
ARTICLE OPEN

Scale-invariant machine-learning model accelerates the
discovery of quaternary chalcogenides with ultralow lattice
thermal conductivity
Koushik Pal 1,2✉, Cheol Woo Park1,2✉, Yi Xia 1, Jiahong Shen1 and Chris Wolverton 1✉

We design an advanced machine-learning (ML) model based on crystal graph convolutional neural network that is insensitive to
volumes (i.e., scale) of the input crystal structures to discover novel quaternary chalcogenides, AMM′Q3 (A/M/M' = alkali, alkaline
earth, post-transition metals, lanthanides, and Q= chalcogens). These compounds are shown to possess ultralow lattice thermal
conductivity (κl), a desired requirement for thermal-barrier coatings and thermoelectrics. Upon screening the thermodynamic
stability of ~1 million compounds using the ML model iteratively and performing density-functional theory (DFT) calculations for a
small fraction of compounds, we discover 99 compounds that are validated to be stable in DFT. Taking several DFT-stable
compounds, we calculate their κl using Peierls–Boltzmann transport equation, which reveals ultralow κl (<2 Wm−1K−1 at room
temperature) due to their soft elasticity and strong phonon anharmonicity. Our work demonstrates the high efficiency of scale-
invariant ML model in predicting novel compounds and presents experimental-research opportunities with these new compounds.
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INTRODUCTION
The study of heat-transport phenomena in materials is imperative
to find and deploy suitable materials in various thermal-energy
management platforms such as thermal barrier coatings1, waste-
heat-recovery devices2, and modern high-performance computing
architectures that require rapid heat dissipation3. A sustained
research effort in this direction has focused on finding materials
with extreme thermal-transport properties3–8. Among them,
semiconducting materials with very low lattice thermal conduc-
tivity (κl) are particularly interesting as they find applications in
thermoelectrics (TEs), which can convert heat into electrical
energy9–11. The TE conversion efficiency of materials, quantified
by the figure of merit, ZT ¼ S2σ

ðκlþκeÞ T can be enhanced by reducing
their κl. In the preceding equation S, σ, and κe are the Seebeck
coefficient, electrical conductivity, and electronic contribution to
the total thermal conductivity (κ= κl+ κe), respectively. Hence,
novel compounds with intrinsically low κl are highly sought after
for fundamental research that would help in the design and
discovery of efficient materials suitable for device applications.
The discovery of novel compounds is an important yet

challenging task in materials science. Traditionally, trial-and-error
methods have been employed in the laboratory to synthesize new
compounds. However, accurate quantum-mechanical methods
such as density-functional theory (DFT) have proven to be
extremely beneficial in the discovery of new materials and
estimation of their properties, by reducing the target-
composition space considered for exploratory synthesis in the
laboratory. In the last few years, modern computational
approaches such as high-throughput (HT) DFT calculations based
on prototype decoration have accelerated the discovery of new
compounds12–16. These approaches take advantage of the
computed energetics of a large number of materials available in
diverse materials databases, such as the Open Quantum Materials
Database (OQMD)14,17, Materials Project15, and Aflowlib16, which

enable us to perform a highly accurate phase-stability analysis of a
novel compound taking into account all of its competing phases.
In the HT-DFT method, the initial crystal structures are

generated by decorating prototype crystal structures with
elements from the periodic table. To keep the number of
calculations of generated compounds computationally tractable,
we often use certain rules during prototype decoration, which are
typically derived from examining the already-known compounds
in that family. For example, (a) chemically similar elements are
substituted at each crystallographically inequivalent site in the
prototype structures and (b) only those compositions that balance
the valence charges of the elements are generated. While these
considerations often lead to a high success rate in predicting
stable compounds, it leaves out a large number of other
“unsuspected” compounds that would be generated if we
substitute all elements from the periodic table in any sites of
the prototype structures in all possible combinations. Therefore,
we suffer the risk of missing out perhaps many hitherto unknown
stable compounds that could exhibit exciting physical and
chemical properties.
Machine learning (ML) offers a computationally feasible solution

to this problem. Using ML methods, the entire phase space of
multinary compositions can be quickly screened for possible
stable and metastable compounds even before doing any
expensive DFT calculations. In recent years, ML methods have
proven to be an invaluable tool in discovering novel compounds
in multicomponent composition spaces18–27. In one successful
example, Ren et al.28 predicted new stable bulk metallic glasses
using an ML model and were able to experimentally synthesize
them. Another interesting example of ML-guided materials
discovery is demonstrated in the work by Kim et al.29 where they
predicted several new stable quaternary Heuslers (QH). In their
work, Kim et al. generated nearly 3.3 million quaternary
compositions in the Heusler structure by substituting 73 metallic
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elements from the periodic table at the three inequivalent
crystallographic sites in every possible way. An ML model was
constructed, which was trained on the computed energetics of
compounds available in the OQMD to assess the phase stability of
those 3.3 million compositions. The ML-predicted stable com-
pounds were then validated by performing DFT calculations,
which gave rise to 55 new DFT-stable compounds that were
missing from the earlier HT-DFT30,31 and ML25 works in the same
Heusler family, as those previous works only explored a smaller set
of compositions restricted by the electron-counting and charge-
neutrality conditions.
In this work, we use an ML method to explore the vast phase

space spanned by a family of experimentally known quaternary
chalcogenides (AMM′Q3)32–39 that possess diverse structure types
and chemistry. Some of these compounds are shown to exhibit
very low lattice thermal conductivity40,41, promising thermo-
electric performance42,43, and high photovoltaic efficiency44. In
our previous HT search45 for new materials in this crystal family,
we discovered a large number (628) of stable compounds.
However, our previous search45 explored only a small set of
possible compositions since we generated the initial crystal
structures of the compounds following a set of rules that were
derived by examining all experimentally known AMM′Q3 com-
pounds. They are: (a) All elements in the AMM′Q3 compounds are
in their most common oxidation states that satisfy the
valence–charge-neutrality condition, (b) the A-site is occupied by
alkali, alkaline-earth, or post-transition metals with the only
exception of Eu that is a lanthanide, (c) the M-site is occupied
by transition metals, (d) the M′ site is occupied by transition
metals or lanthanides, (e) Q-site is always occupied by S, Se, or Te,
and (f) no compounds contain more than one alkali and alkaline-
earth metals or a combination of them. Adhering to these criteria,
we generated 4659 unique charge-balanced compositions and
performed HT-DFT calculations considering all structural proto-
types that are known in this family of compounds, leading to the
discovery of 628 stable and 852 low-energy metastable com-
pounds in our previous work45.
Thus, the chemical trends that can be observed from the

experimentally known AMM′Q3 compounds served as a useful
guide to discover previously unknown stable compounds in this
family of materials. However, in this study, we are interested in
identifying new stable compositions in the AMM′Q3 prototypes
that do not necessarily follow those chemical criteria and
therefore, were overlooked in the previous HT-DFT search45. For
an exhaustive search of the phase space, in this work, we generate
the initial quaternary compositions that do not necessarily follow
the previous rules. Here, 66 metallic elements are considered for
substitutions at the A, M, and M' cation sites in every possible way
while generating the initial structures. Keeping the Q atoms fixed
to three chalcogens (S, Se, and Te), we generate a total number of
823,680 (=3 × 66P3) initial compositions of these quaternary
chalcogenides, which is the target search space in this work.
To this end, we develop an advanced ML framework based on

the recently proposed iCGCNN framework46, a variant model of
the crystal-graph convolutional neural network (CGCNN)47. Con-
ventionally, machine-learning (ML) models were constructed
based on compositional features of the compounds that have
limited predictive ability48. Recent developments showed that
structure-based ML model such as the CGCNN47 provides a
significant improvement in the prediction of properties of
compounds based on their crystal geometries. In the iCGCNN
framework, crystal structures are represented as crystal graphs
that are then used as input for graph neural networks to predict
material properties of interest. Although iCGCNN has been shown
to exhibit high accuracy in predicting the formation energy, a
property directly relevant to the thermodynamic stability of a
material, here, we show that iCGCNN exhibits peak performance
when the input crystal structures are fully relaxed in terms of

volume, stress, and ionic positions. This dependency can limit the
effectiveness of the ML models in situations where the relaxed
crystal structures are unavailable. This situation can arise when
prior HT-DFT data for a class of materials do not exist. For our ML
model used in this study, we designed it, such that the formation
energy predictions are invariant to the volumes (i.e., scale) of the
input crystal structures to account for the fact that unrelaxed
crystal structures can have arbitrary volumes. We show that our
ML model outperforms the iCGCNN model by 25% in predicting
the formation energies of materials when provided with the
unrelaxed crystal structures as input.
With the iterative use of the ML model on the 823,680 newly

generated compounds combined with successive filtering and
DFT calculations, we discover hitherto unknown 99 DFT-stable and
362 low-energy DFT-metastable compounds that are potentially
synthesizable in the laboratory. Of the newly discovered 99 stable
compounds, we randomly chose 14 compounds that are
semiconducting and nonmagnetic to examine their thermal-
transport properties by solving the Peierls-Boltzmann transport
equation (PBTE) in a first-principles framework. The newly
discovered compounds in this work are validated by DFT, that
possess ultralow κl, and have “unsuspected” combination of
elements, and hence are different from those predicted in a
previous HT-DFT work45.

RESULTS
Scale-invariant machine-learning model
We design our ML model based on iCGCNN, a variant model of the
CGCNN46,47. In iCGCNN, the unit cell of a compound is represented
as a crystal graph G = (N ; E), where node ni2 N represents
constituent atom i and edge eði;jÞk ∈ E represents the bond
between atom i and neighboring atom j. Atoms are considered
neighbors if they share a face in the Voronoi tessellated crystal
structure. To account for the periodicity of the crystal, multiple
edges can exist between neighboring nodes as indexed by k.
Node ni is then embedded with vector vi that encodes the
elemental properties of atom i, where embedding is defined as
the mapping of a discrete object to a vector of real numbers. Edge
eði;jÞk ∈ E is also embedded with vector uði;jÞk ∈ E that encodes the
structural information of the polyhedra formed by neighboring
atoms i and j, and their shared Voronoi face. Structural information
encoded in uði;jÞk ∈ E includes the interatomic distance between
atoms i and j, solid angle of atom i with respect to the shared
Voronoi face, area of the shared Voronoi face, and volume of the
polyhedra. This crystal graph is then used as direct input to a
graph neural network where the node and edge embeddings are
iteratively updated according to predefined convolution functions.
The convolution functions for the node (f tv ) and edge (f tu)
embeddings at the tth iteration are given by

f tv : vðtþ1Þ
i ¼ vðtÞi þ P

ðj;kÞ
σðzðtÞði;jÞkW

ðtÞ
1 þ bðtÞ1 Þ � gðzðtÞði;jÞkW

ðtÞ
2 þ bðtÞ2 Þ

þ P
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σðz0ðtÞ
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0 ðtÞ
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(1)

f tu : uðtþ1Þ
i ¼ uðtÞi þ P

ðj;kÞ
σðzðtÞði;jÞkW

ðtÞ
1 þ bðtÞ1 Þ � gðzðtÞði;jÞkW

ðtÞ
2 þ bðtÞ2 Þ
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0ðtÞ
2 þ b

0ðtÞ
2 Þ:

(2)

In the above equations,⊙ represents an element-wise matrix
multiplication, while σ and g represent a sigmoid function and a
nonlinear activation function, respectively. W(t) (W '(t)) and b(t) (b'(t))
represent the weight and bias matrices, respectively, for the tth
convolution step. zðtÞði;jÞk ¼ vðtÞi � vðtÞj � uðtÞði;jÞk is the concatenation
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of the node and edge vectors and captures the two-body
correlation of atoms i and j. Likewise, the node vectors and edge
vectors that connect atoms i, j, and l are concatenated to form

z
0ðtÞ
ði;j;lÞðk;k0 Þ ¼ vðtÞi � vðtÞj � vðtÞl � uðtÞði;jÞk � uðtÞði;lÞk0 to capture the three-

body correlations of the atoms. After each iteration of convolution,
the node and edge embeddings are updated to better represent
the local chemical environments of the atoms and bonds. At the
end of the convolution steps, a pooling layer is used to generate
an overall feature vector vc for the crystal structure by taking the
normalized sum of the final node embeddings vfi . Mathematically,
vc can be written as

vc ¼ 1
N

X
i

vfi ; (3)

where N represents the number of atoms in the unit cell of the
crystal structure. This feature vector is then used as a direct input
for a neural network hidden layer to predict the material property
of interest which, in our study, is the formation energy.
Although iCGCNN has been shown to achieve state-of-the-art

accuracy in predicting the formation energies of inorganic
materials46, such performance requires the crystal structures to
be fully relaxed in terms of volume, stress, and ionic positions prior
to constructing the crystal graphs. When the relaxed crystal
structures are unavailable, the model performance can vary,
depending on how closely the unrelaxed structures resemble their
respective relaxed states. To illustrate, we measured the perfor-
mance of iCGCNN under four different conditions. In all
conditions, the ML model was trained on 200,000 formation-
energy entries randomly chosen from the OQMD, where the
training crystal graphs were generated based on the DFT-relaxed
crystal structures. However, when testing the model on another
230,000 entries, the crystal structures that were used to construct
the testing crystal graphs in each condition differed in terms of
their state of relaxation. In Condition #1, fully relaxed crystal
structures were used to construct the crystal graphs of the test set,
while in Condition #2, the unrelaxed crystal structures that serve
as input for the DFT calculations were used. For Condition #3, we
used the crystal structures that have been relaxed in terms of
volume, but not in terms of stress or ionic positions. These
structures were obtained by rescaling the unrelaxed crystal
structures from Condition #2 such that their volume is equivalent
to that of the fully relaxed crystal structures from Condition #1. For
an additional benchmark, we trained a Magpie model19 that
incorporates the Voronoi tessellation attributes49 to predict the
volume of the compounds in the test set. For training, the relaxed
structures were used to generate the Voronoi tessellation
attributes. Voronoi tessellation attributes of the unrelaxed crystal
structures were used for the volume prediction of the test data.
The error of the Magpie model in predicting the volume of the
crystal structures in the test data was 0.527 Å3 per atom. In
Condition #4, we rescaled the unrelaxed crystal structures from
Condition #2 to the volume predicted by the Magpie model prior
to constructing the crystal graphs.

The performance of iCGCNN under these testing conditions is
summarized in Table 1, and the relevant figures are shown in
Supplementary Fig. 1. Under Condition #2, the mean absolute
error (MAE) was 62.3 meV/atom. This is still significantly lower than
the DFT error for experimentally measured formation energies
(~100meV/atom)17 of inorganic compounds, showing that
iCGCNN remains a reliable method to predict DFT-calculated
formation energies even when provided with the unrelaxed
crystal structures. However, compared with the MAE of 30.1 meV/
atom, when the fully relaxed crystal structures were used, the error
for Condition #2 increased more than twofold, indicating that the
ML model is unable to perform at its peak capability when the
relaxed structures are unavailable such as in a high-throughput
DFT search for new materials. Under Conditions #3 and #4, the
MAE’s were respectively 40.2 and 49.0 meV/atom which are 35%
and 21% lower than that of Condition #2. This shows that when
provided with unrelaxed crystal structures as input, iCGCNN
performs better the closer the volumes of the structures are to
their relaxed values. This further implies that iCGCNN significantly
depends on the crystal-volume information when predicting the
formation energy of materials.
Here, we describe a variant iCGCNN model, illustrated in Fig. 1,

that independently generates the relaxed crystal-volume informa-
tion needed to more accurately predict the formation energy of
materials when provided with the unrelaxed crystal structures as
input. This is achieved through a multiobjective framework in
which the ML model simultaneously predicts the relaxed volume
and formation energies of the crystals. This enables the
information that is used in predicting the relaxed volumes to also
be utilized in predicting the formation energies and vice versa. In
this improved ML framework, before constructing the crystal
graph, we normalized the crystal structures that have been
provided as input for the ML model to take into account the fact
that an unrelaxed crystal structure can have an arbitrary volume.
The normalization process involves dividing the lattice parameters
a, b, and c of the unit cell by the minimum interatomic distance
measured within the provided input crystal structure, such that
the minimum interatomic distance measured within the resulting
normalized structure becomes 1. Note that during the normal-
ization process, the fractional coordinates of the atoms with
respect to the lattice vectors remain unchanged. As in iCGCNN,
the normalized structure is then represented as a crystal graph
where each node ni is connected to the nodes that represent the
Voronoi neighbors of atom i. Also, node ni is embedded with
vector vi to represent the atomic properties of atom i, and edge
eði;jÞk is embedded with vector uði;jÞk to represent the structural
properties of the normalized Voronoi polyhedral formed by atoms
i and j.
Additional to the nodes and edges, each crystal graph is

associated with a scale factor s, a scalar quantity that represents
the minimum interatomic distance of the crystal structure. Since
the structures are normalized to have a minimum interatomic
distance of 1 prior to constructing the crystal graphs, the initial
value of the scale factor, s0, is 1 for all crystal graphs. During the
convolution steps, s is iteratively updated as a function of the

Table 1. Performance test of the machine-learning models under four different conditions. The performances of CGCNN, iCGCNN, and the newly
implemented ML model in predicting the formation energy of 230,000 materials in the test set are shown with respect to how relaxed the input
crystal structures are prior to constructing the crystal graphs.

ML-models Condition #1: fully
relaxed (meV/atom)

Condition #2:
unrelaxed (meV/atom)

Condition #3: unrelaxed, but rescaled
to have relaxed volume (meV/atom)

Condition #4: unrelaxed, but rescaled to
have volume predicted by Magpie [49]
(meV/atom)

CGCNN [47] 41.3 72.2 48.8 59.6

iCGCNN [46] 30.1 62.3 40.2 49.2

This work 42.7 46.5 46.5 46.5
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node embeddings. At the tth convolution step, the update
function for s can mathematically be written out as

f ts : s
ðtþ1Þ
i ¼ 1

N

X
i

ðvðtÞi W ðtÞ
3 þ bðtÞ3 Þ (4)

where W ðtÞ
3 and bðtÞ3 represent the weight and bias of a neural

network hidden layer that has a scalar output. s is updated, such
that at the end of the convolution steps, the final value sf matches
the minimum interatomic distance that would be measured in the
crystal structure that has been relaxed in terms of its volume. The
relaxed volume of the compound can then be predicted by simply
multiplying the cube of sf to the volume of the normalized crystal
structure.
The convolution functions for updating the node and edge

embeddings, vi and uði;jÞk remain the same as in iCGCNN with the

exception of the many-body correlation terms, zðtÞði;jÞk and z
0ðtÞ
ði;j;lÞðk;k0 Þ.

For our framework, these terms are defined as zðtÞði;jÞk ¼ vðtÞi � vðtÞj �
ðsðtÞ � uðtÞði;jÞk Þ and z

0ðtÞ
ði;j;lÞðk;k0 Þ ¼ vðtÞi � vðtÞj � vðtÞl � ðsðtÞ � uðtÞði;jÞk Þ �

ðsðtÞ � uðtÞði;lÞk0 Þ where⊗ represents a rescaling operation. In the

rescaling operation, each vector element of uði;jÞk is multiplied by

sðtÞ
d
, where the exponent d represents the dimension of structural

feature that is encoded in the vector element. For example, if a
vector element encodes information of the area of the Voronoi

surface shared by two neighboring atoms, we multiply it by sðtÞ
2
.

However, vector elements that encode the solid-angle information
remain unchanged during this operation. Such rescaling operation
enables information used in predicting the relaxed volumes,
specifically s(t), to be utilized by the node and edge embeddings in
predicting the relaxed formation energies of materials. We note
that while the model has been designed to predict the relaxed
formation energies of materials based on their unrelaxed crystal
structures, the model is trained explicitly on the relaxed crystal

structures and relaxed formation energies of compounds in the
training data.
Using the previous illustration, we characterize and compare

the performance of our ML model with respect to iCGCNN. As
shown in Table 1, the MAE of our model under Condition #1 was
42.7 meV/atom, indicating that when the relaxed crystal structures
are provided as input, iCGCNN outperforms the newly implemen-
ted model by 30%. This is because our model, unlike iCGCNN, is
insensitive to the volume of the input crystal structure and thus,
when provided with the relaxed volume information, is unable to
take advantage of it as much as iCGCNN. The same reasoning can
be used to explain why iCGCNN outperforms our model by 14%
under Condition #3. However, under Condition #2, our model
achieved an MAE of 46.5 meV/atom, which is 25% lower than
iCGCNN. This shows that the new model performs significantly
better than iCGCNN when the unrelaxed crystal structures are
provided as input, suggesting that our model can more effectively
assist in a high-throughput search for new materials even when
there are fewer DFT-optimized crystal structures available for
training the model. The error of our model is also lower than that
of the iCGCNN model in Condition #4, indicating that our model
improves upon existing ML methods in predicting the formation
energy of materials. This improvement is most likely because the
error of our model in predicting the volume of the crystal
structures is 0.393 Å3 per atom, which is lower than the error of
the Magpie model (0.527 Å3 per atom). The MAE of our model
under Conditions #2, #3, and #4 is equal as expected since, by
construction, the model predictions are invariant to the volume of
the input crystal structures. While our model accounts for the
volume differences between the relaxed and unrelaxed structures
of crystal compounds, it does not account for the stress and ionic-
position differences that occur during relaxation. Thus, the model
is expected to perform less efficiently when there is a significant
difference in the unit-cell shape or the ionic positions between the
relaxed and unrelaxed crystal structures.

Fig. 1 Schematic design of the machine-learning model. Illustration of the iCGCNN-based multiobjective ML framework that predicts both
formation energy and relaxed volume of a crystal. The crystal graph is constructed from the Voronoi tessellated crystal structure that has been
normalized to have a minimum interatomic distance of 1. Additional to the node and edge embeddings, vi and uði;jÞk , that encode the atom
and bond information, the crystal graph is associated with scale factor s that represents the minimum interatomic distance of the crystal. In
each iterative convolution step, s is updated as a function of vi such that, at the end of all iterations, the final value sf matches the minimum
interatomic distance that would be measured in the crystal structure that has been relaxed with respect to volume. vi and uði;jÞk are also
iteratively updated to better represent the local chemical environment of the crystal. Formation energy is predicted from the final node
embedding vfi and relaxed volume of the crystal is calculated by multiplying the cube of sf with the volume of the normalized crystal
structure.
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While our model is heavily influenced by CGCNN, our model is
different in that it not only incorporates the additional structural
and many-body correlation information as implemented by
iCGCNN, but it also normalizes the input crystal structures prior
to constructing the crystal graphs, such that the ML predictions
are independent of the volume of the input structures. To
illustrate the improvements that result from these differences, we
conducted the same tests under the four different conditions for
the CGCNN model. As shown in Table 1, we find that our model
outperforms the original CGCNN model47 where the MAE of our
model is lower by 55% when the input crystal structures are
unrelaxed (Condition #2).

Design and discovery of new materials
The experimentally known AMM′Q3 compounds32–39 crystallize in
seven structural prototypes (Fig. 2) in four different space groups
(SGs): KCuZrSe3 (SG: Cmcm, No. 63), Eu2CuS3 (SG: Pnma, No. 62),
BaCuLaS3 (SG: Pnma, No. 62), Ba2MnS3 (SG: Pnma, No. 62),
NaCuTiS3 (SG: Pnma, No. 62), BaAgErS3 (SG: C2/m, No. 12), and
TlCuTiTe3 (SG: P21/m, No. 11), most of which are layered and
related to each other via structural distortions32. Among these,
KCuZrSe3 has the highest symmetry that constitutes 71% of the
known AMM′Q3 compounds45. We note that while KCuZrSe3,
BaAgErS3, and TlCuTiTe3 have 12 atoms in their primitive unit cells,
the rest of the structure types have 24 atoms. In Eu2CuS3 and
Ba2MnS3, Ba and Eu atoms occupy two distinct crystallographic
sites in their crystal structures, respectively. It is worth mentioning
that the three cations (A, M, and M) occupy different crystal-
lographic sites in the crystal structures.
First, we generate the target search space of the initial

quaternary compositions taking the KCuZrSe3 structure type. We

chose this structure type as it is the most common in this family
and all experimentally known AMM′Q3 have low energies (within
50 meV/atom above the convex hull) in this prototype45. We
substitute 66 metallic elements (see Fig. 2h) available in the
OQMD at the K-, Cu-, and Zr-sites in all possible combinations
while keeping the Q-site fixed only to the chalcogens (S, Se, and
Te). Thus, our search space contains a total number of 66P3 × 3=
823,680 distinct compounds. Next, we use the newly designed ML
model to predict 8370 stable quaternary chalcogenides with the
ML-predicted hull distances (Ehd) being equal to zero. In the next
step, we filter out compounds having radioactive elements and
compounds that were already discovered before45. Our final set
contains 4199 unique compounds in the KCuZrSe3 structure type
for which we performed DFT calculations to validate the ML
predictions. After performing T= 0K thermodynamic phase-
stability analysis on these compounds utilizing the data available
in the OQMD, we retain ~1400 low-energy compounds whose Ehd
lie within 50 meV/atom above the convex hull. It is worth noting
the high success rate (33%) of our ML model compared with, e.g.,
the studies by (a) Kim et al.29, where the authors validated 55 new
quaternary Heusler compositions to be stable according to DFT
calculations after predicting 303 stable compositions using their
ML model, which translates to a success rate of 18% and (b) Faber
et al.20, where the authors predicted 2133 hypothetical elpasolite
compounds to be stable through ML, out of which 128 of them
turned out to be DFT-stable, which indicates a success rate of 6%.
In the next step, we take these 1400 compositions and generate

their crystal structures in the other six structural prototypes known
in the AMM′Q3 family of compounds. We use the ML model again
to predict stable compounds in these 1400 compositions among
all structure types, which gave 800 ML-predicted stable quaternary
compounds. We perform DFT calculations on these 800

Fig. 2 Structural prototypes and elements used for novel material design. a–g Conventional unit cells of the seven crystallographic
prototypes that are experimentally known in the family of AMM′Q3 chalcogenides are shown. We have used these crystal structures for the
design and discovery of new materials. h We have color-coded the 66 metallic elements (highlighted in green) in a periodic table that are
substituted at the A, M-, and M′-cation sites in all possible combinations to generate the initial crystal structures of the new compounds.
During prototype decoration, only three chalcogen atoms (highlighted in yellow) are substituted at the Q-sites.
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compounds and evaluate their T= 0K thermodynamic phase
stability in the OQMD. Finally, we discover 99 stable (Ehd= 0) and
362 low-energy metastable (0 < Ehd ≤ 50meV/atom) compounds
having different structure types. A schematic funnel diagram of
the material design and discovery is shown in Fig. 3a. We list these
stable and metastable compounds with their energetic informa-
tion in Supplementary Note 2. We also note that these
compounds are distinct from the compounds that were predicted
in the previous HT-DFT work45. Our analysis reveals that among
the 99 newly predicted stable compounds, 71 crystallize in the
KCuZrSe3 structure type followed by 17 compounds crystallizing in
the TlCuTiTe3 prototype (Fig. 3b). The other 11 compounds are
found in Eu2CuS3 (2), NaCuTiS3 (7), and BaAgErS3 (2) structure
types. We found no stable compounds in the BaCuLaS3 and
Ba2MnS3 prototypes. Analysis of the DFT-calculated band gap
reveals that 40 of the 99 predicted stable compounds have finite
bandgaps that vary between 0.53 eV and 2.63 eV, which is shown
as a histogram plot in Fig. 3c.
We further analyze the newly predicted stable compounds in

terms of the constituent elements (see bar charts in Fig. 4). The
newly predicted 99 stable compounds consist of 23 sulfides,
40 selenides, and 36 tellurides. We note that the elements in all
the predicted compounds are arranged to be in the A–M–M′–Q
order as in the experimentally known AMM′Q3 compounds to
follow their site occupancy. This helps us identify which elements
and chemical groups occupy the A, M, and M′ sites. We notice that
some of the predicted stable compounds do not appear to be
charge-balanced, assuming the nominal oxidation states of the
constituent elements, e.g., NaMnZrS3, NaNiTiSe3. We also see that
the M-site in some of the sulfides and selenides is occupied by
alkali metal (Li), e.g., in KLiZrS3 and KLiZrSe3. The M-site in some of
the selenides is also occupied by alkaline-earth (e.g., CsMgYSe3) or
post-transition metals (e.g., CsSnYSe3). Similarly, for tellurides, the
M-site is sometimes occupied by an alkaline-earth metal, e.g.,
CsMgGdTe3, or post-transition metal, e.g., KPbHoTe3. The M′-site in
some of the tellurides is occupied by post-transition metals, e.g.,
CsHgBiTe3. It is also evident that some of the predicted stable
compounds have a combination of alkali and alkaline-earth metals
(e.g., KMgHoTe3) and more than one alkali metal (e.g., KLiHfS3).

These chemical trends are unique to these newly discovered
compounds and are absent in the experimentally known32–39 and
the previously45 discovered AMM′Q3 compounds.

Thermal-transport properties
We now investigate the thermal-transport properties of the newly
discovered quaternary chalcogenides. To this end, we focus on the
compounds that are nonmagnetic and semiconducting to unravel
how the crystal structures influence their phonon dispersions and
κl. We did not choose any magnetic as well as metallic compounds
for this purpose as they can have significant magnonic and
electronic contributions, respectively, to the total thermal
conductivity (κ) as opposed to semiconductors where κl dom-
inates κ. Further, we select only those compounds that have the
KCuZrSe3 structure type as it has the highest symmetry and the
smallest unit cell among the seven structural prototypes known in
this family of compounds. This choice makes the calculation of κl
computationally less expensive compared with the other structure
types. Since the calculation of κl within a first-principles framework
is computationally very expensive, we randomly chose a set of 14
compounds from the list of predicted DFT-stable semiconducting
chalcogenides and calculated their κl using PBTE as detailed in the
“Methods” section. We calculate their electronic structures (see
Supplementary Fig. 2), phonon dispersions (see Supplementary
Fig. 3), and κl (Fig. 5). The DFT-calculated bandgaps (Eg) of these
selected compounds vary from small (0.36 eV in CePdYSe3) to
large (2.43 eV in CsMgGdSe3) values. From Fig. 5, it is seen that
these compounds exhibit very low κl (κ?l ≤ 1.80 Wm−1K−1 and
κ
k
l ≤ 0.50 Wm−1K−1 at T ≥ 300 K for any compounds), which is
smaller than the values reported experimentally in single-
crystalline SnSe (κ?l ~ 1.90 Wm−1K−1 and κ

k
l ~ 0.90 Wm−1K−1 at

T= 300 K)50. Here, κ?l and κ
k
l are the components that are

perpendicular and parallel to the stacking direction in the crystal
structure of the compounds, respectively. Due to the layered
crystal structure, these two components of κl are strongly
anisotropic with the κ?l being much larger than the κ

k
l due to

the stronger intralayer interactions. Among these 14 compounds,
KLiHfS3 has the highest (κ?l : 1.80 Wm−1K−1, κkl : 0.50 Wm−1K−1)
and CsMgPrTe3 has the lowest (κ?l : 0.67 Wm−1K−1, κ

k
l :

Fig. 3 Machine-learning assisted discovery of novel materials. a Schematic workflow of novel materials’ discovery with iterative use of the
machine-learning (ML) method and density-functional theory (DFT) calculations. The stable and metastable compounds are defined by their
hull distance of (Ehd)= 0 and 0 < Ehd ≤ 50meV/atom, respectively. b The distribution of predicted stable compounds into seven structure
types. c Histogram plot showing the distribution of the bandgaps of the predicted stable quaternary chalcogenides.
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0.17Wm−1K−1) value of κl at 300 K. To understand the origin of
ultralow κl in this family of materials and to unravel the
structure–property relationship, we picked one compound
KLiZrSe3 to investigate its harmonic and anharmonic lattice
dynamical properties in detail. In addition to thermodynamic
and lattice dynamic stabilities, we checked that KLiZrSe3 is also
thermally stable at 300 K using ab initio molecular dynamics
simulation (see Supplementary Note 1 and Supplementary Fig. 4).
We start the analysis of KLiZrSe3 by examining its phonon

dispersion and density of states that are shown up to 225 cm−1

here. For a full phonon dispersion, see Supplementary Fig. 3. We
see that the phonon dispersion (Fig. 6a) exhibits (a) very soft(<25
cm−1) acoustic phonon branches along Γ–Y and Γ–Z directions, (b)
several low-energy optical phonon modes near 35 cm−1, and (c) a
strong hybridization between the phonon branches up to
225 cm−1 (Fig. 6b). To understand the mode-wise contribution
to κl, we plot the cumulative values of κkl , κ

?
l , and their first-order

derivatives (i.e., κl
0? and κ0l

k) as a function of the phonon
frequency in KLiZrSe3. Figure 6c shows that κ

k
l varies up to

45 cm−1 and then plateaus above that frequency, indicating that
only the acoustic and low-energy optical phonons up to a
frequency of 45 cm−1 mainly contribute to it. On the other hand,

the variation of κ?l occurs up to 135 cm−1 before saturating to a
nearly constant value. Hence, the high-energy optical phonons
also contribute to κ?l . This anisotropy between κ

k
l and κ?l

originates from the disparate strength of interlayer and intralayer
interactions in the layered crystal structure of KLiZrSe3, the former
being much weaker than the latter. Figure 6d shows small group
velocities (<5 km/s) of the phonon modes. Due to their linear
dispersion, acoustic phonon branches exhibit the largest group
velocity close to 5 km/s, which decreases as the phonon frequency
increases. The calculated elastic moduli of KLiZrSe3 are very low
(bulk modulus: 28 GPa, shear modulus: 20 GPa) that give rise to an
average sound velocity of 2.48 km/s, which is lower than the
average speeds of sound (3.199–4.307 km/s) of the ternary oxides
in the Ln3NbO7 (Ln= Dy, Er, Y, and Yb)51 family that also possesses
very low κl (1.0–1.4 Wm−1K−1 at T= 300 K).
Next, we calculate the mode Gruneisen parameters (γqν=-

dlnωqν

dV ) of
the phonon modes in KLiZrSe3, where ωqν is the frequency of the
phonon mode ν at the q-point and V is the volume of the unit cell.
γqν’s directly measure the anharmonicity of the phonon modes that
play a crucial role in inducing low κl in crystalline solids52. The
calculated γqν’s of KLiZrSe3 are very large, with the values reaching as
high as 150 for the soft acoustic phonon modes (Fig. 6e). The optical

Fig. 4 Elemental distributions of the predicted stable compounds. The cations occupying the A-, M-, and M′-sites in the predicted stable
quaternary chalcogenides are shown as bar charts. The height of each bar represents the number of stable compounds that contain the
element. There are a total number of 99 predicted stable compounds that consist of a 23 sulfides, b 40 selenides, and c 36 tellurides.
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Fig. 5 Thermal-transport properties of the predicted stable compounds. Calculated temperature-dependent lattice thermal conductivity
(κl) of the 14 compounds that are selected randomly from the predicted stable and semiconducting quaternary chalcogenides-a KLiHfS3,
b KLiHfSe3, c KLiZrSe3, d KMgScSe3, e RbMgGdTe3, f RbMgTbTe3, g CsMgNdSe3, h CsMgGdSe3, i CsMgGdTe3, j CsMgDyTe3, k CsMgErTe3,
l CsMgPrTe3,m CsMgSmTe3, n CePdYSe3. κ

k
l (orange pentagons) and κ?l (blue circles) indicate the components of κl parallel and perpendicular

to the stacking direction of the layers in the crystal structure of these compounds, respectively.
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phonon frequencies (up to 80 cm−1) also exhibit very large γqν’s (≫1).
As phonon-scattering rate is proportional to γ2qν , those low-energy
phonons exhibit large scattering rates up to 10 ps−1 (Fig. 6g), which is
comparable to that of Sn2As2Se553, a material that is predicted to have
ultralow κl (0.37 Wm−1K−1 at T= 300 K). Due to such high values of
γqν, the scattering phase space of KLiZrSe3 becomes very large,
leading to enhanced phonon-scattering events, and hence an
ultralow value of κl in KLiZrSe3 and this family of compounds in
general. We note that κl has been calculated here using only the
three-phonon-scattering rates. Inclusion of additional scatterings due
to higher-order phonon interactions54 or grain boundaries55 may
further decrease the calculated κl.

Figure 6a also exhibits a nearly dispersionless optical phonon
branch near 48 cm−1 along the X–S–R–A–Z direction, which is
reminiscent of rattling vibrations that also help in reducing the
phonon lifetimes in this compound. Due to the presence of strong
coupling between the acoustic and the low-energy optical phonon
modes, the phonon-scattering phase space becomes very large,
indicating an enhanced number of scattering processes that are
available to those phonon modes. For example, the weighted phase
(WP) space (Fig. 6f) for the three-phonon-scattering processes
(absorption and emission) becomes larger than 0.1 ps4/rad4 for low-
energy phonons and remains high up to 48 cm−1. Thus, the WP space
for these phonons becomes even higher than the filled skutterudite

Fig. 6 Harmonic and anharmonic lattice dynamics properties of KLiZrSe3. a Harmonic phonon dispersion and (b) density of states of
KLiZrSe3 shown up to 225 cm−1. c Cumulative lattice thermal-conductivity plots κ?l and κ

k
l (values are on the y axis) and their first-order

derivatives (κl 0
? and κ0l

k , in arbitrary units) with respect to the phonon frequency, which are obtained from the anharmonic lattice-dynamics
calculations. d Group velocities (v) of the phonon modes, (e) mode Gruneisen parameters (γqν’s), (f) weighted phase (WP) space of the three-
phonon-scattering events, where WP+ and WP- indicate the absorption and emission processes, respectively, and (g) three-phonon-scattering
rates of the phonon frequencies (up to 225 cm−1) obtained using the third-order IFCs.

K. Pal et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    48 



YbFe4Sb1256, an ultralow-κl (1.18Wm−1K−1 at T= 300 K) material for
which the weighted phase space is limited below 0.01 ps4/rad4. It is
worth noting that in YbFe4Sb12, Yb acts as a rattler atom. Due to the
enhanced scattering phase space of the phonon modes up to 225
cm−1, the scattering rates (Fig. 6g) for those phonons also become
very high (>10 ps−1), giving rise to ultralow κl in this compound. We
provide the mode Gruneisen parameters, group velocities, scattering
phase space, and three-phonon-scattering rates for the phonon
modes of all 14 compounds in Supplementary Fig. 5–Supplementary
Fig. 18. It is interesting to note that the electronic structures
(Supplementary Fig. 2) of these compounds exhibit flat-and-dispersive
bands as well as multiple-band extrema near the valence- and
conduction-band edges, making them attractive for thermoelectric
studies.

DISCUSSION
We construct an advanced ML model based on the recently
developed iCGCNN model to search for novel compounds by
exploring the vast composition space engulfed by a class of known
quaternary chalcogenides AMM′Q3. The model is designed to be
scale-invariant to the input crystal structures, allowing the model to
predict the properties of hypothetical compounds more accurately
without knowing their DFT-relaxed volumes. Using DFT as a validation
tool, we discover a large number of 99 thermodynamically stable and
362 low-energy metastable compounds that are amenable to
experimental synthesis and characterization in the laboratory. The
overall success rate (~11%) of materials discovery is quite high in our
work since we discovered a total number of 461 potentially
synthesizable novel quaternary chalcogenides performing DFT
calculations for 4199 unique AMM′Q3 compositions. To investigate
the thermal-transport properties, we randomly select 14 DFT-stable
semiconducting and nonmagnetic compounds to calculate their κl
using the PBTE, including the three-phonon-scattering rates. Our
calculations reveal that all of these compounds exhibit ultralow κl. By
analyzing the harmonic (e.g., phonon dispersion and density of states)
and anharmonic (e.g., mode Gruneisen parameters, phonon-
scattering phase space) lattice dynamical properties of one of the
compounds KLiZrSe3, we found that the ultralow κl in this family of
compounds arises from (a) soft acoustic phonon branches that give
rise to low sound velocities, (b) the strong hybridization between the
phonon branches appearing at low frequency, and (c) large phonon
anharmonicity as evident in the very high values of the mode
Gruniesen parameters. The two latter factors help in increasing the
phonon-scattering phase space as well as the phonon-scattering rates
in this compound. Furthermore, the presence of low-energy nearly
dispersionless optical phonon branches, which are reminiscent of
rattling phonon branches, also play an important role in giving rise to
the small lifetime of the heat-carrying phonons, leading to a very low
κl. We hope that our work would encourage the application and
development of ML models based on graph neural network for the
efficient discovery of novel materials. While our model bypasses the
need to utilize the DFT-relaxed volume information of the input
crystal structures, additional work must be done to design an ML
model that can account for the changes that occur in crystal
structures during relaxation in terms of the stress and the ionic
positions. Last but not least, our results present opportunities in
further experimental and theoretical investigations of these newly
discovered AMM′Q3 materials having innate ultralow κl for various
thermal-energy management applications.

METHODS
ML-code implementation
The ML-code was implemented based on the existing iCGCNN framework46.
PyTorch57 was used to implement the neural-network components of our
model, while Pymatgen58 was used for performing the Voronoi tessellations
of the crystal structures49 before constructing the crystal graphs.

ML training data
Our ML model was trained on DFT-calculated thermodynamic data taken
from the OQMD14,17 and a previous constrained HT-DFT search of AMM′Q3-
type compounds conducted by Pal et al.45. Approximately 430,000 unique
ordered inorganic compounds with formation energies less than 5 eV/atom
were taken from the OQMD. These include experimentally known
compounds from the inorganic crystal-structure database (ICSD)59 and
hypothetical compounds with commonly occurring structures. The HT-DFT
study by Pal et al.45 was performed for 4659 compounds in various AMM′Q3

structure types. All 4659 compounds were included in the ML training data.
The crystal graphs of all compounds in the training data were generated
from their relaxed crystal structures. For all ML training in this study, 20% of
the training data were randomly chosen and reserved for validation.
We note that although there were only 4659 DFT-calculated AMM′Q3

compounds and their formation energies in the training data, the search space
(i.e., test set) that was explored in this work is much larger (823,680
compounds). However, this lack of data on the AMM′Q3 compounds is well
supplemented by another ~425,000 unique entries from the OQMD, which
covers a wide range of compositions and crystal structures. While the
compounds from the OQMD do not explicitly have the same structures as the
AMM′Q3 compounds, including these entries helps graph neural-network-
based models, such as CGCNN, to learn how attributes of different
compositional and structural combinations of the element types correlate
with the material property of interest, which in our study is the formation
energy. Thus, even though the previously calculated 4659 AMM′Q3

compounds do not cover all the different combinations of elements that
occur in our targeted search space of 823,680 compounds, the CGCNN model
is capable of extrapolating the formation energy of the compounds in our
search space by projecting the knowledge that it had learned from entries in
the OQMD to the AMM′Q3 structures.

DFT calculations
All DFT calculations were performed using the Vienna Ab-initio Simulation
Package (VASP)60 employing the projector-augmented wave (PAW)61,62

potentials. The Perdew–Burke–Ernzerhof (PBE)63 generalized-gradient
approximation (GGA) was used to treat the exchange and correlation
energies of the electrons. All relaxation and static calculations of the
compounds for phase-stability analysis were performed in accordance with
the DFT settings as laid out in our high-throughput framework available
with the OQMD through the qmpy suite of codes14,17.

Stability analysis
We determined the thermodynamic phase stability of the compounds by
utilizing the DFT-calculated total energy (T= 0 K). It has been shown that 0 K
thermodynamic phase stability data can often serve as an excellent metric of
the synthesizability of a compound12,13,17,30,64–68. To assess the stability of a
new quaternary composition we constructed its convex hull by considering all
its competing phases in that phase space. From this, we define the stability of
a compound by its hull distance (Ehd). For a stable compound, by definition,
Ehd= 0. On the other hand, a compound is considered to be metastable when
its Ehd lies within 50 meV/atom above the hull in keeping with the heuristic
conventions used in literature64,69,70. Compounds that have Ehd larger than
50meV/atom above the hull are considered to be unstable. For a detailed
discussion on the convex-hull construction and hull distance, we refer to
Refs. 14–17,45,71. It is worth mentioning that many known compounds in the
ICSD are metastable with varying positive hull distances65,72.

Calculation of lattice thermal conductivity
We calculated the phonon dispersions of these compounds using 2 × 2 ×
1 supercells within the finite-displacement method as implemented in
Phonopy73. The high-symmetry paths in the Brillouin zones are adopted
following the conventions used by Setyawan et al.74 while plotting the phonon
dispersions as well the electronic structures. We calculated the lattice thermal
conductivity (κl) utilizing the phonon life times obtained from the third order
interatomic force constants (IFCs)75–77, which was shown to reproduce κlwithin
5% of the experimentally measured κl in this AMM’Q3 family of
compounds40,41. We constructed the third-order IFCs using the compressive
sensing lattice dynamics (CSLD) method77,78 that utilizes the displacement–
force data generated from supercell configurations. In this study, we used 2 ×
2× 1 supercells with the cutoff radius (rc) for the third-order IFCs taken to be
the sixth nearest-neighbor distance within each crystal structure.
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Using the second- and third-order IFCs in the ShengBTE code79, we
calculated the temperature-dependent κl utilizing an iterative solution to the
Peierls-Boltzmann transport equation (PBTE) for phonons using a 12 × 12× 12
q-point mesh. It is known that the calculated κl depends on rc, which specifies
the maximum range of interaction in the third-order IFCs80 as well as on the
q-point grid. In our earlier work40, we showed that good convergence of κl was
obtained by limiting rc even to the third nearest neighbor and with the above
mesh of q-points in this family of compounds. Due to the layered crystal
structure of the AMM′Q3 compounds, we present the in-plane (κ?l , which is the
directional average of the κl components along the two in-plane directions)
and the cross-plane (κkl , which is along the stacking direction of the crystal)
components of the calculated κl tensor in the “Results” section.

Average speed of sound
To obtain the average speed of sound, we first calculated the bulk (B) and
shear (G) moduli of the 14 compounds for which we calculated κl (Fig. 5)
utilizing the elastic tensor calculated in VASP. Utilizing B and G, we
calculated the longitudinal (vL) and transverse (vT) speed of sounds

vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ 4

3GÞ=ρ
q

vT ¼ ffiffiffiffiffiffiffiffi
G=ρ

p
;

(5)

where ρ is the density of a compound. Next, we calculate the average
speed of sound (vav) using the formula81

3vav
�3 ¼ vL

�3 þ 2vT
�3: (6)
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