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Perovskite synthesizability using graph neural networks
Geun Ho Gu 1,2,5, Jidon Jang1,5, Juhwan Noh1,5, Aron Walsh 3,4 and Yousung Jung 1✉

Perovskite is an important material type in geophysics and for technologically important applications. However, the number of
synthetic perovskites remains relatively small. To accelerate the high-throughput discovery of perovskites, we propose a graph
neural network model to assess their synthesizability. Our trained model shows a promising 0.957 out-of-sample true positive rate,
significantly improving over empirical rule-based methods. Further validation is established by demonstrating that a significant
portion of the virtual crystals that are predicted to be synthesizable have already been indeed synthesized in literature, and those
with the lowest synthesizability scores have not been reported. While previous empirical strategies are mainly applicable to metal
oxides, our model is general and capable of predicting the synthesizability across all classes of perovskites, including chalcogenide,
halide, and hydride perovskites, as well as anti-perovskites. We apply the method to identify synthesizable perovskite candidates for
two potential applications, the Li-rich ion conductors and metal halide optical materials that can be tested experimentally.
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INTRODUCTION
The discovery of novel functional materials is a major goal in
materials science. Advancement in electronic structure calcula-
tions and the development of digital crystal databases have led to
the successful discovery of some new functional materials via
high-throughput screening (HTS)1–6. The HTS is typically con-
ducted in hierarchical stages with increasing accuracy and cost,
often starting with the screening of density functional theory
(DFT) database of previously synthesized materials, followed by
high-level DFT refinements and experimental verifications2,6. To
expand the scope, databases such as Materials Project7, OQMD8,
and AFLOW9 have been collecting a large number of virtual
crystals, which are ground-state structures in silico but not yet
experimentally synthesized. Some of the promising virtual crystals
indeed have been synthesized10–12, demonstrating the validity of
a virtual screening strategy to discover new materials.
Many, if not the most, screened virtual materials are not

experimentally realized11, thus assessing synthesizability has been
an important subject13–20. Typically, the synthesizability of virtual
materials is assessed using the energy above convex hull6,11,21,22.
As well recognized, however, the latter thermodynamic metric is
insufficient for assessing synthesizability as the synthesis kinetics
and growth conditions are largely neglected in that approach
(e.g., selection of precursors, annealing temperature and duration,
external pressure, and so on)11. Therefore, developing a general-
ized and more reliable method to predict the synthesizability of a
candidate crystal can significantly accelerate the high-throughput
discovery of new materials.
A binary classification (positive and negative labeling) may be

used to predict stability. However, such positive and negative
learning cannot be used to predict the synthesizability as there is
no negative (“unsynthesizable”) crystal data, since the inability to
synthesize a hypothetical crystal is difficult to know a priori.
Hence, databases only have previously synthesized crystals
(positive) and potentially synthesizable crystals (unlabeled). The
positive-unlabeled (PU) semi-supervised classification methods
aim to predict positivity for problems where the negative data are

hard to obtain23–25. Indeed, a transductive PU-learning method26

has been used recently27,28 to predict the synthesizability score,
called crystal-likeness (CL) score, of unlabeled virtual crystal
structures in the MP database. The model showed a respectable
out-of-sample positive data prediction accuracy of around 87%27.
Since the method uses crystal graph convolutions to encode
material information, it can be seen as a structure-based
synthesizability prediction model, in comparison to conventional
thermodynamics-based estimations.
While the previous work demonstrated the proof-of-concept for

synthesizability prediction, the model accuracy for specific
subdomains of chemical space such as perovskites (74%) was
below the overall accuracy (87%)29,30. Since perovskites are
increasingly receiving wide attention for their applications in
photovoltaics31–33, light-emitting diode34–36, magnetic materi-
als37,38, superconductors39–41, and Li-ion conductors42, developing
a perovskite focused model with improved accuracy would be
invaluable for more efficient materials discovery10,43.
Indeed, several previous synthesis models have focused on

perovskites. Heuristic-based Goldschmidt tolerance factor is
commonly implemented to predict stability for ionic perovskite44

based on the ionic radii of the constituent elements. Similarly,
Bartel et al. developed a machine learning (SISSO)-determined
tolerance factor to classify structure type (perovskite vs. non-
perovskite) for the ionic perovskites45. In addition, gradient
boosting decision tree46–48, support vector machine49, random
forest classification47,50, and combination of multiple models51

were used to develop similar classification models. However,
previous models focused largely on metal oxide perovskites and
mostly relied on the Shannon ionic radii database52, making the
consideration of the perovskites with more covalent bonding53 or
the anti-perovskites54 difficult due to the limited scope of
Shannon’s table52. Potentially, training a generalized deep
learning model could address these deficiencies.
The previous study has shown that training the model with a

particular domain of materials can improve the model accuracy55.
Such domain-specific learning could also improve the synthesiz-
ability prediction for perovskites as well. Another challenge in
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applying the PU learning framework27 to a chosen structure type
is the small data size for the prototype. Transfer learning56 is a
widely-used strategy to train a deep neural network with a small
data set, where a more general model is first developed with a
large data set that contains the target domain, and the knowledge
of this general model is transferred to a new model and the
portion of the model is retrained with the target domain data
set57.
Here, we combine positive-unlabeled learning26, domain-

specific learning55, and transfer learning56 to develop the
synthesizability prediction model of perovskites with a high
practical accuracy. We pre-train the graph neural network with the
Materials Project database and retrain the portion of the model
with the smaller perovskites dataset. 943 previously synthesized
perovskite crystals and 11,964 virtual perovskites collected from
Materials Project (MP), OQMD, and AFLOW databases were used
for learning. Our model shows a high out-of-sample positive data
accuracy of 95.7%, compared to those of the non-domain specific
original model around 74.0%. Our model predicted 962 materials
out of 11,964 virtual perovskites as synthesizable, and 179 virtual
crystals of those have indeed been synthesized in literature.
Compared to the previous ionic perovskite-focused models, our
model is capable of predicting the synthesizability of all types of
perovskites in the dataset, including anti-perovskites where the
anion and cation occupation is inverted. We furthermore suggest
promising Li-rich anti-perovskites and metal halides as candidates

for solid-state electrolyte and photoactive materials discovery,
respectively.

RESULT AND DISCUSSION
Development of PU learning model
The inorganic crystal data from the MP7 database, retrieved in
October 2020, consisted of 46,546 crystals with inorganic crystal
structure databases (ICSD) id and 79,789 crystals without ICSD id.
We considered the 46,546 crystals with the ICSD id and
experimental tag synthesizable, and the remaining 79,789 crystals
without ICSD id “virtual”, as undetermined. These MP data are
used to pre-train the model. We then retrieved the perovskite
crystals from MP7, OQMD8, and AFLOW databases9 in October
2020 (Fig. 1a). We used the StructureMatcher function in
pymatgen58 and perovskite prototype structures in the AFLOW
database9 to identify and remove duplicate crystals, resulting in
943 synthesized and 11,964 virtual perovskite crystals. The
perovskite data are used to train the transferred model.
Both the pre-training and transfer learning are performed using

inductive PU learning26. To test our model, 10% of randomly
sampled synthesized crystals are set aside from both the MP data
used for pre-training and the perovskite data used for transfer
learning. Thus, we ensure that the test data is not observed for the
pre-training stage. With the rest of the data set, we perform the PU
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Fig. 1 Overview of the model development. a Domain-specific transfer learning workflow. The model is first trained with the Materials
Project database, and the model is re-trained with the perovskite-only data extracted from the three databases. b Positive and unlabeled
learning procedure overview. c The graph neural network architecture. Ein and Vin are the atom and edge features. Dense indicates the linear
multiplication followed by the softplus activation layer and Linear indicates linear multiplication. The number next to the operation indicates
the output feature dimension. Min Pool indicates minimum pooling followed by sigmoid activation. More detail is in the “Methods” section.
d The crystal representation. Atoms and edges are converted to mathematical representation via featurization.
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learning procedure. Here, 10% of the synthesized crystals are
randomly sampled and the same number of virtual crystals are
randomly sampled, both for the model validation. The rest of
the synthesized crystals are used for training, and the same
number of virtual crystals are randomly sampled and treated as
negative data for the training. This process is repeated 100 times,
resulting in an ensemble of 100 models. The key procedure is that,
for each model, the training and validation set for the virtual
crystals change, whereas those for the synthesized crystals remain
fixed. The synthesizability score, which we call CL score27, is
calculated by averaging over the predictions of 100 models.
Varying the virtual data set aids in forming the averaged decision
boundary as shown conceptually in Fig. 1b.
For the prediction model, we constructed a graph convolutional

neural network (GCNN) inspired by MEGNet59 as shown in Fig. 1c,
the detail of which is provided in the method section including
the crystal featurization. Our model calculates the CL score
between 0 and 1, where the crystals with a high CL score indicate
high synthesizability. For practical screening, crystal candidates
can be tested in the decreasing order of CL score for the best
chance of success. In this work specifically, we empirically set the
CL score of 0.5 to calculate metrics such as true positive rate (TPR;
true positive/(true positive + false negative)) and also to consider
a crystal as a synthesizable candidate. To perform transfer
learning, we first pre-train our model with the Materials Project
data. Then, the model weights in the encoding layer and the first
graphical convolution layer are fixed and the rest of the model is
re-trained using the combined perovskite data.

Model accuracy and validation based on previous
experiments
We assess the model by the true positive rate using the held-out
positive test set as shown in Fig. 2a. We focus on the TPR since
negative data (unsynthesizable) are unavailable. Compared to the
MP-trained general synthesizability prediction model, the domain-
specific transfer PU learning has significantly higher TPR for
perovskites, increased from 0.740 (GCNN+ PUL in Fig. 2a) to 0.957
(GCNN+ PUL+ DSL+ TL in Fig. 2a). For comparison, we also
tested the CGCNN model in our previous work27, and found that
TPR is 0.595 and 0.957 for the general model and the domain-
specific transfer PU learning, respectively, suggesting that the
domain-specific transfer learning is more important than the

model architecture. We plotted the CL score distribution for the
virtual and synthesized crystals (Fig. 2b) to assess perovskite
chemical space. The scores for virtual crystals are skewed towards
the CL score of 0, and only 962 (1121 considering structure
distortion) out of 11,964 virtual perovskites are predicted
synthesizable. We find that domain-specific transfer learning can
improve the accuracy for oxide-focused chemical space (from
0.837 to 0.930). We note that while TPR can be artificially increased
by lowering the threshold probability or developing a naïve model
that predicts all crystals synthesizable, such is not the case for our
model as 84% of the perovskite crystals are predicted unsynthe-
sizable. Figure 2b demonstrates the CL score distribution for all
data and the out-of-sample test data, which also shows that virtual
crystals are generally predicted unsynthesizable.
To understand the motive of the model’s success, we test the

binary classification model where GCNN is trained using a dataset
where all unlabeled data is labeled negative, and positive data are
oversampled to balance the number of positive and negative data.
Here, we find that TPR decreases to 0.361 (GCNN+ BC in Fig. 2a)
and 0.691 (GCNN+ BC+ DSL+ TL in Fig. 2a) for the MP-trained
general model and transfer learning model, respectively. This
could be due to the positive data in unlabeled data that are
mislabeled negative, thus the data splitting method in PU learning
is critical. We also trained a PU-learning model without pre-
training with MP data (i.e., without transfer learning), and find that
the TPR decreases slightly to 0.947 (GCNN+ PUL+ DSL in Fig. 2a).
Thus, the model success is largely attributed to the domain-
specific data set, and the transfer learning scheme contributes
marginally for TPR. For the rest of the discussion, we will use
results obtained from the best model, GCNN+ PUL+ DSL+ TL.
We further investigated the correlation between the predicted

CL score and the energy above hull for all the virtual crystals
obtained from each data source as shown with the histogram and
violin in Supplementary Fig. 4. The overall data distribution
between the CL score and the energy above hull shows a negative
correlation (Pearson correlation coefficient of −0.3739). Thus, our
model learns the energetic stability (energy above hull) to some
extent without explicitly learning these metrics. Interestingly,
Supplementary Fig. 4 shows that a significant number of
energetically stable perovskites (energy above hull < 0.1 eV/atom)
have low CL scores, indicating the difference between the
machine-learned synthesizability and the conventional energetic
synthesizability metrics.
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To further validate our model in practice, we searched the
literature for the reported cases of synthesis for the virtual crystals
that are predicted synthesizable. We used the XRD patterns to
match the synthesized and virtual crystals as shown in Supple-
mentary Fig. 5. We found that 179 out of 962 synthesizable virtual
perovskite compounds have been synthesized before (Supple-
mentary Fig. 5 and Supplementary Table 3). In further analysis, the
percentage plot of the found virtual crystals by the CL score in
Fig. 3a shows an interesting trend that the ratio of the previous
synthesis increases with the predicted CL scores. Figure 3b shows
the two previously synthesized virtual perovskites with the highest
synthesizability scores and their respective XRD patterns. We also
searched the literature for the 1000 virtual crystals with the lowest
CL scores but were not able to find any previous report of their
synthesis. To furthermore assess the model’s performance for
the crystals with an indecisive score, we searched the literature for
the crystals with CL scores between 0.4 and 0.5. We found only 20
crystals previously synthesized out of 386 virtual crystals for these
crystals, indicating the value of CL score in the indecisive region.
While these assessments provide validation for our model, we
cannot guarantee the model’s high precision (true positive/(true
positive + false positive)), as it is difficult to show that our positive
predictions are incorrect.

Comparison with tolerance factor-based models
We compare our models’ out-of-sample TPR with the two
empirical perovskite discovery strategies, i.e., Goldschmidt rule-
based and SISSO-based screening, by the assumption that the
materials are considered to be synthesizable if they remain after
applying the screening filters. Davies et al.60 used the Goldschmidt
tolerance factor44-based screening by assessing the ionic radius of
the Shannon table52. This screening focused on standard ionic
perovskites, where the element of the C site in the ABC3 formula
was limited to 7 anions. Since our data contains non-classical ionic
perovskites, only 388 out of 943 synthesized perovskites were
found to be within their screening scope. For those 388
perovskites that are directly relevant to the Davies et al.’s60

procedure (see SI), a TPR of 0.863 is obtained using Davies et al’s
method. Bartel et al.45 developed and used a SISSO determined

tolerance factor that uses the oxidation state and the ionic
radius52. Only 310 crystals out of 943 perovskites were within their
selection of elements, but by reproducing their procedure (see SI),
we calculated the TPR of 0.806. Note that the reported45 TPR
(0.936) is different which may be due to the difference in the
dataset. Nonetheless, our model’s out-of-sample TPR (0.957) is
significantly higher (0.806–0.863) than the previous methods for
the experimentally synthesized perovskites considered.
Also, our model chooses less synthesizable candidates than the

previous strategies. Supplementary Figure 1 compares the Gold-
schmidt rule-based screening results and CL score and demon-
strates that a large portion of the virtual crystals that passes the
screening have low CL score. More precisely, our model predicts
that 9.4% of the virtual crystals are synthesizable, whereas Davies
et al.60 and Bartel et al.45 predict that 24.5 and 25.7% are
accessible, respectively. Figure 4 compares the 2D elementary
map for ABO3 perovskite oxide based on our model and
Goldschmidt-based screening of Davies et al.60 which also shows
that fewer candidates are predicted synthesizable by our model.
Here, the red and blue boxes indicate the virtual crystals that have
been synthesized. This result does not necessarily indicate that our
model is more selective, as the synthesizability of crystals is
difficult to measure. On the other hand, our model predicts a
probability, thus the best candidates can be prioritized.
While the previous strategies focused on the Shannon table52-

based classical ionic perovskite predictions, our model can predict
synthesizability for various perovskite types. We expanded the
screening scope of Davies et al.60 by including the non-anion
elements for the C site as well. In this case, the TPR of the
screening method is low (0.389) which is attributed to increased
covalency in bonds for some elemental combinations53 and the
lack of relevant elemental data in the Shannon tables for anti-
perovskites54. In addition to classical ionic perovskites, we found
unconventional combinations of elements within the 179 virtual
perovskites that were found synthesized, types of which are
“covalent” perovskites that contain two or more anions (e.g., CsIO3,
ClOLi3) with higher covalency in bonds, hydride perovskites that
contain hydrogen (e.g., CaCsH3), and anti-perovskites that contain
anion in B sites instead of C sites in ABC3 combination

Fig. 3 Model validation. a The percentage of virtual perovskites that are found synthesized in the literature. The ratio indicates the number of
found over the number of virtual crystals in the range. b The structure of virtual crystals and XRD comparison between the experimental and
virtual crystals for the top two perovskites previously reported in refs. 71,72. The full list of virtual crystals and XRD pattern comparison are
shown in Supplementary Table 3 and Supplementary Fig. 5.
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(e.g., SnNFe3) (see Fig. 5). The prediction for these three types of
combinations is a new capability of our model that the previous
models were not capable of. Figure 5c, d shows the SISSO-based
model45 and Goldschmidt rule-based screening60 result for the
discovered 179 virtual crystals, where we observe that the
significant portion is outside-of-scope. Also, Fig. 5b shows that
the non-domain-specific model only predicts 101 crystals stable
out of the found 179 virtual crystals, showing the value of the
domain-specific learning.

Applications
While perovskite has been studied extensively, Fig. 4a shows that
there remain many synthesizable elemental combinations yet to
be discovered. We plot the periodic table representation of the
synthesizability in Supplementary Fig. 2. Here, the ratios of virtual
candidates with CL scores above 0.5 are shown with the given

element in the given site. Compared to the classical ionic
perovskites, anti-perovskites have high CL scores which contain
C, N, O, P in the B site, and a transition metal on the C site. Indeed,
we found that a significant number of virtual anti-perovskites have
been previously synthesized (Fig. 5), suggesting there may be
more opportunities to discover anti-perovskites. Anti-perovskites
have shown many interesting properties such as superconductiv-
ity39,40 and magnetism37,38,61. Our model suggests that 327 virtual
anti-perovskites are synthesizable, which are listed in Supplemen-
tary Table 3.
We also selected the synthesizable candidates for two

technologically important applications. Metal halide perovskites,
namely, CsPbI3, RbPbI3, and MAPbI3 (MA= CH3NH3

+) have shown
many promising applications in photovoltaics and light-emitting
diodes in the past decade34–36. However, these materials often
contain toxic Pb. The semiconducting properties of these
perovskites are largely due to the diffuse valence p-orbitals of

Fig. 4 Synthesizability of the ABO3 perovskite compounds for our model (lower left triangle) and Goldschmidt-rule-based screening
(upper right triangle). The green color in the lower left triangle indicates the maximum CL score for the perovskites structures from the
databases with the given compositions, the color bar of which at the bottom of the figure, and the green color in the upper right triangle
indicates that the combination passes the screening. The blue box indicates that the combination has been synthesized before. The red boxes
indicate the virtual crystals that were found synthesized previously.
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the halide62, thus we expect that there are more semiconducting
halide perovskites that can be accessed. Our model predicts that
98 virtual metal halides are synthesizable. We further screen these
materials by band-gap, using a two-step DFT procedure (PBEsol
relaxation followed by HSE06 single point calculation). We found
that 43 materials have band gaps as listed in Supplementary Table
1. Particularly, 12 candidates have a bandgap between 0.7 and
2.0 eV, which could be promising for photovoltaics as shown in
Table 1 including CL score and the energy above hull. Herein, the
majority of the predicted materials (8 of 12 candidates) are
thermodynamically stable (energy above hull < 0.1 eV/atom). In
addition, as shown in Supplementary Fig. 3b, CL score values of all
the predicted materials in Table 2 are overlapped with the CL
score distribution of positive data. We note that two materials
(NPF3, and RbCF3) are highly unstable (energy above hull > 1.0 eV/
atom). While our model has a relatively high true positive rate, the
model could make false positive predictions (low precision) as
discussed above, resulting in this disparity. We note that many of
these compositions contain non-standard chemistries (e.g., CsNaF3
or RbOF3) that would not be identified based on simple electron
counting considerations.
Zhao et al.41 discovered that Li-rich anti-perovskite, Li3OCl have

superionic conductivity for the application of solid battery
electrolytes. The high conductivity was achieved due to high Li
concentration and the streamlined C-site diffusion pathway, thus

the conductivity is expected to be transferable to other Li-rich
anti-perovskite such as Li3OBr63. We listed 8 Li-rich anti-
perovskites with CL score > 0.5 in Supplementary Table 2
including CL score and the energy above hull. While the previously
reported Li3OBr and Li3OCl are thermodynamically stable
(0.012 eV/atom for Li3OBr and 0.006 eV/atom for Li3OCl), the
newly predicted materials in Supplementary Table 2 show low
thermodynamic stability (>0.3 eV/atom). Also, a similar disparity is
observed for the CL score distribution as well (see Supplementary
Fig. 3a), indicating potential difficulties in synthesizing these
materials thermodynamically despite being more synthesizable
based on the CL scores. This suggests an interesting possibility
that the combined use of CL scores and thermodynamic metrics
can complement the limitations of each approach and yield more
reliable synthesizability predictions.
To summarize, perovskites represent a unique class of materials

with desirable physical properties. We have implemented domain-
specific transfer PU learning to assess the synthesizability of
perovskite materials. Our model demonstrated a 0.957 out-of-
sample true positive rate, significantly improving over the
previous methods based on geometric factors (0.806–0.863)45,60.
We searched the literature for the 962 virtual crystals that are
predicted synthesizable and found that 179 virtual crystals have
been synthesized, adding to the synthesized perovskite pool of
943 crystals in three open crystal databases. The same literature
search for the 1000 virtual crystals with the lowest synthesizability
scores yielded no synthesized cases, further validating our model.
Compared to empirical models based on ionic radii that are most
applicable to classical ionic perovskites, our model demonstrates a
general ability to assess the synthesizability across all prototypes
of perovskites, including the anti-perovskites, covalent perovs-
kites, halides, and hydrides. To this end, we listed promising
synthesizable candidates that can expand the materials portfolio
for two important applications, i.e., Li-rich ion conductors and
metal halide optical materials, which can be tested experimentally.
We expect that the proposed domain-specific transfer PU learning
would be fruitful to explore the target-specified crystal space for
other crystal families and application domains.

METHODS
Model architecture and training
The overall architecture of the convolutional neural network is shown in
Fig. 1c. Vin and Ein are the atom and edge/interaction input features to the
model. The graph structure of crystals is constructed by assigning edges to
Voronoi neighbors within the 7 Å radius of each atom. The atom features
are constructed by the one-hot encoding method categorized by the

dca ledom desab-elur tdimhcsdloGledom desab-OSSISLST+LSD+LUP+NNCG b GCNN+PUL

Fig. 5 Predictions of the other methods for the reported virtual crystals. a The distribution of perovskite types for the 179 virtual
perovskites found synthesized. The stability prediction of the 179 compounds using the b non-domain-specific MP-trained general model
(GCNN+PUL in Fig. 2a), c SISSO-based model45, and d Goldschmidt rule-based screening60. The ABC3 perovskites were classified based on the
following criteria: classical perovskites contain cation in A and B site and anion in C site (e.g., SrTiO3), anti-perovskite contains anion in B site
and cation in A and C site (e.g., SnNFe3), covalent perovskite contains two or more anions (e.g., CsIO3, ClOLi3), and hydride contains hydrogen
on the C site (e.g., CaCsH3).

Table 1. Synthesizable halide perovskites with calculated bandgap in-
between 0.7 and 2.0 eV for photovoltaics applications.

ABC3 Bandgap [eV] CL score Energy above hull
(eV/atom)

RbCoF3 0.71 0.861 0.016

KGeBr3 0.85 0.559 0.000

NPF3 0.85 0.545 1.706

CsNaF3 0.94 0.820 0.025

NaCuCl3 1.36 0.797 0.002

RbCF3 1.39 0.631 1.154

KGeCl3 1.43 0.544 0.015

TlGeCl3 1.46 0.572 0.019

CsPdF3 1.52 0.814 0.102

RbCrF3 1.82 0.560 0.097

RbOF3 1.92 0.586 0.374

InGeCl3 1.99 0.617 0.039
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element, and edge features are constructed by Gaussian expansion of
distance and Voronoi solid angles as shown in Fig. 1d. These features are
encoded with linear multiplication and a softplus activation. The graph
convolutional layer contains neighbor edge and atom pooling to make
new hidden features. In detail, the new edge features of edge i, Eout,i are
generated by

Eout;i ¼ σ W � ϕ Vin;j ; Vin;k ; Ein;i
� �þ β

� �
(1)

where σ is the softplus function, W is the linear multiplication weight, β is
the bias, ϕ is the concatenation operator, j, and k are the two atoms
connecting the edge. The new atom features for atom i are generated by

Vout;i ¼ σ W � ϕ Vin;i ;
Xnneighbor

j

Ein;j
nneighbor

� �
þ β

� �
(2)

where j is the index of edges that are connected to atom i. Here, the edge
features are averaged and concatenated. The box with “Dense, 64” with
two input arrows in Fig. 1c indicates the two convolution operators
discussed above. The 64 indicates that the output feature size is 64. The
“Dense, 64” with one input arrow indicates a simple activation layer for the
feature, F,

Fout ¼ σ W � Fin þ βð Þ (3)

For the box with “Linear,1”, linear multiplication is used,

Fout ¼ W � Fin þ β (4)

resulting in a single element value. The “Min Pool” indicates the
minimum pooling operation followed by the sigmoid operation. As
discussed above, the intermittent atom and edge features are kept at the
element size of 64. We used binary cross-entropy loss function with Adam
optimizer64 to train our model with a batch size of 512. The model is trained
to 50 epochs, and the model with the lowest validation loss is selected.

Bandgap and energy above hull calculations
For all DFT calculations, we performed spin-polarized PBEsol65,66 calcula-
tions with PAW-PBE pseudopotentials67 as implemented in the plane-
wave-based ab initio package, VASP68. We selected the PAW potentials as
recommended in the MP database7. Atomic positions and unit cell
parameters are fully relaxed using the conjugate gradient descent method
with the convergence criteria of 1.0e−5 eV for the energy and 0.05 eV/Å
for the force with 500 eV cut-off energy. Brillouin zone is used with the
k-point densities of 1000 k-points per atom using Pymatgen58. For the
calculations of bandgap using the relaxed structure, we performed
HSE0669 hybrid DFT functional implemented in VASP68 with a mixing
parameter of 0.2. For computational efficiency, we used cut-off energy of
400 eV, and also used a uniform reduction factor for the q-point grid of the
exact exchange potential is applied (NKRED = 2) with gamma centered
even number k-points (with a k-point density of 1000 k-points per atom).
For Brillouin zone integration70, we used Blöchl correction-included
tetrahedron method. To calculate energy above hull, we extracted all
relevant species in the convex hull diagram from the materials project, and
performed PBEsol calculations. The energy above hull is obtained by using
the calculated energetics and Pymatgen58.

DATA AVAILABILITY
The data used in this paper are publicly available at https://doi.org/10.5281/
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