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Electronic-structure theory is a strong pillar of materials science. Many different computer codes that employ different approaches
are used by the community to solve various scientific problems. Still, the precision of different packages has only been scrutinized
thoroughly not long ago, focusing on a specific task, namely selecting a popular density functional, and using unusually high,
extremely precise numerical settings for investigating 71 monoatomic crystals’. Little is known, however, about method- and code-
specific uncertainties that arise under numerical settings that are commonly used in practice. We shed light on this issue by
investigating the deviations in total and relative energies as a function of computational parameters. Using typical settings for basis
sets and k-grids, we compare results for 71 elemental' and 63 binary solids obtained by three different electronic-structure codes
that employ fundamentally different strategies. On the basis of the observed trends, we propose a simple, analytical model for the
estimation of the errors associated with the basis-set incompleteness. We cross-validate this model using ternary systems obtained
from the Novel Materials Discovery (NOMAD) Repository and discuss how our approach enables the comparison of the

heterogeneous data present in computational materials databases.
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INTRODUCTION

Over the last decades, computational materials science has
evolved as a paradigm of materials science, complementing
theory and experiment with computer experiments?. In particular,
density-functional theory (DFT) has become the workhorse for a
plenitude of computational investigations, representing a good
compromise between precision and computational expense,
thus allowing for the investigation of realistic systems with
affordable numerical effort®. The widespread application of
electronic-structure theory was especially fueled by the devel-
opment and distribution of many user-friendly and computa-
tionally efficient simulation packages (termed codes in the
following) based on DFT*. Essentially all these codes rely on the
same fundamental physical concept and solve the Kohn-Sham
(KS) equations® of DFT self-consistently by expanding the Kohn-
Sham states in a finite basis set. Moreover, apart from the choice
of the basis set, different approximations and various numerical
techniques and algorithms are employed. Inherently, this raises
the question how consistent, and hence, how comparable,
results from different codes are.

In 2016, a synergistic community effort led by K. Lejaeghere and
S. Cottenier' has shed light on these issues, essentially concluding
that “most recent codes and methods converge toward a single
value”. This concerns, however, only the investigated relatively
robust case of computing the equation of states for elemental
solids™® using the PBE exchange-correlation (xc) functional. In this
context, it has to be noted that such a close agreement across
codes and methods was only achieved by using safe numerical
settings that guaranteed highest precision and that are rarely used
in routine DFT calculations. In practice, such settings are often not
even necessary as long as only data obtained by the same
methodology, code, and settings are used, because then one
benefits from error cancellation, and trends are described reliably.

Over the last decade, the increased amount of available
computational power as well as the maturity of existing first-
principles materials-science codes made it possible to perform
computational studies in a high-throughput fashion by scanning
the compositional and structural space in an almost automated
manner’~'%. In such a case, the numerical settings have to be
decided a priori in such a way that the trends of the properties of
interest are captured. Often, this is achieved via educated guesses,
sometimes via (semi-)automatic algorithms''"2, Since the proper-
ties of interest differ in different investigations, also the numerical
settings can vary quite significantly’>~'>, This has some impact on
the possibility of reusing data beyond its original scope and
purpose. Also, comparing data from different sources-created
using different methodologies and settings or focusing on
different properties—is not risk-free, in spite of the fact that the
data may be publicly available in databases and repositories, as for
instance, in the NOMAD Repository's, AFLOW'”'8, Materials
Project'®, OQMD®, Materials Cloud?°, the Computational Materials
Repository?', and alike. In a nutshell, using data from different
sources that are based on different numerical settings implies
potentially uncontrollable uncertainties. This is a pressing and
severe issue, given that the sheer amount of calculations existing
to date prevents a human, case-by-case check of the data.

In this work, we describe a first step for overcoming this
unsatisfactory situation and show how errors for data stemming
from DFT computations can be estimated. We emphasize that we
do not investigate errors that originate from the use of
approximate physical equations, e.g., the use of a particular xc-
functional. We rather focus on numerical aspects, i.e., on errors
arising from the fact that the same equation is solved in different
approaches by employing different numerical approximations and
techniques. Note that different treatments of exchange and
correlation can, however, require different numerical settings for
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convergence, as discussed in sec. “Discussion”. To this end, we
systematically investigate the numerical errors that arise in total
energies and energy differences when three different methodol-
ogies are applied, using representative DFT codes as examples.
These are the linearized augmented plane-waves plus local orbitals
ansatz, as implemented in the all-electron, full-potential code
exciting??, the linear combination of numeric atom-centered
orbitals (NAOs) method as implemented in the all-electron, full-
potential code FHI-aims?3?4, as well as the projector-augmented
wave (PAW) formalism?®, as implemented in the package
GPAW?®?7, All electrons are accounted for on the same footing
in the self-consistency cycle in the first two methods. Conversely,
core states are frozen in the PAW approach and valence states are
mapped onto smooth pseudo-valence states using a linear
transformation involving atom-centered partial wave expan-
sions®°. These pseudo-states are smooth and represented in a
plane-wave expansion (throughout this work, we use the PAW
potentials recommended by the GPAW developers). In the
following, we evaluate and analyze the numerical errors arising
in these different formalisms at various levels of precision (see sec.
“Methods”) and then suggest how to estimate the errors
associated with the basis-set incompleteness and, consequently,
get access to the complete-basis-set limit for total energies and
energy differences.

RESULTS
Overview

To cover the chemical space in the benchmark calculations, a set
of representative materials is chosen. This includes the 71
elemental solids that have been studied in the aforementioned
work by Lejaeghere and coworkers' and also includes binary
materials (one for each element with atomic number <71; noble
gases excluded). The atomic structures and detailed geometries
were taken from the experimental Springer Materials database
(https://materials.springer.com) by selecting the energetically
most stable binary structure for each particular element. We use
the T = 0 K experimental geometries. Zero-point vibrational effects
are included in these experimental values and are not corrected
for in the calculations. This is fine as we only need a consistent
treatment for all calculations and materials. On top of that, 10
ternary materials were chosen from the NOMAD Repository
(https://repository.nomad-coe.eu). A detailed list including space
groups, stoichiometric formulae, structures, and references to the
original scientific publications is given in the Supplementary
Discussion section.

In this section, we focus on the convergence and related errors
of two fundamental properties, i.e., the absolute total energies Eo;
and relative energies E,. The latter were computed as the total-
energy difference between the original unit cell and an expanded
cell, with 5% larger volume and scaled internal atomic positions.
While E includes both the energetic contribution from core and
valence electrons, E, is less sensitive to contributions from the
core and semi-core electrons due to benign error cancellation.
Accordingly, E, is a good metric to quantify the typically needed
numerical precision for energy differences as well as potential-
energy surfaces. It also sheds light on the errors that would occur
in properties derived from the total energy, like elastic constants,
vibrational properties, and alike. In our evaluations, the error for
one material i in a data set x; is always defined with respect to the
“fully converged” reference value ¢; as indicated by the notation
Ax; = Xx; — ¢;, e.9., AEyo; for the total energy error of material i. To
statistically analyze the errors across the full set of materials with N
entries, we report the mean absolute error

1 N
() = > Il M
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and the maximum error

max(Ax) = max|Ax;|. )

Here, we limit the discussion to data computed with the PBE xc-
functional. The numerical errors occurring with a different type of
generalized gradient approximation (GGA) or the local-density
approximation (LDA) show the same qualitative behavior and only
minor quantitative differences (see Supplementary Discussion).
However, quantitative differences occur for beyond-DFT methods,
as discussed in sec. “Discussion”.

In the following, we first summarize the trends observed for the
elemental solids (sec. “Elemental Solids”). When discussing errors
related to the basis set, we always compare to calculations that are
“fully converged” with respect to k-points. Likewise, errors arising
from an insufficient k-point density are discussed for “fully
converged” basis sets, since the errors arising from either source
can be considered independent of each other. In all cases, a
simple summation approach with a Fermi-function smearing of
100 meV is used for the BZ integration. The observed trends allow
us to propose a simple mathematical model to estimate the error
associated with the basis set for any compound and any of the
investigated codes, as exemplified in sec. “Predicting errors for
binary and ternary systems” for binary and ternary materials.

Elemental solids

First, we address the convergence with respect to the size viz.
degree of completeness of the basis set. The results are shown in
Fig. 1. In the case of exciting, the atom-specific settings, which
are kept fixed in all calculations, correspond to a sizable number
of local orbitals that ensure well-converged ground-state calcula-
tions and transferability between different compounds. The
remaining (and most widely used) parameter to judge the quality
of the plane-wave basis is RKnyax, wWhich is the product of the
radius of the smallest atomic sphere and the plane-wave cutoff
(for details, see ref. 22). Choosing the optimal value RK2R: such
that it corresponds to a convergence of the total energy of about
0.1 meV/atom, we use the squared fraction (RKmaX/RKﬁnF’a‘X)2 to
label the basis-set quality, see Supplementary Methods for details.
For FHI-aims, which uses tabulated, chemical-species-specific
sets of NAOs, the number of NAOs per electron is used as metric.
Note that these NAOs come in tiers that group different angular
momenta®3. The average number of basis functions per electron
present in these tiers and in the species-specific suggested
settings (“light”, “tight”) provided by the FHI-aims developers
are shown as black and gray vertical lines in the figures. Since the
“translation” from the number of NAOs into this metric requires
binning (not all elemental solids appear for all values of the
x-axis), the reported errors do not decrease monotonically. It is
important to note that tier 4 sets are not provided for all
elements, but only for those species for which such an additional
set of basis functions improved the description of the electronic
structure during the basis-set construction procedure?®. Accord-
ingly, only these problematic elements determine the errors
shown for 9 and more NAOs per electron. The more benign
elements, that are already fully converged in this limit, no longer
enter the shown average error, since the developer-suggested
settings do not allow for more than 8 NAOs per electrons for
these species. In the plane-wave code GPAW the basis set is
characterized by the cutoff energy E., i.e., all plane waves with a
kinetic energy smaller than E. are included in the basis set. Note
that this affects the convergence of relative energies, since, for
the same value of E. cells with different volume contain
different number of plane waves.

As evident from Fig. 1, the errors in the total energy exhibit a
systematic convergence with increasing basis-set size for all three
codes. Generally, the maximum error in the total energy can be
even roughly one order of magnitude larger than the average
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Fig. 1

Energy convergence with basis-set size. Average (black/orange) and maximum (red/blue) error in Eo (a—c) and E,¢ (d-f) are shown as

a function of basis-set size. The data was obtained with exciting (a, d), FHI-aims (b, e), and GPAW (c, f) for the 71 elemental solids (PBE, 8 A
k-point density). Note that we use a logarithmic scale for the energy axis and different energy windows in the upper and lower row. See text
for a discussion of the different metrics used in the different codes to quantify basis-set quality. The green dashed horizontal lines indicate

values of typically wanted precision.

error. This is due to the fact that numerical errors are element
specific, i.e.,, some chemical species require a large basis set to be
described precisely. This is reflected by the fact that the difference
between average and maximum error is more pronounced in
the results for FHI-aims and GPAW (Fig. 1) due to the metric
chosen to quantify the basis-set completeness, i.e., the x-axis in
this figure. While FHI-aims and GPAW use an absolute metric,
exciting uses a relative one, i.e. fractions of species-specific
values RKSPL . In this case, the fact that the developers provide
well-balanced, species-specific values for RKS% ensures that a
similar precision is achieved for all species at a specific fraction of
(RKmax/RK‘r’nE;X)Z. In turn, this leads to a more consistent precision
across material space and thus to smaller maximum errors at a
given value of (RKmax/RK"mp;X)z. For all three codes, the average
and maximum errors in total energies are roughly one to two
orders of magnitudes larger than the ones for relative energies.
Again, this finding reflects that the main source for imprecisions in
the total energy is species specific and leads to a beneficial error
cancellation in energy differences.

Eventually, it is important to note that the numerical errors vary
considerably for different species, types of bonding, and across
methodologies, as detailed in the Supp. Material. Naturally, plane
waves are more suitable for quasi-free-electron systems like
aluminum, whereas NAOs perform better for inert elements
like rare gases or localized covalent bonds. These observations,
dating back to the early days of electronic-structure theory and
predating modern DFT implementations, are among the historical
reasons®® that actually led to the development of the different
methodologies discussed in this paper. Accordingly, also the
above described trends for the numerical errors, their influence
on computed observables, and their numerical as well physical
origin have been discussed®*=3!" and reviewed? in literature
before. Most importantly, the finding that errors are largely
species-specific can be rationalized by the fact that changes in
the kinetic energy of core electrons, despite being orders of
magnitude larger than total-energy changes, vanish to first-order
in charge-density differences®3. For instance, this aspect is directly
exploited in the VASP code3** for an automatic convergence
correction®®. Due to this automatic convergence correction, the
total energy output of VASP does not necessarily decrease
monotonically when E. is increased, as it is the case in most
common PAW implementations. Accordingly, an analysis of this
code-specific aspect goes beyond the scope of this paper.
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Fig. 2 Energy convergence with k-point density. Average (a) and
maximum error (b) observed for the elemental solids are shown for
two different k-point densities py. The calculations were carried out
for the elemental solids with exciting, FHI-aims, and GPAW
using the PBE xc-functional. A simple summation with a Fermi-
function smearing of 100 meV is used for the BZ integration to
facilitate comparison between codes.

p=4A

Nonetheless, a complete, consistent VASP data set covering the
materials discussed in this work is available via the NOMAD
repository at https://doi.org/10.17172/NOMAD/2020.07.29-1. In
sec. “Predicting errors for binary and ternary systems”, we will
exploit this fact for the three codes exciting, FHI-aims, and
GPAW to predict errors a priori for multicomponent systems using
information from the elemental solids.

Let us now inspect the errors in total energies that arise due to
the finite reciprocal-space grid. Figure 2 shows results for k-point
densities of 2 and 4 A. Data obtained with a k-point density of 8 A
serves as “fully converged” reference. The rather large observed
errors result from the fact that many elemental solids are metallic
with a more involved shape of the Fermi-surface, so that a
substantial number of k-points is required to reach convergence.
Quite consistently, all codes yield average errors of the same
order of magnitude if the same k-point densities are used,
despite the fact that the three codes handle the numerical
details of the reciprocal-space integration differently. This is
reflected in the maximum errors, which vary slightly more
between codes than the average ones. Again, we observe that
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the maximum error is approximately one order of magnitude
larger than the average error.

Predicting errors for binary and ternary systems

Following our discussion of the errors in total and relative energies
of elemental solids stemming from the basis-set incompleteness,
we propose to estimate the corresponding errors for multi-
component systems by linearly combining the respective errors
observed for the constituents in the elemental-solids calculations
at the same settings. This follows the above discussed observation
that there are chemical species that require larger basis sets to
reach convergence. This is in fact independent of the employed
code. For the error in the total energy we simply assume:

— 1
AEior = N 2’: NiAEror, (3)

N, being the number of atoms of species I. For AE,, we proceed
analogously. Note that in the case of O, F, and N, the elemental
solid is a molecular crystal that is not a good representative for the
binding in the various oxides, fluorides, and nitrides present in the
binaries data set. For this reason, we determine the values of AE
for these particular elements from the binaries MgO, NaF, and BN
by inverting Eq. (3).

To validate the ansatz of Eq. (3), we have computed the total
and relative-energy errors for 63 binary solids using the exact
same strategies used for the elemental solids in sec. “Elemental
solids”. In Fig. 3, we then compare these real errors observed in
the calculations for binary systems for two basis-set sizes for each
of the three codes to the estimated errors obtained via Eq. (3). As
shown in these plots, we generally obtain quite reliable total
energy predictions for all three codes by this means. For the total

Estimated AETM (CV/ atom)

-3

Estimated AEM (cV/atom)

energies (top panels), we observe better predictions when an
“unbiased” and smooth metric is used to characterize the basis-set
completeness. For instance, GPAW, which uses the atom-
independent plane-wave cutoff E. Yields an almost perfect
correlation between predicted and actual total energy errors.
Conversely, more scattering is observed for FHI-aims, which
uses an atom-specific, granular metric with different NAOs for
each atom. Nonetheless, we find a clear correlation between the
predicted, AEy:, and the actual errors, AFE,, for all codes. In
particular, this holds for absolute energy errors larger than >
10 meV/atom. This demonstrates that the relatively intuitive
relation formulated in Eq. (3) can serve as a reliable estimate for
the error associated with a particular total-energy calculation.
For the relative-energy errors shown in the lower half of Fig. 3,
we observe more scattering and a less neat correlation between
predicted and actual errors. The reason for that is twofold: First,
benign error cancellation reduces numerical errors in relative
energies, since total energy differences are inspected. In other
words, a large portion of the species-specific errors described by
Eg. (3) cancel each other out when computing relative energies as
a difference. For this exact reason, relative energies are generally
less affected by numerical errors (see Fig. 1 and its discussion).
Second, relative errors are—in contrast to total energies—non-
variational, i.e., they do not necessarily decrease monotonically
with basis-set size. The reason is that the errors associated with
the two total energies entering the relative energies typically do
not decrease at the exact same rate. Still, the relative-energy error
estimates for all codes are reliable enough in the respective
energy window of interest, hence allowing us to compare relative
energies obtained from different codes with different settings.
The data shown and discussed for the binary materials suggest
that Eq. (3) can be used to estimate the total energy errors for any

Estimated AEM ch/atom)
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Fig. 3 Numerical Error Prediction. Estimated vs. actual numerical errors in E, (@-c) and E,o (d
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—f) for 63 binary systems. Two basis-set sizes

were considered for each of the three employed codes, i.e,, exciting (a, d), FHI-aims (b, e), and GPAW (c, f). The structures were chosen
from the experimental Springer Materials database (https://materials.springer.com) by selecting the energetically most stable binary structure
for each particular element. Note the logarithmic scales and the different energy windows in the upper and lower row.
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Fig.4 Estimated vs. actual numerical error in the total energy of ternary systems. Two basis-set sizes were considered for each of the three
employed codes, i.e, exciting (a), FHI-aims (b), and GPAW (c). Note that Ca,CdP, Na,lrZn, and Li,SnCl exhibit very similar errors and are

thus not fully visible for all codes and levels of precision.

multicomponent system. As an example, we demonstrate this in
Fig. 4, in which the same comparison between predicted and
actual total energy errors is made for ten ternary systems, which
were selected from the huge pool of compounds available in the
NOMAD Repository'® so to cover material and structural space.
Also in this case, the same quantitative and qualitative behavior as
discussed for Fig. 3 is observed. The relatively simple approach of
Eq. (3) is able to correctly predict the numerical errors also in these
ternary systems. This further substantiates that the described
approach is not only applicable to the relatively simple binary
systems discussed in Fig. 3, but also to more complex systems, as
the ones found in electronic-structure materials databases.

DISCUSSION

The focus of the formalism presented in sec. “Results” lays on the
analysis of total and relative energies, since those are the most
fundamental quantities produced in electronic-structure-theory
calculations. However, such first-principles approaches also allow
computing many other material properties, ranging from struc-
tural parameters, over thermodynamic expectation values, to
electronic properties. Generally, these quantities will exhibit a
different convergence behavior than the total and relative
energies. In particular, this is the case for non-variational proper-
ties that do not depend monotonically on the basis-set size and
k-grid density.

As an example, we discuss the numerical errors associated
with the evaluation of the stress tensor @. Its components are
defined as37-38

or — 1 0ot
MoV % |og '

i.e, as the total energy derivatives with respect to symmetric strain
deformations ¢, for the Cartesian axes A, u normalized by the
unit-cell volume V. Despite the fact the stress is defined as a total
energy derivative, it is well known3® that it is particularly sensitive
to the value of E, chosen in plane-wave calculations. This is
further demonstrated for the GPAW code in Fig. 5 using the trace
of the stress tensor tr[g], as computed for the experimental lattice
constants and structures. Qualitatively, the average and maximum
errors observed for the stress resemble the behavior observed for
GPAW's total energy convergence quite closely, as a comparison of
Figs. 1 and 5 reveals. This is not surprising, given that stress and
total energy are directly related via Eq. (4). However, obtaining
meaningful values for the stress, i.e., values accurate enough to
perform reliable structure relaxations, requires roughly 50% higher
cutoff energies E.; than needed to obtain reasonably converged
total energies. Let us note that the contributions to the numerical

(4)

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

10 E T T T T T T T T T T T T 3
10k GPAW -
<10 max(Atr[o]) 3
—10°F I
5 F 3
b - -
RN oL EEE PP PRI L ELELEL —3
10°E 3

E 1 I 1 1 1 I 1 1 1 I 1 1 3

400 800 1200
E_(eV)

cut
Fig. 5 Average (black circles) and maximum numerical error (red
squares) for the trace of the stress tensor o as function of the
cutoff energy E . All calculations were performed with GPAW using
the PBE functional and an 8 A k-point density for 71 elemental solids
and the experimental lattice constant. The dashed green line highlights
the typical error acceptable in high-accuracy lattice relaxations.

error in the stress tensor stemming from the finite k-grid density
are much smaller than those arising from E., as found for the
total energy before (see Fig. 2). With respect to the basis-set
convergence, the observed trends suggest that the strategy
devised in this work for total and relative energies might also be
useful for estimating errors in first-order derivatives of the total
energy, i.e, for forces and stresses, which only depend on an
accurate description of occupied electronic states*. More data,
especially for structures far from equilibrium, is needed to further
investigate this hypothesis and to develop accurate error-estimate
models for such quantities.

Not all material properties of interest solely depend on
occupied electronic states, e.g., evaluating opto-electronic proper-
ties specifically requires the eigenvalues (and/or wavefunctions) of
unoccupied electronic states. As an example for such kind of
properties, we show in Fig. 6 the error of the Kohn-Sham band
gap, AEgg, as obtained for the 71 elemental solids from band-
structure calculations with FHI-aims along high-symmetry paths
in the Brillouin zone*'. The comparison of Fig. 6 with the
respective total energy convergence plot in Fig. 1 shows that the
range observed for both average and maximum errors in Egg
spans almost twice the orders of magnitude obtained for Ei,
substantiating that larger basis sets are required to converge Egg.
Furthermore, we note that the numerical errors do not decrease
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Fig. 6 Average (black circles) and maximum numerical error (red
squares) for the Kohn-Sham band gap Egg as function of the
number of basis functions per electron. All calculations were
performed with FHI-aims for 71 elemental solids using the PBE
functional and an 8 A k-point density. Vertical black (L/T) and gray lines
(T1,T2,T3) denote the average number of basis functions for different
settings and tiers, as in Fig. 1. The inlet shows the relative errors in
percent with respect to the fully converged band gap. The dashed
green line highlights the typical error acceptable for obtaining reliable
electronic properties, e.g., Fermi-energies and effective masses.

monotonically. In part, this is a consequence of the fact that the
band gap is a difference of two values that exhibit different,
non-variational convergence. Furthermore, we see again the effect
of the employed “binning” procedure discussed for E, above
(e.g., the peak at 5.5 basis functions per electron). In the case of
the band gap, the latter is particularly important, since the
calculated band gaps span a wide range, starting from virtually
zero, e.g., for graphite, and reaching 17 eV for the rare gas helium.
For this exact reason, the relative numerical errors for Egc, shown
in percent of the converged value in the inlet of Fig. 6, exhibit a
more regular—but still non-monotonic—behavior. As it was
observed for the evaluation of the stress, computing reasonably
converged band gaps hence requires roughly 50% larger basis
sets than needed to achieve total energy convergence.

As noted in the introduction, we have restricted our analysis to
(semi-)local xc-functionals, since such kind of calculations are the
current workhorse in computational high-throughput studies and
hence constitute the uttermost majority of data stored in existing
electronic-structure theory databases'®. However, it is well known
that beyond-DFT methods require larger basis sets to achieve
convergence in total energy*’. For the generalized hybrid
functional HSE06*3, which incorporates a fraction of non-local,
exact exchange, this is demonstrated in Fig. 7, which shows the
correlation between the numerical errors observed in the total
energy of the 71 elemental solids for the PBE and HSE06 functional,
respectively. Especially when compared to the LDA/PBE correlation
plot shown in the Supplementary Discussion, it is obvious that the
numerical errors are typically larger in HSE06 calculations. None-
theless, there is a clear qualitative correlation between PBE and
HSEO6 errors, suggesting that the strategies developed in this work
might also be useful for beyond-(semi-)local-DFT databases.

In this study, we presented an extensive, curated data set obtained
by three conceptually very different electronic-structure methods.
This set contains elemental solids, binary, and ternary materials for
various combinations of computational parameters. The data have
been used to understand and predict the errors of calculations with
respect to the basis-set quality. More specifically, we have shown that
the errors for arbitrary systems can be estimated from the errors
obtained from systematic calculations for related elemental solids, as
exemplified for 63 binaries and 10 ternary systems covering 13
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Fig. 7 Correlation of the numerical total-energy errors obtained
for the semi-local PBE and the generalized hybrid HSE06
functional. The calculations for the 71 elemental solids are
performed with FHI-aims, “light” numerical settings, a 2A
k-point density, and two different basis sets (minimal, “Tier 1”).

different space groups. Let us emphasize that the presented findings
are not code-specific, i.e, limited to exciting, FHI-aims, and
GPAW. Rather, the qualitative trends observed for the linearized
augmented plane-waves plus local orbitals, the linear combination of
numeric atom-centered orbitals, and the projector-augmented wave
formalisms, respectively, generally hold for all implementations of
these approaches, thus covering the vast majority of codes present in
current material databases. Obviously, quantitative error estimates for
individual codes depend on the details of the implementations and
basis sets, e.g., the chosen local orbitals, the exact definition of the
NAOs, or the employed PAW potentials, and thus require code-
specific reference calculations for the elemental solids. That given,
the developed formalism, which gives surprisingly good results for
total energies despite its conceptual simplicity, can be incorporated
into computational materials databases to estimate errors of stored
data. This is a prerequisite for operating on data collections that
originate from different computations, performed with different
computer codes and/or different precision. Our work may serve as a
starting point for more sophisticated concepts to quantify numerical
errors and uncertainties, especially for more complex materials
properties that do not necessarily depend monotonically on the
basis-set size, e.g., band gaps, forces, vibrational frequencies, and the
relative energies discussed in this work.

METHODS

First-principles calculations

To perform the DFT calculations with these three codes in a systematic
manner, the atomic simulation environment ASE**** is used to generate
the code-specific input files and to store the results using ASE’s lightweight
database module. In this paper, we focus on the two main numerical
approximations that are used to discretize and represent the electron
density n(r) = S |yu(r)|? via the Kohn-Sham wavefunctions (r) for the
individual electronic states /. These are the density of the reciprocal-space
grid (k-grid) for Brillouin-zone (BZ) integrations and the finite basis set
¢a(r) enumerated via j. The Kohn-Sham wavefunctions are written as

Y (r) = upc(r) exp(ikr)  with  up(r) = Zcﬁk¢/k(r)~ ()
)

For the BZ sampling, we use a I-centered k-grid characterized by a uniform
k-point density

i = (Nie/Vez ), (6)

where Ny is the total number of k-points and Vg; the BZ volume.

To discuss and analyze numerical errors, we perform total-energy
calculations for fixed geometries, i.e, without any relaxation, using a
representative set of numerical settings. These are k-point densities of 2, 4,
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and 8 A, respectively, and choices of basis sets that are described in detail
in the Supplementary Methods section. They reflect settings typically used
in production calculations and also include extremely precise numerical
settings that ensure convergence in total energy of <0.001 eV/atom. The
latter are termed “fully converged” reference when we evaluate the error
occurring with less precise (typical) settings. To make sure that no other
numerical errors cloud the ones stemming from the k-grid and the basis
set, all other computational parameters—for example, the convergence
thresholds for self-consistency—are chosen in an extremely conservative
way, as detailed in the Supplementary Methods section.

DATA AVAILABILITY

All presented data, i.e., in- and output files for all electronic-structure theory codes, is
available at the NOMAD Repository (https:/repository.nomad-coe.eu) under the
following DOls. exciting: https:/doi.org/10.17172/NOMAD/2020.07.15-1, FHI-
aims: https://doi.org/10.17172/NOMAD/2020.07.27-1, GPAW: https://doi.org/10.17172/
NOMAD/2020.08.20-1, VASP: https://doi.org/10.17172/NOMAD/2020.07.29-1

CODE AVAILABILITY

The results of this work are available for further analysis as a Jupyter notebook in the
NOMAD Artificial-Intelligence Toolkit (https://nomad-lab.eu/Altoolkit/tutorial-error-
estimates). Therein, errors for arbitrary systems can be calculated via an easy-to-use
interface for various numerical settings for exciting, FHI-aims, and GPAW. The
corresponding Python code can be modified and extended for custom purposes.
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