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Lossless multi-scale constitutive elastic relations with artificial
intelligence
Jaber Rezaei Mianroodi 1,2✉, Shahed Rezaei3, Nima H. Siboni1,2, Bai-Xiang Xu 3 and Dierk Raabe 1

A seamless and lossless transition of the constitutive description of the elastic response of materials between atomic and
continuum scales has been so far elusive. Here we show how this problem can be overcome by using artificial intelligence (AI). A
convolutional neural network (CNN) model is trained, by taking the structure image of a nanoporous material as input and the
corresponding elasticity tensor, calculated from molecular statics (MS), as output. Trained with the atomistic data, the CNN model
captures the size- and pore-dependency of the material’s elastic properties which, on the physics side, derive from its intrinsic
stiffness as well as from surface relaxation and non-local effects. To demonstrate the accuracy and the efficiency of the trained CNN
model, a finite element method (FEM)-based result of an elastically deformed nanoporous beam equipped with the CNN as
constitutive law is compared with that obtained by a full atomistic simulation. The trained CNN model predicts the elasticity tensor
in the test dataset with a root-mean-square error of 2.4 GPa (3.0% of the bulk modulus) when compared to atomistic calculations.
On the other hand, the CNN model is about 230 times faster than the MS calculation and does not require changing simulation
methods between different scales. The efficiency of the CNN evaluation together with the preservation of important atomistic
effects makes the trained model an effective atomistically informed constitutive model for macroscopic simulations of nanoporous
materials, optimization of nanostructures, and the solution of inverse problems.
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INTRODUCTION
The laws of mechanics are rather well established at the
macroscopic continuum scale. This applies particularly to the
linear relationship between stress and strain, such as cast in
Hooke’s linear elasticity law nearly 350 years ago. The material-
specific properties are represented through the elastic stiffness
modulus, which in three dimensions is a fourth-order tensor.
However, when leaving the idealized continuum description of
bodies and zooming into their underlying micro-cosmos, also
referred to as microstructure, a very complex landscape emerges
which is characterized by a wide range of structural features and
defects. Some of these microstructure features do not alter the
macroscopic stiffness substantially or only in a rather modest and
linear fashion, but others lead to more drastic changes in the
elastic response. This applies particularly to the porosity of the
material, a property that refers to the volume fraction, dispersion,
and connectivity of the open volume. In such cases, the elastic
modulus of the representative volume element of a material can
be altered quite substantially. The relationship between porosity
and elastic stiffness as well as its size-dependence across several
scales is of importance for several material classes. One example is
bone, where diseases such as osteoporosis lead to a loss in bone
mass through the highly dispersed micro-architectural deteriora-
tion of bone tissue, an effect that entails decay in elastic stiffness
and bone fragility1. A direct relationship between porosity across
all size scales and the resulting stiffness and strength also applies
to wood, which is currently gaining rapid momentum as a
sustainable construction material2. Another example is the
development of nano- and micro-porosity during the direct
reduction of iron ores3. This effect leads to a gradual loss in
stiffness which has severe consequences for the design of

corresponding direct reduction and fluidized bed reactors, a field
of utmost relevance for the carbon-free reduction of metal oxides.
Also, many functional materials have a nano- or micro-porous

structure, such as aerogels, many catalysts or supercapacitors4.
Most of these materials do not only fulfill their respective
functional role but must at the same time bear mechanical loads,
where the elastic stiffness assumes a central role in their property
portfolio. Another field where porosity and stiffness are closely
connected is the domain of additive manufacturing which plays
an increasing role in digital manufacturing. Most parts cannot be
manufactured to 100% mass density so that better understanding
of corresponding stiffness effects due to the inherited porosity is
an important aspect5.
A size dependency of the elastic properties is particularly

expected when it comes to nanoporous materials, which are
attributed to the competition between surface and bulk energies,
especially at smaller scales6–8. Classical models of elasticity should
be extended correspondingly through the incorporation of surface
elasticity models9–11. The reader is referred to refs. 12–15 and the
references therein for an overview of surface effects in the case of
elasticity and plasticity. One effective approach is to utilize
interface finite elements on the surface of models that represent
nanostructured materials. The latter method requires explicit input
of the surface tension constants and surface elastic parameters in
the case of surface elasticity. Also, such surface elements induce
implementation and computational complications13,16. A size
effect is also predicted in the torsion and bending of open-cell
foams or lattices, where slender specimens appear stiffer than
expected. Such size effects can be predicted by Cosserat elasticity
(also known as micropolar elasticity). Such models are sensitive to
strain gradients and introduce a characteristic length into the
constitutive formulations, which, however, require complex
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experimental characterization to identify the required constitutive
parameters (see also ref. 17). When it comes to the mechanical and
topological homogenization of such materials, further extensions
are required to calibrate an effective generalized continuum
model that is applicable across several scales18–20.
A straightforward way to calculate the true elastic stiffness of

nanoporous materials is conducting atomistic calculations which
naturally consider all relevant porosity and surface tension
features arising from it21,22. However, this is not feasible when
targeting the mechanical description of larger parts, revealing the
typical scale dilemma often encountered in computational
materials science. This problem is also often referred to as the
multi-scale and multi-physics challenge in materials mechanics23.
The multi-scale modeling strategy requires, on one hand,

accurate and predictive simulation at lower scales taking various
physical phenomena into account, and on the other hand,
efficient methodologies to transfer the information between the
scales. In the available scale-bridging techniques, there is usually a
trade-off between the amount of information preserved in the up-
scaling and the associated computational costs. One way to
establish this micro-macro coupling is to make use of artificial
intelligence (AI). Machine learning (ML) seems to provide a
promising approach for efficient scale-bridging. As mentioned, the
properties of a material depend to a large extent on a wide
cosmos of defects, which is also referred to as nano- and
microstructure, and on the mutual interaction among all these
features. The high-dimensional and tensorial interaction among
these multiple nanostructure and microstructure features makes
the required dimensionality reduction of the scale transfer
problem much more complex than just transferring the chemical
composition and some overall geometrical factors from one scale
to another. Empirical descriptors that could be predefined to
capture and reflect some of these features and their change upon
scale transitions are usually unknown and difficult to determine.
Instead, in most cases, there are more complex and sometimes
even weakly understood interactions hidden inside the material’s
nanostructure and microstructure. Therefore, image-based AI
methods can be valuable tools for the study of microstructure-
dependent structure–property relations24,25 in general (due to the
many effects and phenomena involved) and specifically for scale-
bridging structure–property calculations (where even some of the
physics for adequate coarse-graining have not been resolved yet).
In ref. 26, a summary is provided over recent advances in the
application of AI techniques for numerical modeling of various
types of materials, such as metals, polymers, ceramics, and
composites. Owing to their high efficiency, allowing very fast
calculations, AI techniques open up new efficient strategies to
optimize and drastically accelerate structure–property calculations
of future advanced engineering materials and structures27. These
approaches could also help to discover scale bridging phenomena
that had so far remained elusive, hidden behind the enormous
chemical and structural complexity of modern engineering
materials. Peng et al.28 discussed the state of the art of combining
ML and multi-scale modeling in various applications. Bock et al.29

reviewed successful applications of ML and statistical learning
methodologies in the field of continuum materials mechanics.
They concluded that simulation-based data mining in combina-
tion with ML tools provides exceptional opportunities for the
identification of fundamental interrelations within materials.
Readers are also encouraged to consider reference30 where
stochastic multi-scale methods for modeling complex systems
are introduced and discussed. In this work, it has been for example
shown that data-driven methods can help to identify the
probability density function from Monte Carlo simulation data.
Different ML strategies have been investigated for modeling at

different length scales. Wang and Sun31 replaced the up-scaling
procedure through an offline homogenization procedure by
utilizing sub-scale simulations to generate a database to train

material models for geological materials. Xue et al.32 proposed a
data-driven multi-scale computational scheme to capture the non-
linear mechanical behavior of cellular metamaterials. See also
ref. 33 for similar studies. Kumar et al.34 introduced an ML
technique for the inverse design of metamaterials which can
generate functionally graded cellular structures with tailored
anisotropic stiffness. Wang et al.35 developed a data-driven
method for efficient multi-scale topology optimization. The
application of ML has also been extended to more complicated
material behavior including plasticity36,37. Readers are referred to
refs. 25,38 for similar studies in different application fields. It is
worth mentioning that the ML approaches can be applied to
construct a direct solver for the usually well-known partial
differential equations (PDEs) out of massive datasets. Samaniego
et al.39 explored deep neural networks as an option to
approximate the solution of the underlying PDEs. Raissi et al.40

introduced a physics-informed neural network that takes into
account any given laws described by general non-linear PDEs. The
authors demonstrated the effectiveness of the proposed frame-
work through application to classical problems in fluids, quantum
mechanics, and reaction-diffusion systems. Yang et al.41 employed
a conditional generative adversarial neural network to predict
stress and strain fields directly from the material microstructure
geometry. Wang et al.42 introduced a genomic flow network and a
mosaic flow predictor to estimate the solution of Laplace and
Navier–Stokes equations in domains of untrained shapes and
boundary conditions. Pandey et al.43 proposed an ML-based
surrogate model for predicting spatially resolved crystal orienta-
tion evolution under uniaxial tensile loading. It is also important to
make sure that the trained network prediction satisfies the
fundamental physical and thermodynamics laws44 or fulfills the
objectivity and possible material symmetry conditions45.
In this scientific context, convolutional neural networks (CNNs)

are employed extensively to extract material property-structure
relationships based on microstructure images46,47. Cecen et al.48

employed a CNN to link a three-dimensional microstructure to its
effective (homogenized) properties. The authors showed that the
trained CNN can learn physically interpretable microstructure
features and accurately predict desired properties. Rao and Liu49

proposed a three-dimensional deep CNN to predict the
anisotropic effective material properties for representative
volume elements with random inclusions. The dataset generated
by a computational homogenization approach was used for
training the network. They concluded that the trained networks
can predict unseen data, indicating that the network is capable
of capturing the microstructural features of the system and could
produce an accurate prediction of the effective anisotropic
stiffness tensor. The CNN approach has been also applied in
several works to study microstructure descriptor relations to
material properties50–53. These descriptors are usually not readily
interpretable in terms of crisp physics mechanisms. However,
when carefully applied, such data-driven methods can provide
useful material property prediction capabilities. Recently, Mian-
roodi et al.24 applied a U-Net approach to predict stress fields in
geometrically complex and heterogeneous non-linear elasto-
plastic material systems. It was shown that the U-Net-based
prediction of the stress fields in such a highly non-linear and
heterogeneous mechanical system was about 8000 times faster
than that obtained by a typical spectral solver (e.g., ref. 54).
Interestingly, the U-Net was also capable to reproduce the stress
distribution in geometries topologically far from those that had
been used for training.
Although the body of literature on multiple possible and

promising applications of ML in material science is growing fast, a
general AI-assisted concept for transferring constitutive relations
directly from atomistic to continuum scale is missing. There have
been recent works on the application of ML for the prediction of
elastic stiffness for multi-scale modeling55,56. However, these are
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typically designed to homogenize the continuum scale elasticity
calculations that do not include atomistic effects. A direct
calculation of the elasticity tensor from atomistic simulations as
data source for ML has not been studied before to the best
knowledge of the authors. Furthermore, most conventional multi-
scale approaches involve loss of information since in each step of
the up-scaling, some level of approximation or averaging (also
referred to as homogenization) has to be usually introduced to
reduce model complexity. This is in particular the case when
discrete atomistic data is used at mesoscopic or macroscopic
scales. Here, we show that the trained network is capable of
capturing surface and size effects directly from the atomistic scale,
practically replacing the formerly required computationally
expensive atomistic simulation for stiffness calculations. The ML
approach seems to transfer the information (elasticity tensor in
this case) from microscopic scale to macroscopic scale without any
loss (i.e., without losing the atomistic effects). Note that in data
transmission, such methods are called “lossless,” as opposed to
“lossy” methods of data transfer or compression. Analogously, we
call the current approach a lossless multi-scale method. In the
current work, we use Mishin’s interatomic potential for Al57 to
calculate the elasticity tensor for large sets of randomly generated
nanoporous structures. A CNN is then trained using the topology
data (stored as images of the atomic structure) and the calculated
elasticity tensor components as a reference dataset. Once the
network is trained, it is evaluated in terms of several test cases,
showing its ability to capture full atomistic details (such as pore
surface effects) while being orders of magnitude faster than the
atomistic calculations. The efficiency of the AI-based method
coupled with an accurate description of the atomistic scale effects
on the material’s elastic constitutive response results in a lossless
scale-bridging approach. The training data from the atomistic
calculations as well as the performance and prediction capability
of the trained CNN are presented in the Results section, followed
by the Discussion section. In the “Methods” section, details about
preparing the atomistic data, network architecture, as well as
training are discussed.

RESULTS
Atomistic results
From the randomly generated structures (as explained in the
“Methods” section) and the resultant atomistically simulated

elasticity tensors, only those with positive definite values are
selected. Since the pore structures are random, in some cases the
geometry is not stable, leading to incorrect elasticity calculations.
After filtering these unacceptable cases based on the approach
explained in the “Methods” section, 18,172 samples with
physically meaningful input and output data are used for training
the CNN. All of this data is visualized in Fig. 1. Note that the
randomly shuffled dataset is divided into training and validation
subsets with sizes of 17,172 and 1000, respectively. For testing the
prediction capability of the trained network, an additional set of
2572 randomly generated cases are employed. This test dataset is
not used in the training or validation of the network.
As observed in Fig. 1, the dispersion of the data is increasing as

the porosity is increased. This is expected as there are more
random ways to create the same porosity volume fraction when
it is increased. Also, note that more of the cases in high porosity
regions are filtered out due to the instability of the generated
structures. Therefore, the number of data for structure regimes
with higher porosity is lower compared to those with low
porosity. As it will be explained in the method section, randomly
generated structures with higher porosity fractions are often
unstable and cause issues for the automated elasticity tensor
calculations. Therefore, there is an unbalanced distribution of
data at different porosity levels. As will be shown later, this
results in reduced prediction accuracy for the higher porosity
levels with a lower number of training data. One possible remedy
is to increase the weight of the higher porosity data in the
training. We have not implemented this in the current study
since, although the filtering scheme removes most of the
unphysical atomistic simulations, we expect lower reliability of
the data obtained for higher porosity levels.
As it is shown in Fig. 1, only 13 components are non-zero

(within a tolerance of 10−3 GPa), instead of 21 for a general
elasticity tensor. This is due to the assumed two-dimensional (2D)
variation of the pore structures and translates to the introduction
of a symmetry-breaking effect, rendering the structure response
monoclinic (rather than cubic) with a plane of symmetry58. Note
that the Voigt notation, i.e., (11, 22, 33, 23, 13, 12)→ (1, 2, 3, 4, 5, 6)
is employed. Therefore the CNN has 13 scalar outputs for one
input image as summarized above. The magnified views of the C11
and C26 plots are also shown in Fig. 1. As apparent for the C11 plot,
there is a high density of points along a curve from 0% porosity up
to about 20%. This high point density portion of the curve is

Fig. 1 Components of the elasticity tensor calculated with molecular statics. The elasticity components for 18,172 atomistic boxes with
randomly generated pore structure as a function of the box porosity volume fraction, defined in Eq. (4). All the plots (except the zoomed
versions of C11 and C26 at the bottom left) have the same range in horizontal (porosity) and vertical (stiffness) axes.
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visible as a line shadow in this region, which seemingly disappears
for porosity values above 20%. One possible explanation is the
percolation threshold, i.e., as the porosity volume fraction
increases, at a certain threshold (which highly depends on the
structure) most of the pores will be connected, increasing the
dispersion in the data.
For the C26 elastic constant, the maximum dispersion of the

data is around 20–25% porosity while the data points are closer
to each other for porosity values around 0% and above 50%. A
similar trend is visible for other components such as C16 and C36.
This could be also related to the percolation threshold
discussed above.
We further study the distribution of all training data in the

space of porosity volume fraction (Eq. (4)) vs. the pore dispersion
(Eq. (5)) as shown in Fig. 2. As expected, the pore structures
based on the random circular shapes have lower dispersion
(lower surface to bulk atoms) compared to the rectangular-
shaped pores at the same pore volume fraction levels. High
dispersion parts of the data are almost entirely made of
interconnected rectangular pores (dispersion of about 35%),
while the highest pore volume fraction (about 80%) in the data
consists of interconnected circular pores at a relatively moderate
dispersion of about 16%. In the intermediate regime (i.e., the
porosity of about 50% and dispersion of about 20%), the data
consists of a mixed combination of circular and rectangular-
shaped structure features as seen in Fig. 2.

Benchmarking AI predictions
The trained network is benchmarked against 2572 randomly
generated cases of the test dataset. These data were not included
in the training or the validation of the training. The root-mean-
square error (RMSE) of the trained network on the test dataset is
about 2.4 GPa, which is comparable to the RMSE of 2.8 GPa on the
validation dataset. These correspond to about 3.0 and 3.5%,
respectively, of the equivalent bulk modulus (79.0 GPa) of single-
crystalline Al. However, besides the 2572 cases of the atomistic
data reserved for the test dataset as explained above, we also look
into a few special cases here to evaluate and interpret the
performance of the network. Note that these cases were neither
part of the training nor the validation datasets.

Size effects
One major difference between continuum mechanics and atomic
systems is the non-local nature of the interactions in the latter.
Due to the quantum-mechanical nature of their electronic
bonding, atoms (particularly in metals) interact over a wide
distance (where in simulations a cutoff radius is usually defined) as

opposed to local material models used in classical solid
mechanics. This non-local interaction leads to the distinction
between atoms at a free surface with broken neighbor bonds and
atoms in the perfect bulk face-centered cubic (fcc) lattice where all
bonds are saturated. As systems become smaller, the ratio of
atoms at surfaces to the atoms in the bulk increases (see red solid
line in Fig. 3). To demonstrate the performance of the trained CNN,
we investigate the size dependency of the effective bulk modulus
of a system with porosity and compare the results with the
molecular statics (MS) simulations, as well as classical continuum
mechanics solved using the finite element method (FEM). A linear
elastic constitutive law, without any phenomenological size effect,
is assumed in the FEM calculations. Note that the bulk modulus in
this work is the equivalent bulk modulus of single-crystalline
Al with the pore structure.
To this end, three boxes with square-shaped pores are

considered as shown in Fig. 3. In all cases, the simulation size
and orientation are the same as explained in the “Methods”
section. The pore in the simulation box on the right-hand side of
the figure has an edge length of Lx/5, resulting in a porosity
volume fraction of p= 4%. In all other steps, the edge length of
the pore is divided by two (area reduced by a factor of four) while
the number of pores is quadrupled. Therefore, the number of
removed atoms (N− n) and the porosity volume fraction, see
Eq. (4), of the three boxes remains unchanged (dashed red line in
the figure) while dispersion parameter d, see Eq. (5), is increased
from 56.3 to 125.0% and 300.0% in the three cases, as the pore
sizes become smaller.
The same input structure is fed to the trained CNN and the

predicted bulk modulus is plotted in Fig. 3 as solid black squares.
As observed, the CNN prediction captures the pore size
dependency of the bulk modulus with good agreement compared
to the MS calculations. Note that the trained CNN is predicting the
13 components of the elasticity tensor as discussed above. The
effective bulk modulus is calculated using

K ¼ �V
dP
dV

� �V
ΔP
ΔV

; (1)

where V, ΔP= (S11+ S22+ S33)/3, and ΔV= V(1+ E11)(1+ E22)(1+
E33)− V are the volume and the differential of the hydrostatic
pressure and volume, respectively. Stress S and strain E are related
through the elastic relation S= CE. Under the small deformation

Fig. 2 Distribution of the input data in the feature space. Example
clusters of the 18,172 randomly generated nanoporous structures
used in the training and the distribution of the data in porosity
fraction (Eq. (4)) vs. dispersion (Eq. (5)) space. The black regions are
the empty space and the white regions are the fcc lattice.

Fig. 3 Size dependency of the bulk modulus. Effective bulk
modulus (black) as a function of pore dispersion in three simulation
boxes is shown. Classical linear elastic continuum mechanics (solved
by FEM, dashed black) shows no size effect, while atomistic
calculations (solid black) and AI predictions (dotted black) show a
significant size effect. Note that the pore volume fraction (dashed
red) is constant for all three cases while the fraction of atoms that
are located at the inner surfaces of the pores (solid red) increases as
the pores get smaller, an effect that leads to a stiffer response. In this
figure and the others to follow, green and red correspond to the
atoms with fcc lattice and unknown (surface) structures, respec-
tively, identified using common neighbor analysis as implemented
in the freeware visualization and analysis package Ovito70.
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assumption and with initially undeformed/stress-free conditions,
the differentials can be approximated as

ΔV ¼ 3ϵV ; ΔP ¼ ðS11 þ S22 þ S33Þ=3; (2)

where E11= E22= E33= ϵ is assumed. Combining Eqs. (1) and (2),
we get

K � � 1
9ϵ

ðS11 þ S22 þ S33Þ: (3)

The bulk modulus is then obtained by employing Eq. (3) and
applying an equal triaxial strain state on the system. Such
displacement boundary conditions were applied for both, the
MS and the linear elastic FEM calculations. In the FEM case, the
solid phase is equipped with the anisotropic elastic property of
single-crystalline Al while the pore has zero stiffness. Note that in
all the simulations and results reported in this paper, we work with
single-crystalline material and a full anisotropic elasticity model.
Homogenized polycrystalline properties could be extracted from
these for any given grain structure59.
The classical continuum prediction for the single-crystal bulk

elastic modulus of this system is size-independent (dashed black
line in Fig. 3) with the value of 67.0 GPa. When comparing these
three structures using classical continuum mechanical computa-
tions, the overall bulk modulus remains the same. Also, note that
in all these cases the pore volume fraction is kept constant and
the box is periodic. If we change the pore volume fraction, we will
see a difference in the responses even by employing classical FEM
computations.
It is worth mentioning that by utilizing enhanced non-local

continuum methodologies where surface effects are also
considered (e.g., refs. 10,13,16,60) one can also use FEM calculation
for data generation. For a proper comparison, these models
should be first calibrated based on atomistic calculations16.
Moreover, the atomistic origin and the related description of size
dependency or more generally nanostructure dependency of
elasticity can go beyond the capability of the existing phenom-
enological constitutive laws. On the other hand, the MS
calculations show a size effect in the bulk modulus with an
increase from 67.2 to 71.6 GPa (6.5% increase) as the pores get

smaller from 16.1 to 4.0Å (solid black line in the figure). This is
correctly captured by the trained CNN with a relative error of
about 0.6% compared to the MS-based values. Note that this error
is for the prediction of the stiffness tensor in the simulation boxes
with the special simple case of the square-shaped pore discussed
above. The RMSE of the trained network in the test dataset is
2.4 GPa (or 3.0% of the bulk modulus).

Porosity and connectivity
Here, we systematically evaluate the CNN-based prediction of
various components of the single-crystal elasticity tensor against
the MS results for special cases shown in Fig. 4.
As seen in Fig. 4 top left for the case of a square-shaped pore,

the agreement between MS (marked points) and CNN prediction
(solid lines) is excellent. For example, considering the C33 results,
the relative error starts from 0.6% for the smallest pore size and
increases to 8.7% for the second-largest pore (before the last one).
The CNN prediction deviates about 58% from the atomistic
calculation results in the last point of the comparison at a very
large porosity of 81%. The deviation is attributed mainly to the
reduced number of training data provided at such high porosity
levels as discussed. The CNN prediction also shows a relatively
good agreement with the MS results in the system with a
triangular pore as shown in the right top panel of Fig. 4. Although
the error of 1.1% for the initial microstructure is increased to 34%
for the largest pore, the network still captures the important trend
in the results. The higher error compared to square-shaped pores
in the previous case is due to the fact that no triangular or similar-
shaped pores were included in the randomly generated training
dataset, as opposed to random circular and rectangular-shaped
pores. In the case of two growing squares in the bottom left panel
of this figure, an interesting change in the slope of the plot (in
particular for C11) is visible. This change in the slope is due to the
two squares reaching each other and overlapping. The change in
slope is correctly captured by the CNN prediction signifying the
effectiveness of the trained network for including effects of
topology, particularly of pore percolation. Since the maximum
porosity in this case is up to 37%, the CNN prediction agrees much

Fig. 4 Benchmarking the AI prediction of the elasticity tensor. Atomistic calculations (markers) and AI predictions (solid lines) for selected
components of elasticity tensor and effective single-crystal bulk modulus for cases with simple geometries of one square pore (top left),
triangular pore (top right), two square pores (bottom left) and two rectangular pores (bottom right).
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better (compared to the previous cases) with the MS results with a
maximum relative error of 2.2%. A similar test for two rectangular
pores of increasing size has been performed with the results
shown at the bottom right panel of Fig. 4. Similar to the previous
case, the overlapping of the two rectangles leads to changes in
the slope of the plots. The agreement between CNN predictions
and MS results is quite good with a maximum error of about 5.0%.
The changes in the slope of the plots indicate the effect of
connectivity of the pores on the data, which seems to be captured
by the CNN correctly.
Next, we study a case of a vertically growing pore with both,

CNN and MS calculations. As shown in Fig. 5, this case is analogous
to a crack growth scenario, where depending on the crack
orientation, a strong asymmetry for the elasticity components is
expected. Indeed we find that some components of the elasticity
tensor drastically decrease (e.g., C11) while others remain almost
constant (e.g., C44) or decrease with a lower rate (e.g., C33), as the
vertical pore length increases.
According to Fig. 5 bottom left, the agreement between MS and

CNN-based prediction is apparent for smaller pore lengths. The
trained model is also sensitive to the pore orientation and
captures the stiffness degradation correctly. As the pore becomes
longer in the vertical direction and therefore gets closer to the box
boundaries, the error of the CNN prediction increases. In the limit
of a fully separated box (Lc= 8.0 nm), as expected, the MS
prediction for C11 provides a complete loss in stiffness, whereas
the AI prediction for this case is C11= 15.4 GPa. This case, as
shown in Fig. 5 at the bottom right, is completely out of the range
of the training data. However, the AI prediction, although
associated with the high error, is also out of the training data
range and qualitatively points in the correct direction. For better
evaluation of fully grown pores (which could for instance mimic
cracks or delamination features) and separated boxes, the training
data should include such cases. However, in this work, we only
focus on cases with non-zero stiffness and non-fractured boxes.

Lossless multi-scale modeling
The CNN prediction of the elasticity tensor has been incorporated
in a FEM as a continuum scale constitutive law to simulate the
bending of a nanoporous beam. The beam dimensions are (lx, ly,
lz)= (405.0, 81.0, 1.2) nm with free surfaces in x and y and periodic
boundary condition along the z axis. The left side of the beam is
fixed in all directions while the right side is displaced step-wise in
the −y direction up to ∣uy∣= 40 nm. The atomistically modeled
beam has square-shaped pores with side length and spacing of
0.40 and 1.46 nm, respectively, and consists of 2,304,480 atoms.
Note that the porosity of the beam corresponds to the smallest
pore size studied in Fig. 3.

The same beam geometry is simulated by FEM in conjunction
with a full anisotropic elasticity tensor predicted by AI for this
porosity. Here, the standard finite element model for elasticity is
utilized where the anisotropic elastic stiffness tensor is simply an
input for the FEM. For the case of small deformation, the elastic
stiffness tensor in Voigt notation is denoted by C. According to
Hook’s law, we have ~σ ¼ C~ϵ, where the stress and strain tensors in
Voigt notation are denoted by ~σ and ~ϵ, respectively. The
component of the elastic stiffness matrix is directly obtained
from the output of the trained CNN. The results of such a model
are represented by “FEM-AI-linear.” Using the Green–Lagrange
strain tensor, we end up with “FEM-AI” where the underlying
atomistic geometrical non-linearity of the strain tensor is
considered. The beam is then loaded in the simulation up to
∣uy∣= 40 nm. The resulting force-displacement curve from FEM-AI
agrees well with the one obtained from the full atomistic
simulations (MS). Note that, as shown in Fig. 3, this pore size
introduces a significant surface/size effect compared to a
continuum pore. As seen from the results, using the AI-based
constitutive model, seems to correctly transfer the mechanical
behavior of the system from the atomistic scale into a
continuum model.
The results of the FEM simulations obtained by using Hooke’s

law for the linear elastic constitutive response, i.e., without the AI-
based size-dependent elastic model, are shown in Fig. 6 left with
the blue curves, for the same pore distribution. As it is seen here,
ignoring the size dependency of the elastic stiffness introduces a
significant error in the predicted bending behavior of the beam.
For example, at ∣uy∣= 20 nm, MS and FEM-AI both predict a
bending force of 11.0 N/m while the size-independent FEM
calculation predicts a bending force of 7.0 N/m. Note that the
surface effects increase the stiffness of the system as shown in
Fig. 3. Therefore, as expected, the atomistic simulation and the
FEM simulation in conjunction with the AI-based elastic constitu-
tive model predict higher forces for the same beam displacement
compared to the FEM with no surface effects. The deviation (about
5.2% at ∣uy∣= 40 nm) between the MS and the FEM-AI simulations
for larger displacements is partly due to the increased pore
deformation and its effect on the elasticity tensor. The FEM-AI
simulation in its current version does not update the pore shape
to reevaluate the elasticity tensor during the loading. This will be
straightforward to implement and expected to resolve the
deviation at larger deformation values.
For a better comparison and to emphasize the potential of the

AI-based multi-scaling constitutive modeling capability, we
compared the computational time required for different
approaches as well as different steps of the training in Table 1.
In the first row, the required computational times for training the
network (as explained in the “Methods” section) are listed. Next,
the computation time for one elasticity tensor calculation with MS
and AI is compared. The bottom two rows of the table list the
computation times required for the nanoporous beam bending
simulations as discussed above.
As listed in Table 1, although the training time of the CNN is

about 2 days, the evaluation of the trained network for the
prediction of the full elasticity tensor is about 230 times faster
than the MS calculations. This significant speed-up in elasticity
tensor calculation will benefit FEM-MS-based multi-scale model-
ing, where each integration point of the elements in the
continuum scale FEM model is represented by an atomistic
simulation box. Since in the current simple example of a uniform
pore structure in the beam exposed to a bending load, an on-the-
fly evaluation of the AI-based elasticity tensor was not necessary,
the FEM method with the AI-calculated constitutive relation (FEM-
AI) is significantly (about five orders of magnitude in this particular
example) faster than the full atomistic (MS) calculation, while still
capturing important size effects as shown in Fig. 6. Note that the
speed-up in this case highly depends on the problem complexity

Fig. 5 Elasticity tensor components of a box with growing pore.
Top row: simulation boxes with the vertically growing rectangular
pore of length Lc. Bottom left: MS calculation (markers) and AI
prediction (solid lines) for single crystal elasticity tensor components
in a vertically growing rectangular pore as a function of Lc. Bottom
right: the C11 training data as well as the MS calculation and AI
prediction for the case of Lc= Ly= 8.0 nm.
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and the numbers reported in the lower part of Table 1 are only
representative of the current case and presented here as the first
point of reference. The main speed-up reported is the calculation
of the fully anisotropic elasticity tensor with AI as compared to the
time-consuming MS methods. It should be also considered in this
context that the elastic response is the most simple, fast, and
straightforward mechanical response feature to predict in such
atomistic calculations. When addressing more complex size-
dependent nanostructural features, such as the inelastic response
of materials under load, atomistic calculations are computationally
much more costly, so that corresponding AI approximations
of the size dependence (or other types of) underlying and
homogenized constitutive response might profit even more from
the use of such methods.

DISCUSSION
In this work, we show a lossless and efficient approach to using AI
techniques to derive constitutive laws for multi-scale modeling of
materials with complex nanostructures. Two ideas are presented,
namely, (1) using computations at the atomistic scale and
transferring the information to the continuum level to arrive at
physics-motivated model parameters without any ad hoc assump-
tions or empirical approximations. (2) A CNN is used to directly
relate the image of an arbitrary complicated material structure to
its homogenized properties. More specifically, we focused on

obtaining the anisotropic elastic properties of a nanoporous
aluminum single crystal, as a reference model substance, which
can be well simulated by atomistic methods, owing to the good
quality of the existing potentials and the absence of magnetic
effects. Random porous structures are generated and their
homogenized anisotropic elasticity tensor is calculated using MS.
We show that all the non-local effects arising from the physical
nature of the material’s response at the atomistic scale (i.e., surface
and size effects) are captured in this step. The complex pore
structure and the details of the atomistic reconstructions at the
pore surfaces necessitate a neural network design that can detect
the local properties and aggregate that information for use at a
coarse-grained scale. The CNNs are one of the few appropriate
candidates to achieve this flow of information. The trained CNN
confirms this by adequately predicting the elasticity tensor of
completely new porous structures which were not included in the
training set. Finally, the proposed methodology is applied to a
simple structural problem of a beam under bending load. We
show that by using a FEM simulation in conjunction with the AI-
based constitutive relations, one can efficiently and accurately
predict the material’s structural behavior (in the elastic regime,
with full size dependence) with the accuracy of atomistic
simulations. We also observed that the trained AI can predict
anisotropic elastic properties about 230 times faster compared to
performing corresponding MS calculations. Based on the latter
observation, one can also conclude that such materials-related
accelerated and lossless AI-based multi-scale modeling will have
at least the same amount of speed-up compared to a conven-
tional hierarchical multi-scale simulation combining FEM and MS.
Although the performance of the proposed approach using the

investigated dataset is significant, there is room for further
improvements. As an example, it would be interesting to enrich
the current training dataset by including more cases with much
higher porosity, including zero stiffness cases as well as open-cell
topologies. Finally, instead of training the symmetric part of the
stiffness tensor, one can try to predict the Cholesky factor of a
tangent stiffness matrix to impose a weak convexity on the strain
energy function61. The latter point is specifically interesting when
it comes to non-linear material behavior. It should be noted that in
the current manuscript, as a starting work, only simplified cases of
randomly generated microstructure patterns are employed for
training the neural network. The current approach could be
extended to include three-dimensional pore structures with closer

Table 1. Computational time for training the network and a single
elasticity tensor calculation with MS and AI, as well as the beam
bending test (bottom two rows) with different approaches.

Time (sec) System

AI training 2.0 × 105 (~2 days) NVIDIA Tesla P4 GPU

Elasticity tensor calculation

MS 101 Intel i7-860 2.80 GHz (single core)

AI 0.43 Intel i7-860 2.80 GHz (single core)

Nanoporous beam bending test

MS 2.03 × 106

(~23 days)
Intel Xeon 6150 2.70 GHz (×2,
36 cores)

FEM-AI 35.5 1 CPU (averaged over
10 simulations)

Fig. 6 Nanoporous beam under bending load modeled with different methods. Comparison of force per unit length in z of the beam as a
function of displacement in y (left) based on fully atomistic simulations (red markers) and a large deformation finite element calculation
equipped with the AI-based constitutive elastic relation (black line), as well as the FEM model with size-independent constitutive relation (blue
line). The dashed lines are the system response ignoring the large deformation effects. Strain fields calculated at two different beam
deflections of 6 and 40 nm based on MS and FEM-AI are shown on the right side.
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geometric shapes to the experimentally observed porosity in
specific materials and applications.
The present work opens up many opportunities for efficient and

yet accurate inverse design strategies. For future work, the current
methodology can be extended to study similar engineering
materials with complex inherent porosity features such as
metamaterials, biological matter, additively manufactured materi-
als, batteries, or foams62–64. Investigations should be done to
compare the introduced AI-based model with more advanced non-
local elasticity models such as introduced by the micropolar60 or
peridynamics65 theory frameworks. Furthermore, instead of finding
the symmetric part of the stiffness tensor as an output, one can
focus on obtaining the total scalar elastic energy as a function of
the given deformation gradient. In this manner, one can also derive
physics-based material non-linearities for the hyperelastic response.
The proposed approach may also be extended to perform studies
on arbitrary (nano-) composite volume elements with various
phases. As a result, one can obtain not only the mechanical
properties (e.g., stiffness tensor) but also other physical properties
such as effective thermal conductivity or the mobility of chemical
species in such complex types of matter. The reported collection of
data can also help to understand how the porosity with an arbitrary
shape influences the overall stiffness. Such information could be
further used for developing damage models at coarse-grained
scales. In other words, the structure-dependent change in the
stiffness tensor, for instance, due to creep porosity or micro-
fracture patterns, can be used to represent the level of damage or
degradation due to the change in porosity within each material
point. Finally, other fundamental and essential properties such as
direction-dependent fracture energy66 may be extracted from
atomistic simulations. The anisotropic fracture energy and elastic
properties can be directly passed to macroscopic phase-field
damage models at larger scales for conducting efficient calcula-
tions based on atomistic data.

METHODS
In this section, the general workflow to create the atomistic data, the
network architecture, and the training procedure are explained. The inputs
to the atomistic part are the initial box size, the desired ranges of the
porosity volume fraction and shapes as well as the number of random

configurations. The outputs are the images of the atomic structure of the
porous simulation box and the numerical value of the elasticity stiffness
tensor. The network input is the images, and the output is the components
of the elasticity tensor.

Workflow and preparation of atomistic data
An important step in training a neural network consists in obtaining an
accurate and diverse set of training data. In this work, we use MS to
calculate the anisotropic elastic constants of fcc aluminum with randomly
distributed porosity. The Mishin embedded atom potential57 in conjunc-
tion with LAMMPS67 is employed to calculate the elastic constants. Note
that this interatomic potential is very accurate in the prediction of elastic
properties of Al. The bulk modulus predicted by the potential is within a
3% error of density functional theory (DFT) calculations68. The surface
energies generally agree with the values reported in the literature,
however, with larger errors of about 20%57. The fully periodic simulation
box size is set to (Lx, Ly, Lz)= (20, 20, 3)a0 where a0= 4.05Å is the lattice
constant. The schematics of the method along with exemplary nanoporous
structures are shown in Fig. 7.
The box is periodic in all directions, representing an infinite array of the

pore structure. Initially, the box is filled with N= 4800 Al atoms. Then a
random target porosity volume fraction in the range of (0, 90) percent is
selected. The porosity volume fraction is defined as

p ¼ N � n
N

´ 100; (4)

where n and N are the numbers of atoms in the porous and non-porous
(filled) boxes, respectively. Note that p is 0% and 100% in the case of a full
simulation box (n= N) and empty space (n= 0), respectively.
The procedure to generate the atomistic data is as follows: first a target

porosity volume fraction, for brevity, referred to as porosity in this work, is
randomly selected. Then a pore with either a rectangular or a circular
shape is created by removing the atoms from the box using the LAMMPS
“region” and “delete_atoms” commands. The pore geometry and position
are selected randomly with the edge lengths in the range of (L/64, L/3)
where L= Lx= Ly for the rectangular and the radius in the range of (L/32, L/
4) for the circular pore. Then the porosity (p) is calculated and compared to
the initially selected porosity. If the p is above or equal to the desired value,
the geometry is accepted and the calculation for relaxation and
subsequent elastic stiffness follows. Otherwise, another random pore is
created as explained above. This procedure is repeated in a loop until p is
above or equal to the desired porosity value. After the desired porosity
volume fraction is reached, the atomistic sample is relaxed to a zero stress
state using a combination of the conjugate gradient and FIRE algorithms,

Fig. 7 Schematic of the workflow. Depicting the elasticity tensor calculation from molecular statics and corresponding image-based artificial
intelligence prediction. In the binary image generated from the corresponding atomistic structure, the pore area is indicated in black while
the solid material region is in white. Selected examples of the randomly generated circular and rectangular pore structures are shown in the
bottom row.
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which is a damped dynamics method described in69. Once all stress
components (including shear components) are zero, the elastic stiffness
calculation is performed using the script in LAMMPS which works by
distorting the system infinitesimally in different directions and calculating
the change of stress, thereby, measuring the components of the elasticity
tensor. The details of this script are available in the example folder of the
LAMMPS source code.
In addition to the porosity volume fraction introduced in Eq. (4), we

introduce an atomistic measure for quantifying the pore dispersion

d ¼ ns
N � n

´ 100; (5)

where ns is the total number of surface atoms, identified using common
neighbor analysis70. Note that for a given porosity volume fraction p, i.e.,
constant N− n, the dispersion d is maximized when the pore surface area,
i.e., number of atoms at the surface ns, is maximized. This typically
translates into dispersing the same pore volume fraction into smaller
average pore sizes. Note that other quantification measures of porous
media such as percolation are also available. In the current case, since the
structures are randomly generated, at each porosity volume fraction level,
we generate many structures with different percolation and dispersion.
Without loss of generality, we consider 2D pore structures in the x–y

plane, while along the z direction, no structure variation is assumed, i.e.,
mimicking an extruded nanostructure. The scheme presented should also
work for general 3D nanoporous structures, except that the training of the
CNN model becomes computationally more expensive. Thus, only
variations in the x–y plane are important here, resulting in the possibility
of representing the atomic positions and topology of the pores by a single
image. The image is created after full stress relaxation and serves as the
input for the CNN. Note that the images are created using the built-in
dump image functionality of the LAMMPS package with the correspond-
ingly adjusted view and zoom settings. The atom diameter in the image
render is set to 2.9Å to make sure the bulk fcc parts of the box are
rendered as full white regions. The corresponding outputs are the
components of the elasticity tensor.
Two datasets with circular and rectangular pore shapes are generated,

respectively. Each dataset consists of about 10,000 cases, resulting in a
total of 20,000 sets of an input image and output elastic constants.
Exemplary pore structures selected from each of the datasets are shown in
the bottom row of Fig. 7. An additional dataset with the size of 3000 (2000
circular and 1000 rectangular pores) is also created and reserved for testing
the prediction capability of the trained network. All the atomistic data are
filtered to remove unphysical cases resulting from the instability of the
random structures or numerical issues in the calculation of the elasticity
tensor. A simulation case is removed from the dataset if

1. the determinant of C is negative, or
2. any of the normal components of the elastic tensor (Cii for i∈ 1, 2, 3)

are above or below 130 or −0.01 GPa, respectively.

The first condition enforces that the elasticity tensor is positive-definite
and thus non-singular (can be inverted into compliance tensor). However,
this condition alone does not exclude unphysically large values of the
elasticity tensor due to numerical issues in unstable cases. Therefore
the second condition is introduced. Note that the maximum value
of the normal component of the elasticity tensor for the bulk defect-free
material is about 114 GPa. A small negative value of −0.01 GPa is still
allowed to account for inherent fluctuations in the atomic calculations.
After the application of the above-mentioned filtering scheme on all
23,000 simulation cases, the remaining data is divided into 17,172, 1000,
and 2572 cases for training, validation, and testing, respectively. Note that,
in addition to ensuring that only physically correct data are used for
training the network, one may include the physical constraints directly into
the network as well. In this context, the first condition above can be
treated as an additional non-equality constraint in the network loss
function. However, in the current work, the physical filtering of the training
data will implicitly result in a network with physically correct predictions.
The simulation boxes are represented by images with a resolution of

256 × 256 images. At this resolution, each atom is represented by about
12 × 12 pixels, which is more than enough to represent an arbitrary pore
structure in the simulation box. The focus in the present work is only on 2D
structures. Furthermore, calculation of the elasticity tensor at finite
temperature is an important extension that involves post-processing of
the results in terms of ensemble averaging of the oscillating atomic
positions. However, in the current work, we focus only on static results.

Network architecture and training
Using ML has become ubiquitous in material science (see refs. 71–82 for a
review). These applications include accelerated material discovery83–86,
efficient interatomic potential development87–90, feature identification
from complex patterns that have relevance for materials performance91–95,
or facilitating predictive simulations which solve macroscopic (non-linear)
partial differential equation systems24,40,96. This has the potential to
revolutionize continuum-based simulations of materials, allowing a
substantial enhancement in the modeling of systems and topologies with
high complexity. Macroscopic simulations (with or without AI) require
homogenized and averaged material property descriptors, e.g., elastic
constants and yield strength, as their inputs. In a multi-scale approach,
these macroscopic properties are estimated using microscopic simulations
like molecular dynamics or ab initio calculations97. Interestingly, ML has
been also applied to replace (at least partially) the expensive microscopic
simulations. These efforts include replacing the computationally costly
interatomic ab initio force calculations with a neural network98 or replacing
the trajectory prediction using graph neural networks99. A common feature
of these ML solutions is that the atomistic coordinates are transferred to
the network as its input.
Unlike these approaches, in our case, we use the image of the

microstructure as the input and predict the aggregated effect of the
interatomic forces and the arrangements of the atoms. In this respect, our
work is similar to the approach introduced in100 where 2D X-ray images of
the microstructure are used as the input, and macroscopic material
properties like porosity, specific surface area, and average pore size of each
image are computed. CNN models of homogenized mechanical properties
have been trained in relation to mesoscopic microstructure with multiple
phases46–48, whereby the classical continuum theory was applied to each
phase and for the evaluation of the effective properties. Our approach
differs fundamentally from these CNN models in the sense that we apply
atomistic calculations to obtain the property which automatically maps the
surface effects, namely, the elastic stiffness changes resulting from the
surface reconstructions of the many atoms surrounding the pores, and
thus can recapitulate the resultant size dependency.

Neural network architecture. Neural networks vary in their basic neural
units, the arrangement of these units in the layers and their connectivity,
the character of the loss functions (e.g., in terms of the quantification of
the deviations of the predicted values relative to the reference values in
the training data), and the “reductionist” spirit of the network design (e.g.,
see refs. 101–103). We build our neural network under the assumption that
the macroscopic properties can be obtained as a non-linear function of the
coarse-grained local information. In other words, the network extracts the
local information, coarse grains it, and finally passes this information to a
(learnable) non-linear function. This is reflected in the architecture of our
neural network, as shown in Fig. 8.
Given that (i) the input to our network is an image and (ii) the first step is

to extract the local information, we use convolutional layers which are the
most widely used neural network architecture for image processing104. We
apply, successively, a number of convolutional layers where each layer is
accompanied by a coarse-graining step which is implemented by a max

Fig. 8 The artificial neural network architecture used in this work.
Consists of a convolutional part (left) and dense layers (right). The
input is a 256 × 256 pixel binary image and the output is a set of
13 scalar values of the elasticity tensor.
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pooling operation. The convolutional layer is commonly coded in the form
of a simple matrix (of much lower rank compared to the image size). This
matrix, which is commonly referred to as the kernel, is sequentially slid
across the image and multiplied at each sequential position with a subset of
the input array such that the output enhances certain topological pattern
features such as edges, corners, gradients, etc. As a rule of thumb, including
more kernels in the design of the network leads to a better performance of
the network; simply put, the network then has a larger potential for
detecting features. As mentioned before, candidate quantities for these
features could be gradients, edges, etc. Note that these features are not
hard-coded. Instead, the network learns by itself what the important
features are. The process of learning the elements of these kernels is as
follows. The elements of this matrix are initially set to be random numbers
but during the training phase, the neural network learns an appropriate set
of values for these elements such that (together with the rest of the
network) the prediction error is minimized. To enable the network to obtain
different types of (necessary) information, a number of kernels are used.
After feature extraction and coarse-graining, the most coarse-grained
information is mapped to the homogenized properties via a number of
dense layers, which is essentially a non-linear transfer function. Note that the
latent space in our network is relatively large, i.e., each microstructure image
is mapped into 24,576 scalar descriptors which are learned during network
training. Such a large array of descriptors is of course not readily
interpretable by users but will provide the flexibility to our network to
condense the microstructure information and transfer its important features.
The neural network that we utilized here is very similar to the encoder part

of the U-Net architecture102, which has been shown to be well suited for
capturing solutions to solid mechanics PDEs24. Generally speaking, the
encoders map the information from one space to another, where the second
space is smaller in its dimensions. Later, this condensed information is passed
to the decoder whose task is to map the information from the low
dimensional space back to a high dimensional space. In the case of the U-Net,
the high-dimensional input is an image (which is for example a RGB image
showing an object). This image is transferred to the encoder and condensed to
a much smaller image. Then, the condensed data is sent to the decoder which
creates an image with the size of the original image (which is for example a
mask indicating the positions of that object in the original image). In the
current approach, we replace the decoder with a trainable non-linear function
(i.e., the dense layers shown in the top right part of Fig. 8) which maps the
encoded representation to the scalar output values of the elasticity tensor.

Neural network training. In the current implementation, for the convolu-
tional layers a kernel of size k × k with size k= 20 is used. The kernel size
used here is considerably larger (i.e., ≃6 times) than that used in the
original CNN design. The rationale behind using a larger size is to capture
more features of the non-local effects. The number of channels
progressively increases from one channel input data to the embedded
space which has 96 channels as shown in Fig. 8. After that, we use five
dense layers in conjunction with a rectified linear unit activation function,
which is accompanied by the last dense layer with no activation function
(i.e., the identity activation function). The training is performed by
minimizing the loss function which measures the mean squared difference
between the predicted and atomistically calculated values across all the 13
outputs. Note that, as it was explained in the “Results” section, only 13
components of the full elasticity tensor are independent in the current
case. This error minimization is done using the ADAM optimizer105, which
is a stochastic first-order gradient-based method. The parameters of the
ADAM optimizer are set to β1= 0.9, β2= 0.999, ϵ= 10−7, and a learning
rate within the range [1, 2] × 10−4. We use random samples in batches of
size 128 for the gradient estimation and continue training for 1000 epochs.
In each epoch, the complete training dataset is used. The data is divided
into training and validation sets as explained in the “Results” section.
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