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Bridging microscopy with molecular dynamics and quantum
simulations: an atomAI based pipeline
Ayana Ghosh 1,2✉, Maxim Ziatdinov 1,2, Ondrej Dyck 1, Bobby G. Sumpter 1 and Sergei V. Kalinin 1

Recent advances in (scanning) transmission electron microscopy have enabled a routine generation of large volumes of high-
veracity structural data on 2D and 3D materials, naturally offering the challenge of using these as starting inputs for atomistic
simulations. In this fashion, the theory will address experimentally emerging structures, as opposed to the full range of theoretically
possible atomic configurations. However, this challenge is highly nontrivial due to the extreme disparity between intrinsic
timescales accessible to modern simulations and microscopy, as well as latencies of microscopy and simulations per se. Addressing
this issue requires as a first step bridging the instrumental data flow and physics-based simulation environment, to enable the
selection of regions of interest and exploring them using physical simulations. Here we report the development of the machine
learning workflow that directly bridges the instrument data stream into Python-based molecular dynamics and density functional
theory environments using pre-trained neural networks to convert imaging data to physical descriptors. The pathways to ensure
structural stability and compensate for the observational biases universally present in the data are identified in the workflow. This
approach is used for a graphene system to reconstruct optimized geometry and simulate temperature-dependent dynamics
including adsorption of Cr as an ad-atom and graphene healing effects. However, it is universal and can be used for other material
systems.
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INTRODUCTION
Over the last two decades, electron and scanning probe
microscopies have evolved as one of the primary tools to study
systems in the domain of physical and life sciences at the atomic to
mesoscopic length scales1–5. Advances in (Scanning) transmission
electron microscopy, (S)TEM, and scanning tunneling microscopy
(STM) measurements produce highly reliable structural and
spectral data containing a wealth of information on structures
and functionalities of materials. In particular, aberration-corrected
STEM inclusive of single-atom EELS imaging allows the study of
single impurity atoms6, structures with grain boundaries7, probe
orbital8,9, and magnetic phenomena10, plasmons11,12, phonons13,
and even the anti-Stokes excitations in complex materials14.
There also exists ample detailed fundamental studies exploring

quantum corrals15, molecular cascades16, quantum dots along
with investigations of surface chemistry17,18 that have been
carried out utilizing STM measurements. STEM offers the potential
for much higher throughput imaging and data generation as
compared to STM due to intrinsic latencies in electron beam
motion and image acquisition. Both in STM and STEM, the probe
can induce changes in materials structure. In STM, this is often
associated with probe damage as well, and in most cases,
perceived as a negative effect; controllable modifications of the
surface by an STM probe are actively pursued for atomic
fabrication and exploration of surface chemistry16,19–21. Compara-
tively, in STEM the changes in material structure do not affect the
probe state, rendering this technique a powerful tool for exploring
metastable chemical configurations and beam-, temperature-, and
chemistry-induced processes22–25. It is possible to manipulate
atoms26,27 and corresponding positions and thereby solids and
molecular systems with both techniques in controlled
environments.

The images generated at different stages of STEM observations
contain a wealth of information of materials structures, function-
ality, and chemical transformation pathways encoded in observed
positions. The information from such experiments can be both
qualitative and quantitative in nature. Images generated by such
observations lead to high-resolution data, creating a platform to
build deep learning (DL) models for finding features28,29,
predicting scalar functional quantities (such as values of ferro-
electric polarizations), or even crafting chemical or structural space
maps. Comprehensive studies30–35 utilizing such datasets com-
bined with modern DL techniques such as convolution networks,
variational autoencoders as implemented in general machine
learning (ML) frameworks36–38 or ensemble settings, have already
shown great potential to advance physics-based understanding of
materials by establishing causal relationships between structures
and properties.
On the other hand, the development and availability of more

computational capabilities including accessible CPU/GPUs, effi-
cient algorithms, and corresponding implementations have
significantly boosted the advancement of physical simulations.
Physical models constructed using first-principles theory to
quantum Monte Carlo (MC) and finite-element methods, spanning
over quantum-mechanical to continuum scales, lead to an
abundance of insights on structural, thermodynamic, and electro-
nic properties of solids, glasses, and liquids. In general, atomistic
simulations provide information on atomic length scales where
continuum theory breaks down and instead complex many-body
quantum-mechanical theory comes into play to model behavior of
each atom and how collectively these atoms give rise to
properties of a material under specific conditions. Even though
such detailed studies have become quite common in the past
decade, atomistic understandings do not readily translate to the
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macroscales, and hence there has been a consistent effort in the
scientific community to merge multi-scale investigations per-
formed across overlapping length and timescales. If we compare
some of the nuances of various simulations, we can easily narrow
down the primary challenges and the need for transferring the
knowledge between each type of these models. For e.g., density
functional theory-based (DFT) computations lead to studying
behaviors of materials conventionally at 0 K and molecular
dynamics (MD) techniques can overcome such challenges by
including temperature-dependent comportment. The accuracy of
MD simulations is often limited by the type of particle–particle
interactions represented by force fields as well as the dilemma to
choose between computation efficiency and length of simula-
tions. Consequently, a slow thermodynamic process like diffusion
cannot always be modeled by this approach and that is where MC
methods can become useful. It is possible to randomly probe
molecular systems using such simulations, enabling researchers to
study various mechanisms, steady-state properties, and even
dynamics using kinetic MC. There also exist several advanced
frameworks combining some of these methods such as ab initio
MD (AIMD) that integrates quantum-mechanical estimation of
interatomic forces and classical Newtonian physics to move atoms
from one instant to another. Overall, irrespective of the simula-
tions utilized to study the complex behavior of material systems,
there is always a colossal flow of data that gets generated. This is
one of the many reasons why data-driven and ML approaches
have become so popular in recent years in any scientific domain.
There is a growing availability of databases39–44 collating

simulations and experimental data across disciplines, which are
being employed to accelerate the discoveries of novel materials
and study advanced material functionalities. A variety of success-
ful examples45–62 are illustrated for technological applications in
the fields of energy, catalysis, and photovoltaics, for pharmaceu-
tical applications in drug design and reaction mechanisms
mapping, as well as in advancing fundamental knowledge of
materials behavior, including magnetism, ferroelectricity, and
superconductivity. There are also exciting studies showing the

efficacy of ML and DL techniques to facilitate meaningful
contributions to solve the electronic structure, force-field-related
technical challenges. Most of these constructed frameworks either
are solely built on theoretical, simulations-based, or experimental
data or at times combinations of these. In addition, there are
examples of direct comparisons of endpoint-like properties such
as polarization, magnetic structures obtained from simulations,
and measurements that can be found in the literature.
In addition, there are already comprehensive efforts in the

materials community to bridge the gap between knowledge
acquired from experiments and theory, to go from observational
to synthetic learning, and vice versa. A non-exhaustive list of such
frameworks include Ingrained63, EXSCLAIM64, and BEAM65,
abTEM66 show how to utilize already existing data from the
literature to create labeled datasets, use image-based data and
parameters based on users’ choice to find optimized fit-to-
experiment structures via forward modeling, perform scalable
data analyses and simulations on characterization data, compute
potential via DFT, simulate standard imaging modes. In addition,
there is an extensive list of examples from the STEM to model
electron beam effects for various materials systems including
atoms assembly, atomic manipulations, or insertions67–70. Finally,
multiple reports on 2D materials are available in the literature that
have explored formations, dynamics, and stability of defects, edge
reconstructions, bond inversions using a combination of STEM
observations and simulations71–81.
However, systematic studies utilizing an across-the-board

framework mapping directly between experimental observations
and computational studies using DL approaches is still in its
infancy. As a first relevant aspect, the timescales of STEM
observations and intrinsic molecular dynamics are strongly
different, with the DFT and MD models capable of simulating
system sizes of Å to nanometer scales for up to microseconds, but
taking multiple CPU hours, while STEM images are typically
available at the fraction of a second. The length and timescales of
such simulations, analyses methods, and retrieval of observational
data are shown by a comparative chart in Fig. 1. At the same time,

Fig. 1 The time and length scales for imaging and simulations. While DFT and MD can address the system dynamics on the picoseconds to
microseconds, electron microscopy generally explores dynamic changes within milliseconds—hours interval. This significant time disparity is
further exacerbated by the fact that the time to complete DFT/MD simulations for a sufficiently large system is typically hours or days, way
above the imaging time. Hence, dynamic integration of theory and experiment in a single workflow necessitates the use of machine learning
both to identify (based on observations) the regions of potential interest and to accelerate simulations via proxy models and theory to define
proper embeddings that preserve the functionality of material in small number of atom models.
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there is a significant disparity in the latencies of calculations, with
the DFT or MD simulations often taking many hours to days and
weeks of time, well above the timescale of STEM measurements.
Hence, while the theoretical methods directly match the

experimental observables, there is a drastic mismatch between
both the accessible and computational timescales, making the
integration between the two highly nontrivial and necessitating
development of strategies to deal with this mismatch and,
importantly, formulating the physics-relevant questions that can
be addressed.
With these caveats, the first enabling step towards bridging

these two areas is direct piping of the STEM data into the
simulation environment. The crucial roadblocks to materialize this
framework are listed below.

Finding features such as atoms, defects (nearly identical
objects) from a microscopic image using the DL model and
extending it to recognize features from images retrieved under
different experimental conditions leading to out-of-distribution
effects, is itself a challenge.
Defining regions of interest such as parts of the image showing
defects and determining the origins of such defects (could be
electron-beam induced) is also not trivial. This gives rise to a
choice of an intractable number of possibilities to define the
initial states of the simulations.
Importing coordinates of atoms directly predicted by either a
DL model or experiments to simulations require quantifying
uncertainties at all stages of the framework. In other words,
predictions with high uncertainty, if transferred to initiate
simulations, may never converge.
Ways to close the loop where information from the theoretical
simulations can guide future experiments and on-the-fly
analyses, are also yet to be investigated.

In this work, we show how deep learning can bridge together
the knowledge learned from microscopic images (stage 1 in Fig. 2)
and first-principles simulations to develop a comprehensive
understanding of the physics (stages 2 and 3 in Fig. 2) of the
materials of interest. The schematic of the entire workflow is
shown in Fig. 2. Here, we focus on how deep convolutional neural
networks can be employed to identify atomic features (type and
position) in graphene, use them to construct supercells, perform
DFT simulations to find optimized geometry of the structures
followed by studying temperature-dependent dynamics of system
evolutions with ad-atoms and defects. The results along with
associated uncertainties in predictions at various levels as

obtained utilizing this framework may be used to evaluate and
modify experimental conditions and regions of interest.

RESULTS AND DISCUSSION
Workflow and its implementations
The first stage of the workflow involves the application of DL to
the experimental imaging of atoms. A standard DL workflow
consists of preparing a single labeled training set, choosing a
suitable neural network architecture, dividing the prepared
training set into training, test, and validation sets, and tuning
the training parameters until the optimal performance on the test
and/or “holdout” set is achieved. Once the labeling is accom-
plished, the DL models are utilized to find the features, in this case,
positions and types of atoms (C), defects (Si), and the uncertainties
are determined in Stage 2 using AtomAI36.
Figure 3 shows one of the STEM graphene image frames (a) and

corresponding C and Si atoms, as predicted by the DL (b) model.
We note that the associated uncertainties in such predictions may
vary from one image frame to another. With minimal to null human
interventions, it is also possible to make sure that all atoms are
identified accurately. However, the focus of this framework is to
enable the transformation from microscopic images to ML
predictions directly (automated) to simulation environments. As a
part of Stage 3, simulation objects (could be bulk, supercell, surface)
are created (c) using AtomAI utility functions. These objects are
constructed such that the simulation cells (cubic or any Bravais
lattice type of user’s choice) can accommodate all atoms with
acceptable bond lengths and imposed periodic boundary condi-
tions, as recognized via the specific sample view or perspective.
We note that for this image frame, there are a total of 2021 C

and 22 Si atoms were detected. While performing DFT computa-
tions using these many atoms is possible with the advancement in
parallelized codes and computational power, it is heavily
dependent on the availability of such resources. Furthermore, it
may not even be interesting from the physics point of view to
explore the full structure. As an alternative, we can identify several
parts or patches such as those containing defects using our
domain knowledge and explore these regions of interest. In
addition, the system is continuous in one image frame, meaning
the graphene sheet spans over the full-frame, be it in lattice or
amorphous phase. However, for simulations, we only assume the
lattice phase and the rest to be vacuum corresponding to the
amorphous region within the DFT framework. Hence, we
terminate all twofold coordinated C atoms with H for any
“cropped” structure, irrespective of whether they are surrounded
by graphene lattice or amorphous phase in the original structure
to maintain charge neutrality and stoichiometry. Figure 3d shows
one of the identified patches that is used to perform simulations
to obtain optimized geometry and investigate electronic proper-
ties and temperature-dependent dynamical evolutions.

Details on DL models
For DL-based image analysis, individual images are labeled at the
pixel level, where each pixel represents an atom, impurity, or
background. Recognizing features as represented by individual
pixels is referred to as semantic segmentation. This differs from a
typical image-classification task of natural images where the
image gets categorized as a whole. Each graphene image frame is
of dimension (height= 896 pixels × width= 896 pixels) and
100 such frames combined are used to construct the training
set. Each pixel is of 0.104 Å length as considered to convert pixels
into cartesian coordinates based on the STEM scan size. A U-Net82

type neural network as used in this workflow takes the images as
the input and gives output as clean images of circular-shaped
“blobs” on a uniform background, from which one can identify the
(x,y) centers of atoms. At the initial stages of the DL workflow,

Fig. 2 Schematic of the workflow, from images to evaluating
material properties. Figure shows three primary stages of the
framework. Stage 1 (a) consists of how deep learning models take
microscopic images (STEM image of graphene) as inputs and
identify features such as atoms, defects, and respective positions. In
Stage 2 as shown in (b), the coordinates are put together to build a
simulation object (c) followed by performing atomistic simulations
in Stage 3 to study physical phenomena. The results from such
simulations are used later to better build and guide physics-
informed experiments.
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atoms are classified based on the variation in intensity using a
Gaussian mixture model. In the later stage of the training, such
information is utilized to generate a multi-label segmentation
mask to perform multi-class classifications for both types of atoms,
as present in the system. Here, the predictions are multi-class
representing the C and Si atoms. We have utilized an ensemble
setting35 such that an artifact-free model or a subset of models
can be identified that is capable of not predicting any ‘unphysical
features’ in experimental data and can be extended to provide
robustness and pixel-wise uncertainty estimates in prediction as
one transition from one experiment to another. The uncertainty is
estimated as a standard deviation of ensemble predictions for
each pixel. For our predictions within the DL framework, we can
obtain spatial maps of uncertainty estimates. The regions
characterized by high uncertainty may be due to some “unknown”
defects/species (that were not a part of training data). This may
lead to further investigation of those specific regions closer and
explore them with DFT/MD (e.g., by adding functional groups,
etc.). This procedure can be repeated multiple times to achieve a
high detection rate for the entire dataset of dynamical data. In
addition, it is important to note that the DL framework exploited
here may also help to minimize the effects associated with out-of-
distribution effects83 as present in the observational space due to
variations in experimental parameters. The utilization of atom
positions with high confidence level is crucial before transforming
these predicted DL coordinates to simulation objects such that a
meaningful initial state for each simulation is guaranteed.

Geometry reconstruction using first-principles computations
All first-principles computations are performed using DFT within
the generalized gradient approximation (GGA) framework and

more details on the computations are given in the Methods
section. To generalize this framework and make it more open-
access, we first explored the possibilities utilizing Python-based
codes which consist of computationally inexpensive algorithms to
optimize the electronic structure and consequently use the
resulting system to perform MD simulations. More details on this
implementation can be found in the associated Jupyter notebook
given in the “Code availability” section. It is important to mention
that appropriate reconstruction of geometries of such structures
cannot be obtained using methods like quasi-Newton algorithms
and pair-potentials to study dynamics, as implemented in the
popular Python-based frameworks84,85.
Hence, we have employed DFT within GGA using VASP to first

obtain the optimized structures. Once the forces and stress
tensors are minimized within the given criteria by solving the
Kohn–Sham (KS) equations, the optimized geometry is imported
to the AIMD environment. DFT has been known for yielding
reasonable geometries, meaning lattice parameters, bond angles,
bond lengths along with coordinates of atoms for a bulk or surface
cell and can be comparable to that retrieved from experiments.
We note that more detailed techniques such as coupled cluster,
and even DFT with the inclusion of van der Waals interactions,
would be more appropriate to include dispersions that are
important for graphene surfaces. However, these are computa-
tionally demanding and go beyond the scope of this paper that is
focused on establishing a workflow, going from a microscopic
image to performing simulations with recognized features with
the help of DL approaches.
We started by constructing a graphene supercell (patch

extracted from the full 2000 atoms supercell) of 91 C atoms with
lattice parameters a= b= c= 25.786 Å, with α= β= γ= 90°,
where all the twofold C atoms are terminated with H atoms.

Fig. 3 Obtaining simulation boxes from STEM image. Figure shows a STEM image frame (a) of graphene, all C atoms, and defects (Si) as
recognized by DCNN (b), corresponding simulation object (c), and an example patch (identified region of interest) used (d) to perform DFT
and AIMD simulations. The blue atoms represent Si atoms, and the brown ones are C atoms. Here, we note that some atomic species got
misclassified but it did not affect the workflow since we cropped the high-certainty (and correctly classified) region. This is somewhat
expected during the actual real-time deployment of the workflow.
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Along with aiming for the full geometry optimization where all
atoms (C and H), cell volume, and shape are in the ground state,
we also designed different configurations to perform selective
dynamics within DFT simulations. These include computations
where (a) all the perimeter atoms positions are fixed, (b)
coordinates in a, b, or (x and y) directions are fixed, only
coordinates along z are allowed to relax, and (c) positions of all H
atoms remain fixed. The resulting structures are shown in
Fig. 4a–d. The average C–C and C–H bond lengths resulting from
the full geometry optimizations corresponding to Fig. 4a are 1.42
and 1.09 Å, respectively. For the simulations performed with
selective dynamics, these bond lengths for C–C and C–H vary
between 1.43–1.50 and 0.94–1.04 Å, respectively. Such changes
can be attributed to the change in the charge densities of the
atoms, especially around the already existing defect regions86,87.
We do observe potential for the formation of a carbon cluster
defect region that was proliferated in the initial state (may have
formed during growth or could be electron beam induced). The
structures are all metallic in nature, as expected. Whether this
region may show and evolve into one of the common defects
such as a Stone–Wales defect (5-7-7-5) or 5-8-5 defects at higher
temperatures, can be explored using AIMD simulations under
various annealing conditions or environments. If we compare the
coordinates in x, y, and z directions for all C atoms as obtained
after DFT simulation and those predicted by DL, the average
percentage error in the coordinates along x and y directions are
<5% which is reasonable. The full list of coordinates from both
predictions along with point-by-point errors can be found in Table 1
of Supplementary Material. Overall, the optimized geometries of
this representative patch can be reconstructed very well from
starting with the ML-predicted coordinates using DFT-based
computations as shown by this stage of the workflow.

Temperature-dependent system evolutions using AIMD
simulations
To study the temperature-dependent behavior of the fully relaxed
system obtained from DFT at 0 K, we move on to applying AIMD
within VASP. The temperatures considered using a Nose–Hoover
thermostat to control the heat bath are 300, 500, 700, 900, 1200,
2000, 3000, 4000, and 5000 K. Here, the simulations are performed

for 2 ps, and the rest of the computational details can be found in
the Methods section.
While the displacement of the atoms in x and y directions are

the most and increase as the temperature goes higher, the bond
angles between C atoms inside the hexagonal, heptagonal, and
pentagonal rings along with angles between the shared atoms
belonging to each type of these rings vary between 1–5 degrees
dependent on the temperature range up to 1200 K. The distances
between C atoms in heptagonal and pentagonal rings present at
300 and 1200 K temperatures are marked and noted in Table 1.
The resulting structures however do not show many changes or
reconstructions compared to each other in this temperature
range. However, once the system is heated up to 4000 K, the
defects propagate and rearrange themselves to form 5-7-7-5
defects. The bond lengths of the newly formed pentagonal and
heptagonal rings are listed in Table 2. The average bond lengths in
pentagonal, hexagonal, and heptagonal rings at 300 K are 1.713,
1.443, and 1.447 Å, respectively. At 2000 K, only hexagonal rings
stay with a changed average bond length of 1.422 Å. As the
temperature rises to 4000 K, the system fully reconstructs itself to
form the 5-7-7-5 defects with an average bond length of the
seven-members and five-members rings to be 1.430 and 1.606 Å,
respectively.

Temperature-dependent system evolutions with ad-atoms
The presence of impurities is quite common in materials in
general and could be responsible for altering electronic properties
as well as introducing point defects in materials making them
suitable for technological applications such as in electronic and
optoelectronic devices, gas sensors, biosensors, and batteries for
energy storage. For graphene, two types of defects88–90 are
common. One is Stone–Wales that is generated by a pure
reconstruction of a graphene lattice (switching between penta-
gons, hexagons, and heptagons). Here no atoms are added or
removed. The previous section has explored this scenario. Another
is defect reconstruction that can either originate by removing an
atom from its lattice position such that the structure relaxes into a
lower energy state with a different bonding geometry or by
adding a foreign atom to bridge, hollow or top sites potentially
leading to different bonding with the graphene atoms.

Fig. 4 Optimized geometries obtained using DFT within GGA computations and AIMD simulations. Figure a shows the fully relaxed
structure while b–d are the resulting optimized geometries using three different selective dynamics configurations. Figure e–g represents the
resulting structures of graphene after 2 ps at 300, 2000, and 4000 K, respectively.
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As example cases, we have studied two different scenarios of
putting (a) transitional metal atom91 such as Cr and (b) CH, CH2,
CH3 groups92 as ad-atoms at different temperatures. While the first
choice is mostly driven by already studied effects of metal-carbon
binding effects with direct applications into developing battery
materials, the latter is propelled by the self-healing mechanism of
graphene sheets observed under electron beams. For both
studies, the configurational space to be explored is huge in terms
of choosing the initial positions of ad-atoms, distances between
the atoms and surfaces, or the bonds to be broken to see if the
graphene sheet can rearrange itself. This also creates a computa-
tional challenge for such a workflow to investigate all possible
configurations. A sample averaging technique can be employed to
perform such studies93. For this project, we have limited ourselves
to probing a few representative cases. While for Cr ad-atom we
have chosen one configuration for each of the bridge, hollow and
top sites, for CH groups, three different initial configurations are
constructed by breaking bonds between C, H atoms and placing
the molecules on the top. The temperature-dependent dynamics
is then explored using AIMD simulations at 300 K.
A Cr atom is added to one of the bridge, hollow and top sites in

the graphene cell as demonstrated by Fig. 5a, c, e. Magnetism was
not considered for the Cr atom. The ad-atom, initially assigned to
the bridge site, likes to diffuse into the system causing bond-
breakings between the hexagonal geometries at 300 K after 10 fs
as shown in Fig. 5b. For the hollow site, the metal ion forms a
stable bond with the nearest C atoms with an average bond
length of 2.165 Å and maintains this formation for the entirety of
the simulation as depicted in Fig. 5d. The ad-atom added to the

top site (Fig. 5f) shows the highest displacement in the c direction
at 2.237 Å distance from the closest in-plane C atom. The hollow
site is the most stable of all if we compare the total energies such
as −910.514, −920.305, and −923.351 eV for bridge, top, and
hollow sites, respectively. We do note that spin-polarized
computations along with detailed band structures analyses are
needed to be performed to further account for the temperature
dependence of the adsorption energies which turn out to be
above −8 eV in this nonmagnetic picture. The adsorption is the
lowest for adsorption at the hollow site which agrees reasonably
well with that reported in the literature. The bond distances
between C and Cr atoms can also be varied in which case the
binding energy tends to increase when the distance is smaller,
leading towards chemical adsorption. This relates to the
hybridization of 3d orbitals of the metal ad-atom (applicable for
other transition metal atoms with partially unoccupied d states)
and p states of graphene and the localized behavior of these
orbitals.
The well-studied healing process of graphene involves C atoms

interacting with hole regions, hydrocarbon groups as present as
impurities, which participate in the reconstruction of hexagonal
and other rings in the sheet. The results shown in Figs. 6, 7 from
AIMD simulations performed at room temperature show the
interaction of C atoms with the ad-atoms to reconstruct the
geometry. We do see that the holes have healed completely or
partially (not all hexagonal rings can be achieved) in all cases
depending on the variations in the energy landscapes. Examples
of such healings are observed for CH3 molecule in all configura-
tions after 2 ps. The corresponding adsorption energies are

Table 1. Distances between C atoms in heptagonal and pentagonal rings at 300 and 1200 K temperatures after 2 ps.

Structure with C atoms in the heptagon and pentagon rings marked 

Temperature (K) C1–2 (Å) C2–3 (Å) C3–4 (Å) C4–5 (Å) C5–6 (Å) C6–7 (Å) C7–1 (Å)

300 1.473 1.478 1.447 1.509 1.454 1.427 1.344

1200 1.422 1.487 1.455 1.504 1.457 1.412 1.372

Temperature (K) C8–9 (Å) C9–10 (Å) C10–11 (Å) C11–12 (Å) C12–8 (Å)

300 1.400 1.444 1.396 1.451 1.438

1200 1.409 1.420 1.434 1.424 1.458
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−3.709, −7.220, and −4.306 eV, respectively for three systems
displayed in Fig. 6. For CH, CH2 cases, the molecules tend to get
attached or bonded to the C atoms at this temperature rather
than enough rearrangements required for healing, although
interactions of these molecules with the edge atoms can still be
observed. Some of the atoms from these hydrocarbons are
expected to remain in the environment rather than getting
adsorbed to the surface depending on the energy barriers as also
seen in the example of the CH3 molecule. The adsorption energies
for CH and CH2 molecules for these different configurations vary
between −7.018 and −14.549 eV. From these results, it is also
evident that there is a strong dependence on choosing the initial
configuration of the bonds and distances between the molecule
and the surface along with the temperature. This is particularly
important and opens avenues to reconnoiter electron beam
effects where these mechanisms can be explored under high-
intensity beam, providing a local heat source to raise the
temperature of the graphene surfaces.

Regions of interest and end-to-end workflow
From the abovementioned studies, it is evident that it is possible
to reconstruct geometries utilizing first-principles simulations
based on coordinates predicted by a DL framework constructed
on microscopic images. This can even be expanded to incorporate
edge-computing that involves direct transfer of image-based data
from microscopes via light edge devices such as the Nvidia Jetson
series and then analyze, train DL networks using a GPU-based
platform followed by performing simulations with CPU/GPU-based
high-performance computing resources and feedback to the

human in the loop, altogether on-the-fly, to better guide
experiments while learning from theoretical models. Furthermore,
the results from the simulations as obtained in this study can be
used to choose regions of interest, in terms of studying chemical
or physical adsorption, or healing mechanisms under different
experimental conditions. The fully constructed simulation cell can
be sampled through randomly selected patches and can
determine the similarity of information carried down to select
regions to be investigated in the next runs. It is also possible to
improve the predictions with higher uncertainties with such
outputs. While DL networks and prediction of coordinates of the
system of interest fully use open-source packages, in the
simulation stage, it is dependent on the users to choose between
the level of theoretical accuracy and corresponding potentials or
force fields to enable the active causal loop. Thus, this framework
also adheres to the FAIR37 principles that is necessary to enable
findability, accessibility, interoperability, and reusability of data in
scientific domains.
In summary, we have established the first step towards direct

on-the-fly data analytics and experiment augmentation in STEM
by DFT and MD models. We accentuate that this vision, while
actively discussed in the scientific community is highly nontrivial
due to extreme disparity between the timescales experimentally
accessible to STEM and amenable to atomistic modeling, as well
as fundamentally different latencies of imaging and simulation.
Thus, matching the two necessitates both the development of
infrastructure linking the microscope data streams to the
simulation environment and solving the coupled challenge of
ML selection of regions of interest, simulation-based discovery,
ultimately enabling feedback to experiment. Here we have shown

Table 2. Distances between C atoms in 5-7-7-5 defect regions as formed at 4000 K temperature after 2 ps.

Structure with C atoms in the heptagon and pentagon rings marked 

Temperature (K) C1–2 (Å) C2–3 (Å) C3–4 (Å) C4–5 (Å) C5–6 (Å) C6–7 (Å) C7–8 (Å)

4000 1.529 1.403 1.628 1.358 1.378 1.474 1.324

Temperature (K) C8–9 (Å) C9–10 (Å) C10–11 (Å) C11–12 (Å) C12–13 (Å) C13–14 (Å) C6–10 (Å)

4000 1.270 1.390 1.411 1.470 2.336 1.413 1.693

Temperature (K) C14–15 (Å) C15–16 (Å) C14–17 (Å) C17–18 (Å) C18–19 (Å) C19–3 (Å) C13–4 (Å)

4000 1.412 1.423 1.698 1.544 1.256 1.674 1.596

Temperature (K) C16–12 (Å)

4000 1.351
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how an end-to-end workflow can be constructed to study a few
instances of graphene physics starting from a microscopic image
to performing simulations with the help of DL. While the
simulations performed can be of higher accuracy, these still can
show the efficacy of this framework which is dependent on
feature predictions using DL from images and using those to
provide initial conditions for more theoretical studies.

Overall, this approach allows for a couple of significant
advancements in the communities of DL applications to both
experiments and simulations. The first is the rapid exploration and
analyses of images to extract features with associated uncertain-
ties and a reasonable comparison between these predictions with
computational simulations at different length scales. The second is
to utilize “the human in the loop” along with the results from

Fig. 5 Snapshots from AIMD simulations with Cr ad-atom performed at 300 K. Initial configurations where Cr atom is added to the bridge
(a), hollow (c), and top (e) sites and dynamics is studied at 300 K. The positions after 10 fs (b), 14 fs (d), and 2000 fs (f) are shown in the figure.

Fig. 6 Snapshots from AIMD simulations with CH and CH2 ad-atoms performed at 300 K. Initial configurations (a, c, e, g, i, k) and final states
(b, d, f, h, j, l) where CH and CH2 groups (marked with blue and pink) are added to graphene systems are shown in the figure.
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observational and synthetic data to improve the DL frameworks
for better adaptability, even under different experimental condi-
tions compared to that utilized in training. Finally, we pose that
enabling this workflow will allow formulating the specific physical
and chemical challenge that will push, but not hopelessly exceed,
the regions experimentally accessible.

METHODS
Samples preparation and Imaging
The graphene sample used in this work was grown using atmospheric
pressure chemical vapor deposition (AP-CVD) and Nion UltraSTEM 200 was
used to perform STEM imaging. Associated all other details of the
measurements can be found in this ref. 35.

DFT and AIMD
Details on DFT simulations for the graphene movies: DFT within GGA was
performed using the projector augmented plane-wave (PAW) method and
PAW-PBE potential94 as implemented in the Vienna ab initio simulation
package (VASP)95,96.
A graphene supercell (patch extracted from the full 2,000 atoms

supercell) of 91 C atoms with lattice parameters a= b= c= 25.786 Å, with
α= β= γ= 90° was considered as the initial structure for performing the
full geometry optimization. All the twofold C atoms were terminated with
H atoms. The structure optimization was performed by relaxing the atoms
steadily toward the equilibrium until the Hellman-Feynman forces are less
than 10− 3 eV/Å. All geometry optimization computations were carried
out with 400-eV plane-wave cutoff energy with Monkhorst Pack97 2 × 2 × 2
k-point meshes. Three different configurations such as (a) fixed perimeter
atoms positions, (b) fixed coordinates in a,b, or (x and y) directions, and (c)
fixed all H atoms, were also considered and subjected to optimization.
Details on AIMD simulations for the graphene movies: Ab initio

quantum-mechanical MD simulations were performed using the projector
augmented plane-wave (PAW) method and PAW-PBE potential94 as
implemented in the Vienna ab initio simulation package (VASP)95,96.
The fully optimized structure (H-terminated) obtained from DFT within

GGA was considered as the initial structure for performing all AIMD
simulations. All computations were carried out with 400-eV plane-wave
cutoff energy with appropriate Monkhorst Pack97 k-point meshes, at 300,
500, 700, 900, and 1200 K temperatures with 2000 time steps of 1 fs each
using a Nose–Hoover thermostat. For exploring the ad-atoms, three
different sites such as bridge, hollow and top were considered. Metal ions
such as Cr were put into these sites to look at the system evolutions at
various temperatures. Another range of AIMD simulations involved adding
molecular groups like CH, CH2, CH3 to surfaces to study the temperature-
dependent dynamics.
The adsorption energy is calculated using the following equation:

Eadsorbate ¼ Esystem þ Eadsorbate � E systemþadsorbateð Þ

DFTB
Density functional based tight-binding (DFTB) and the extended tight-
binding method, enables simulations of large systems and relatively long
timescales at a reasonable accuracy and are considerably faster for typical
DFT ab initio98 We incorporated the DFTB approach (version 21.1) into the
developed workflow in a similar fashion as detailed for DFT and AIMD.
DFTB allowed directly getting reliable results for the graphene systems
(graphene-Si) for the full 2043 atom cell on a timeframe of a few hours. A
picture of the optimized structure is given in Fig. 1 of Supplementary
Material. Likewise, DFTB MD could be performed for many picoseconds on
the full system. Thus, we note that this approximate DFT approach can
permit the study of a more complete material system and to evaluate non-
local effects in self-healing, etc.

Length and timescales for each step of the workflow
The deep learning models relevant to this work were trained using GPU
(Nvidia Tesla K80) as provided by the Google Colab platform. The training
time varied depending on the training set size and network architecture. A
typical network takes ~0.5 h to train on ~4500 (256 × 256 window sizes)
sub-images with a 2-3-3-4-3-3-2 architecture (numbers correspond to
convolution layers in each U-Net block) of a U-Net model. Generally, we
train 20 models in an ensemble. Depending on the availability of GPUs, the
model can be trained in a sequential or parallel regime. The feature
prediction along with creating a simulation object takes a few seconds. A
high GPU RAM is preferred to avoid memory issues during training or
performing post-training analyses. For a 91 atoms graphene supercell, a
full geometry optimization takes up to ten CPU hours to converge and a
similar timescale is applicable for the temperature-dependent AIMD
simulations. For geometry optimization of the full 2043 atoms structure,
it takes a few hours to converge. This potentially reduces the overall
timeframe for the end-to-end workflow down to something more
amendable to feedback during a STEM experiment.

DATA AVAILABILITY
The data used for all analysis are available through the Jupyter notebooks located at
https://github.com/aghosh92/ELIT.

CODE AVAILABILITY
The functions used to simulate structures from DL predictions can be found at
https://github.com/pycroscopy/atomai. The details of training DL networks used in
this work are available through the Jupyter notebook located at https://github.com/
aghosh92/ELIT. The python-based implementations to construct simulation objects
and perform MD simulations can be found at https://github.com/aghosh92/
DCNN_MD. We typically will initialize multiple independent AtomAI models with
different seeds and run them on separate GPUs, combining them into an ensemble
to get the feature predictions. Next, we import them into the CPU environment to
perform DFT computations.

Fig. 7 Snapshots from AIMD simulations with CH3 ad-atoms performed at 300 K. Initial configurations (a, c, e) and final states (b, d, f) where
CH3 groups (marked with blue and pink) are added to graphene systems are shown in the figure.
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