cannot, in general, be used to circumvent the
scaling relationships, as commonly believed31,44,49. More investi-
gations are needed to fully understand the differences with pure
metal surfaces. I argue that DFT accelerated with ML is viable for
further investigations.

METHODS
The DFT calculations are carried out using Vienna Ab initio Simulation
Package (VASP) package, employing the Perdew–Burke–Ehrenzhof
exchange-correlation functional55. I expanded the electronic wavefunc-
tions using plane-waves with a 300 eV cutoff. Electron-nucleus interac-
tions are modeled using projector augmented wave (PAW)
pseudopotentials56,57. The slab fcc (111) models are represented using
a 2 × 2 × 5 supercell. Finite-size effects with this supercell are expected to
be small as demonstrated in a previous study for the adsorption of H and
CO on two different HEA systems29. I sampled the Brillouin zone using a
3 × 3 × 1 shifted Monkhorst-Pack grid with 0.2 eV Gaussian smearing. All
the atomic coordinates belonging to the top two layers of the slab and
the adsorbates are optimized using 0.1 eV/Å force tolerance and with
10–5 eV energy tolerance to terminate the self-consistent electronic step.
The computational setup including energy and force tolerances, in
addition to the planewave cutoff has been verified to be adequate to
yield converged adsorption energies up to ~0.1 eV. All CoMoFeNiCu
calculations are performed with spin-polarized orbitals while AgAu-
CuPdPt systems are performed using spin-averaged calculations. Lattice
constants of the HEAs are approximated as a weighted average based on
the alloy composition, following Vegard’s law for binary alloys. This
approximation was investigated recently and shown to possess the
correct limiting behavior as the surface supercell size increases58. See also
Supplementary Fig. 2. The convolutional neural network architecture is as
described before19.
The adsorption energy ΔEx for chemical species X is calculated as,

ΔEX ¼ E�X � E� � Eref (1)

where E�X is the energy of the relaxed slab with the adsorbed species, E* is
the energy of the relaxed surface, and Eref is properly normalized energy
measured with respect to H2 and A2.

DATA AVAILABILITY
The data set used to train the convolutional neural network models will be shared
with the community upon request.
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