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Coarse-grained molecular dynamics integrated with
convolutional neural network for comparing shapes of
temperature sensitive bottlebrushes
Soumil Y. Joshi 1, Samrendra Singh1 and Sanket A. Deshmukh 1✉

Quantification of shape changes in nature-inspired soft material architectures of stimuli-sensitive polymers is critical for controlling
their properties but is challenging due to their softness and flexibility. Here, we have computationally designed uniquely shaped
bottlebrushes of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), by controlling the length of side chains along
the backbone. Coarse-grained molecular dynamics simulations of solvated bottlebrushes were performed below and above the
lower critical solution temperature of PNIPAM. Conventional analyses (free volume, asphericity, etc.) show that lengths of side
chains and their immediate environments dictate the compactness and bending in these architectures. We further developed 100
unique convolutional neural network models that captured molecular-level features and generated a statistically significant
quantification of the similarity between different shapes. Thus, our study provides insights into the shapes of complex architectures
as well as a general method to analyze them. The shapes presented here may inspire the synthesis of new bottlebrushes.
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INTRODUCTION
The human brain identifies and organizes everything in the
macroscopic world based on an important visual attribute of
objects––their shape1–3. However, at length scales not visible to
the naked eye, shapes of biological and soft matter architectures
have also been shown to influence the properties and functions of
these structures. While the concave disc-like shape of red blood
cells allows for their smooth travel in the bloodstream, the conical
shape of the human immunodeficiency viral (HIV) capsid or the
bullet-like shape of rabies viral capsid are essential for their
infectivity4–6. These shapes from nature have served as an
inspiration for the scientific community to synthesize soft- and
hard-nanomaterials of different shapes7–11. Considerable research
has been carried out to study the effect of shape on electrical,
thermal, and mechanical properties of such macromolecules12–17,
resulting in applications like portable displays, heat exchangers,
biological imaging, and drug discovery18. However, synthetic
chemists face limitations with regards to precisely controlling the
shapes and dimensions of these soft-nanomaterials; often
representing complex shapes with their easier-to-synthesize
simpler analogues19,20. Thus, an obvious question is, can these
simplified shapes retain the structure and properties of their
analogous complex shapes?
Various architectures of soft materials such as self-assembled

nanofibers, nanoribbons, and nanocoils of peptide amphiphiles,
star-shaped polymers and self-assembled DNA superlattices, have
been reported in the literature21–23. An emerging class of complex
polymer architectures that is inspired by the shapes of proteogly-
cans is bottle brush polymers (BBPs)24,25. The BBPs consist of a
long polymeric backbone densely grafted with polymeric side
chains. They have been regularly used for applications including
lubrication and photonics where the self-assemblies of these
structures are essential24,25. The conformations of individual BBPs,
resulting from structural parameters such as grafting density and
side chain length greatly influence their properties as lubricants as

well as their resulting self-assemblies26–28. While the conforma-
tions of worm-like BBPs have been studied before29, an in-depth
investigation into the conformations of non-cylindrical BBPs has
not been reported which could help understand the relationships
between BBP shapes and their properties. This forms the
motivation for our current work to investigate different shapes
of BBPs.
Furthermore, stimuli-sensitive polymers can be grafted around a

backbone to create stimuli-sensitive bottlebrush polymers (SS-
BBPs)19,29,30. In these SS-BBPs, individual side chains can undergo
conformational transitions in response to changes in environ-
mental factors like solvent quality, pH, temperature, etc31–33. This,
in turn, results in a change in the overall shape of SS-BBPs and
thus, their properties. For example, thermosensitive polymers like
poly(N-isopropylacrylamide) (PNIPAM) have been used to gen-
erate worm-like thermosensitive bottlebrush polymers (TS-
BBPs)34,35. The choice of PNIPAM-like thermosensitive side chains
can allow the study of shape change in a given BBP only by
changing the surrounding temperature, thus adding only one
controlled variable responsible for possible shape change.
Specifically, the PNIPAM side chains undergo a coil-to-globule
transition in water, when the system temperature is raised above
its lower critical solution temperature (LCST= ~305 K), owing to
dehydration of PNIPAM chains36,37. They have, as a result, been
shown to exhibit overall conformational changes depending on
their temperature as well as structural parameters including
PNIPAM grafting density and side chain length, with potential
applications in encapsulation and delivery of substances27,38. It is
thus intriguing to consider, how TS-BBPs of different shapes,
generated by arranging PNIPAM side chains of varying lengths
along the backbone, would behave under similar conditions.
Over the years, while experimental research on BBPs has

advanced dramatically, the synthesis and characterization of BBPs
remains challenging39. Furthermore, the inherent complexity of
TS-BBPs and limitations in experimentally achievable resolutions,
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make it difficult to understand the precise relationships between
microscopic parameters, such as the grafting density, individual
side chain lengths, structure of the polymer-solvent interface, etc.,
and the overall TS-BBP conformations40,41. Thus, computational
techniques like coarse-grained (CG) molecular dynamics (MD)
simulations have flourished in studying these systems at the
molecular level42,43. Furthermore, given the enormous amount of
data generated through simulations, the use of innovative
methodologies, including machine learning (ML)44–49, and deep
learning (DL)50–52, for analyzing these complex soft-material
architectures including TS-BBPs has further provided insights into
their conformations that were previously unknown29.
In this article, we employ CG MD simulations to study model

systems of TS-BBPs resembling six nature-inspired shapes by
varying PNIPAM side chain length gradually or abruptly. PNIPAM
side chains between 6-mers and 30-mers were attached to a
hydrophobic backbone as its persistence length to show an LCST
behavior is 10-mer36. Gradually changing structures consisted of
the (i) cone, (ii) hourglass, and (iii) diamond-like BBPs while the
abruptly changing structures consisted of the (i) cake, (ii)
dumbbell, and (iii) plus-like BBPs (See Supplementary Fig. 1 in
the Supplementary Information (SI)). It should be noted that three
of these structures- cone, hourglass, and diamond, consisted of
equal numbers of CG beads, and thus equal theoretic molecular
weights (MW), with the only difference being the arrangement of
side chains around the backbone. The six shapes were particularly
chosen to identify if analogous TS-BBPs such as the cone-like and
cake-like BBPs (narrow at one end and broad at the other) showed
similar thermosensitive behavior19,20. More details on structure
generation are provided in Supplementary Note 1 of the SI. These
BBPs were represented with CG models of PNIPAM and
hydrocarbon for the side chains and backbone, respectively, and
solvated in a 1-site CG water model, all developed previously in
our group53–56. Detailed information about these models is
presented in Supplementary Note 2 of the SI.
CG MD simulations of solvated TS-BBPs were performed below

(300 K) and above (320 K) the LCST of PNIPAM for 500 ns, which
was deemed adequate for equilibration based on previous studies
on TS-BBPs29. For direct comparison with a known shape, a worm-
like (cylindrical) BBP was also studied, which consisted of all
PNIPAM 30-mer side chains. An account of the system and
computational details is presented in Supplementary Note 3 of the
SI. Through the conventional analyses of free volume, contacts,
asphericity, small-angle neutron scattering (SANS), and solvent
accessible surface area (SASA) we found that the TS-BBPs with
different shapes exhibited different conformations below and
above LCST. We also observed, through an analysis of radii of
gyration (Rg) and radial distribution function (RDF), that this
behavior was strongly dependent on the length and immediate
environment of the grafted PNIPAM side chains. We have
additionally developed, a three-dimensional (3D) convolutional
neural network (CNN)-based DL model to accurately classify and
quantitatively analyze the similarities and differences in these TS-
BBPs of different shapes, at the two different temperatures. Our DL
approach is very general and can also be similarly used for the
processing of MD trajectories of several other complex hybrid
architectures of soft materials, demonstrating an application of
deep learning in mesoscale modeling.

RESULTS AND DISCUSSION
Compactness of BBPs
Visual inspection of the simulation trajectories generally showed
that TS-BBPs at 320 K exhibited more compact and bent structures
than at 300 K, when simulated for 500 ns, as presented in Fig. 1.
The equilibration of BBPs in the given time frame was verified by
analyzing the Root Mean Square Displacement (RMSD) of the

overall BBPs, as well as some randomly selected 30-mers in the
structures which is shown for three representative structures in
Supplementary Fig. 3. To quantify the compactness of our
structures, the free volumes of BBPs and the number of
PNIPAM-PNIPAM contacts per monomer in the entire BBP were
calculated. The free volume for these BBPs was calculated by
building a convex hull around the entire BBP structure (Supple-
mentary Fig. 4) to estimate the overall volumes occupied by these
structures and then, subtracting their theoretical volumes57–59.
Note, similar methodology has been used to calculate free volume
in several other polymeric systems60,61. Our results showed that
the free volumes of all BBPs, irrespective of the temperature and
shape, reduced as the simulations progressed, but the observed
reduction in values was generally greater at 320 K––indicating that
systems at 320 K resulted in more compact structures. It was also
observed that the cake, hourglass and diamond-like shapes
displayed varying free volume values, irrespective of their same
theoretical MW. This suggests that the arrangement of chains with
the same number of monomers along the backbone is critical for
its free volume. A thorough report of the free volume analysis is
presented in Supplementary Note 4 of the SI. The progression of
PNIPAM-PNIPAM contacts per PNIPAM monomer throughout the
simulation run was calculated by considering bead pairs, having a
Euclidean distance lower than the vdW cutoff (12 Å) used in CG
MD simulations62. These bead pairs, due to their shorter distance,
were considered to directly interact and thus defined as being in
contact. Our idea behind using this metric was different from the
conventional sense of the analysis63–65, and we only wished to
analyze if structures at 320 K were more aggregated and compact
as compared to those at 300 K. The logic was that more compact
structures would have a higher number of overall contacts. Here,
most BBPs at 320 K were observed to have more PNIPAM-PNIPAM
contacts as compared to 300 K, indicating that the PNIPAM side
chains were closer to each other, and interacted strongly at
320 K––in perfect agreement with the free volume data. The
evolution of contacts, throughout the simulation run, for all the
studied shapes, as well as additional observations can be found in
Supplementary Fig. 5 and Supplementary Note 5 of the SI.

Conventional analysis of shapes of BBPs
To investigate the effect of increased PNIPAM-PNIPAM contacts
and the compact nature of PNIPAM side chains on the overall BBP
shape, the asphericity for all the BBPs was calculated based on the
approach developed by Yethiraj66, where asphericity values,
ranging between 0 and 1, indicate more spherical and more
cylindrical conformations at the two ends of the scale, respec-
tively. The asphericity values (shown in Supplementary Table 3)
suggested that most of the BBPs were relatively more cylindrical at
320 K compared to 300 K except for worm and dumbbell-like
BBPs. This is interesting because both these structures had several
chains of 30-mers at both ends of the backbone unlike the rest of
the BBPs. We also found that asphericity values were generally
higher for abruptly changing BBPs compared to their gradually
changing analogue, further showing the importance of architec-
ture of BBPs. Detailed account of this analysis for individual BBPs
can be found in Supplementary Note 6 of the SI. These structural
analyses provided a good representation of the general BBP
conformation and its shape below and above LCST, which were
used to compare the different analogous BBP structures with each
other as well as worm-like BBPs (Fig. 2).
Comparing the cake and cone-like, and dumbbell and

hourglass-like BBPs based on the 3D plots shown in Fig. 2, it
was observed that data points at 300 K formed unique individual
clusters, thus indicating little similarities between the shapes
being compared. Even the cluster of data points for the worm-like
BBP was found to be discrete and did not overlap with the other
clusters of the four aforementioned shapes at 300 K. At 320 K,
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however, some overlaps were observed for these BBP pairs and
the worm-like BBP. This can be attributed to the LCST behavior of
the thermosensitive PNIPAM side chains. Interestingly, for the plus
and diamond-like BBPs, overlap was observed at 300 K but not at
320 K. This indicates that the position of longer vs shorter chains
on the BBP backbone may be important in determining
conformations of side chains as these are the only two BBPs for
which chain length increases as we get closer to the center of the
backbone. The Pearson’s correlation coefficients (PCC), used to
measure the monotonic association between two variables, were
calculated for the three aforementioned properties as shown in
Supplementary Table 467. It was observed that the free volume
and contacts were negatively correlated with the correlation
increasing at 320 K for most structures. This indicated that as the
free volume of BBPs decreased, the number of PNIPAM-PNIPAM
contacts increased and vice-versa. The correlation between free

volume and asphericity and between asphericity and PNIPAM
contacts did not seem to follow any trend, indicating that the
asphericity values were largely independent of the other two
properties. A negative correlation (~−0.5) was however observed
between the free volume and asphericity for certain cases
involving the cake (320 K), hourglass (300 K) and worm-like BBPs
(both temperatures). It was also observed that correlation
between all three properties was almost the same at both
temperatures for the worm-like BBP, indicating that the worm-like
structure showed similar trends in behavior irrespective of the
temperature. These 3D plots were also used for comparing shapes
at 300 K and 320 K as shown in Supplementary Fig. 6.
Next, small angle neutron scattering (SANS) was analyzed for

the different BBPs at 300 K and 320 K to further compare their
shapes and sizes. The SANS spectra was obtained for the last 50 ns
of the simulation using the CRYSON program and is presented in

Fig. 1 Final snapshots for the BBPs after 500 ns simulation run. a Abruptly changing, b Gradually changing and c Worm-like BBPs studied
after 500 ns simulation run. Abruptly changing BBPs include: a-i Cake, a-ii Dumbbell and a-iii Plus-like BBPs. Gradually changing BBPs include:
b-i Cone, b-ii Hourglass and b-iii Diamond-like BBPs. Simulations at 300 K are presented with a blue BBP backbone and those at 320 K are
presented with a red BBP backbone. PNIPAM side chains are represented in yellow with CG beads AMP and ISP hidden to provide a relatively
simpler representation of the structures.
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Fig. 2c68,69. Two regions were identified using the obtained SANS
spectra where the low q region (<0.01 Å−1) gives information on
the overall size and conformation of the BBP, and the mid q region
(0.02–0.06Å−1 gives information about the cross-sectional size and
stiffness70. Clear plateaus were observed for all BBPs in the low q
regions indicating their overall spherical conformations in agree-
ment with our asphericity data. The intensity of the SANS spectra
in the low q region was found to be the highest for the worm-like
BBP indicating the largest and most spherical conformation of this
type of BBP38. The sizes and conformations of the cone, dumbbell,
diamond and hourglass-like BBPs were all found to be similar at
300 K as compared to 320 K, where similarity was observed in the
cone-diamond and dumbbell-hourglass pairs. The cake and plus-
like shapes showed similar overall sizes but not conformations as
were determined from Kratky plots for these structures38.
The sphericity of the BBPs was verified through the Kratky plots

generated using the SANS spectra as shown in Supplementary Fig.
771,72. Kratky plots, have been used to identify the flexibility and/or
degree of unfolding in protein samples, where compact, globular
proteins show a bell-shaped (Gaussian) peak, while more

cylindrical structures show a plateau in the high q region71. It
was observed that while all BBPs exhibited a bell curve indicating
somewhat spherical conformations, the worm, cone, diamond and
hourglass-like shapes displayed a more distinct bell curve as
compared to the other structures indicating more spherical
nature73. The Kratky plot for the worm-like BBP was found to be
the most narrow and well defined, in agreement with previous
results of highest sphericity at 320 K73. The hourglass-like BBP
displayed a more spherical conformation at 300 K due to the
bending of its backbone as compared to at 320 K. Not much
difference was observed in the Kratky plots for the cone and
diamond-like BBPs at the two temperatures, which is also
consistent with the asphericity data we previously discussed.
The mid q regions showed that although the worm-like BBP was
structurally very different from the others, its spectra intersected
that of the cone, diamond, and hourglass-like BBPs indicating that
these structures had qualitatively similar cross-sectional areas and
stiffnesses. Similarly, it was observed that the cake and plus-like
BBPs exhibited similar areas and stiffnesses at 300 K but not at
320 K70. The dumbbell-like BBP was found to be very different in

Fig. 2 Conventional analysis of compactness and shapes of BBPs. Three-dimensional (3D) plots plotted using the BBP free volume, contacts
per PNIPAM monomer and asphericity data comparing analogous BBP pairs with worm-like BBPs at a 300 K, and b 320 K. The analogous pairs
include (i) Cake-Cone, (ii) Dumbbell-Hourglass, and (iii) Plus-Diamond shaped BBPs. c Small angle neutron scattering (SANS) spectra plotted for
all BBPs at (i) 300 K and (ii) 320 K. All data generated for the last 50 ns of the simulation run. Figure legends present alongside the figures.
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terms of these properties from all other shapes studied. To further
obtain thermodynamic insights into the behavior of different BBP
shapes, configurational entropy for the backbones of randomly
selected 30-mer and 7-mer side chains from abruptly changing
BBPs was plotted throughout the simulation run using the Quasi-
harmonic analysis74–79, as shown in Supplementary Fig. 8. It was
found that the configurational entropy of the PNIPAM backbone
increased as the simulation progressed and attained a near stable
state in most cases indicating equilibration of the chains80,81. It
was also observed that 7-mer side chains exhibited similar
configurational entropy irrespective of the temperature, whereas
30-mers exhibited a large difference in entropy values at the two
temperatures. This indicates that shorter PNIPAM chains do not
show much difference in entropic behavior below and above
LCST, explaining their inability to undergo coil-to-globule
transition.

Solvation dynamics of BBPs
To understand the effect of shape and LCST on overall solvation
dynamics, we also calculated the solvent accessible surface areas
(SASA) for all the BBPs studied, which are presented in Table 1.
Values were calculated for the initial and final stages of the
production run, as for several other analyses. It was observed that
the SASA values for all structures reduced as the BBPs became
more compact during simulation at both 300 K and 320 K. For the
plus-like structure, it was again observed that the final SASA values
at 320 K were greater than at 300 K, although the initial values
displayed a reverse trend. This is consistent with the observations
previously made during the analysis of contacts and free volume.
Only considering the gradually changing shapes, which had the
same molecular weights, it was observed that while the initial
SASA values for all these structures was comparable, diamond-like
BBP exhibited lower final values as compared to the other two
structures. This could be attributed to all longer side chains being
located at the center of the structure, resulting in relatively more
compact structures owing to higher PNIPAM-PNIPAM interactions.
This further shows the importance of shape of BBPs resulting from
the arrangement of side chains with different numbers of
monomers on the backbone. The worm-like BBPs exhibited the
highest SASA values, more than double than those of the plus-like
structure. This can be attributed to its much larger size as shown
by the SANS analysis. The SASA for the dumbbell-like BBP was
lower than the worm-like BBP, but greater than all remaining
structures. Thus, a pattern was observed, which was absent in the

previous analyses, where the SASA was directly proportional to
the theoretical MWs of the BBPs. The reduction in SASA was also
found to be greater for systems like the cake, cone and diamond-
like BBPs at 320 K, indicating that BBPs with shorter chains at one
or both ends of the backbone formed more compact structures
compared to those with the short chains in the middle.

Conformations of the BBP backbone
Apart from their compactness, several BBPs exhibited bending in
their backbones at 320 K, resulting in overall bent conformations.
This bending of the backbones was confirmed by calculating the
backbone Rg and end-to-end distances for different BBPs as
shown in Fig. 3a. It was observed that the backbone Rg for the
cake, cone, diamond, and worm-like BBPs was significantly lower
at 320 K than 300 K, indicating that these structures were more
bent at 320 K. Also, the backbone Rg for the hourglass and plus-
like BBPs, was found to be lower at 300 K similarly indicating more
bent structures at 300 K. A coherent trend was observed for the
backbone end-to-end distances. The end-to-end distances for the
initial and final stages of the simulation for these structures are
also provided in Supplementary Table 5. While these values were
similar during the initial 50 ns at 300 K and 320 K, considerable
differences cropped up as the simulation progressed. The back-
bone end-to-end distances for final 300 K structures were
observed to either be very similar to, or greater than the initial
values, indicating that the backbones at 300 K were stretched as
compared to at 320 K. The origin of this bending of the backbone
was analyzed by calculating the number of contacts between side
chains of different lengths as shown in Supplementary Note 7 of
the SI. In general, this bending was due to the interactions
between smaller (<10-mer) and longer (>10-mer) PNIPAM chains
located on the backbone of the BBP. To study the effect of
bending on the structure of solvent around the backbone,
comparison of the RDFs between water and backbone beads for
the abruptly changing shapes was also carried out. This indicated
that the backbone of the worm-like BBP was comparatively most
hydrated at 300 K followed by the plus, cake, and dumbbell-like
structures. This mostly remained the same at 320 K except for the
cake-like BBP, which exhibited dehydration due to bending as
shown in Supplementary Fig. 13. The evolution of overall Rg of all
BBPs is presented in Supplementary Fig. 14 and it shows that the
overall Rg of the cake, cone, and diamond-like BBPs significantly
reduced at 320 K as compared to 300 K due to the bending of
backbones in these structures. It is thus clear that the shapes of
TS-BBPs greatly influence not only their overall conformations but
also the bending of their backbone.

Conformations of individual side chains
To study the structure of individual side chains of PNIPAM in BBPs
with different shapes, we calculated their Rg at both temperatures
for the last 50 ns of the total 500 ns run. As a reference, the mean
chain-wise Rg values at both temperatures for the cake-like BBP
are presented in Fig. 3b, along with the normalized distribution of
Rg for each side chain length in Supplementary Fig. 15. It was
observed that the Rg of most 30-mer chains, at 320 K, was lower
than their respective values at 300 K, indicating the presence of
globule-like conformations at 320 K53. A coil-to-globule transition
was also observed for PNIPAM 18-mers. However, the difference in
mean Rg values for 18-mers at the two temperatures was lower
than observed for 30-mers53. It was also observed that for 6-mer
side chains, the difference in Rg values was negligible, indicating
that short side chains did not exhibit LCST behavior29,53. Similar
results for PNIPAM chains below 10-mers have been reported in
previous studies36,82,83. For gradually changing cone, hourglass
and diamond-like BBPs, given the wide range of side chain
lengths, Rg distribution was studied in smaller groups of chain
lengths. Four groups of side chains were created (7-mer to 11-mer,

Table 1. Solvent accessible surface area (SASA) values for the
overall BBPs.

Shape Temp (K) Initial SASA (Å2) Final SASA (Å2)

Cake 300 146795.63 ± 605.35 143100.22 ± 404.58

Cake 320 146240.60 ± 425.48 142797.75 ± 722.35

Cone 300 151578.27 ± 375.70 147377.48 ± 468.67

Cone 320 150685.88 ± 643.07 146704.68 ± 436.98

Dumbbell 300 183818.45 ± 703.57 178930.51 ± 520.97

Dumbbell 320 182578.07 ± 699.30 178882.42 ± 528.01

Hourglass 300 151224.35 ± 798.36 146962.68 ± 389.91

Hourglass 320 150242.02 ± 436.46 147483.73 ± 599.41

Plus 300 120116.86 ± 448.77 116454.66 ± 513.08

Plus 320 119733.15 ± 539.27 117430.07 ± 332.29

Diamond 300 150123.69 ± 585.77 146890.61 ± 488.77

Diamond 320 150152.68 ± 599.42 145848.39 ± 438.64

Worm 300 246661.66 ± 860.96 238580.06 ± 598.68

Worm 320 245948.40 ± 966.13 238101.54 ± 705.50
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12-mer to 17-mer, 18-mer to 24-mer and 25-mer to 30-mer) and
normalized distribution of Rg was plotted for the last 150 ns. It was
again observed that all the side chain groups except 7-mer to 11-
mer exhibited partial globule-like conformations at 320 K with the
extent of collapse increasing with increase in chain length.
Analysis of the worm-like BBP also showed partial globule-like
conformations of several side chains at 320 K. These data can be
found in Supplementary Figs. 16–21 and Supplementary Tables 6
and 7.

The availability of solvent around PNIPAM chains plays an
important role in their LCST behaviour and is often believed to
initiate the process36. Thus, we next studied the structure of
solvent at the solvent-polymer interface by plotting the RDF
between water and PNIPAM side chains. The peaks in the RDF
indicate short-range structure via positional correlation84. While
the side chains exhibited dehydration at both temperatures as the
simulations progressed, those at 320 K were generally more
dehydrated than their 300 K counterparts as seen through
decrease in the peak heights. The RDF plots for the representative

Fig. 3 Configurational and solvation analysis of individual polymer chains. a Mean values of (i) backbone Rg and (ii) backbone end-to-end
distance for all BBPs. Legend available below the plots. b Mean Rg value for each PNIPAM side chain of the cake-like BBP calculated for the last
150 ns of the simulation run. Side chain lengths are provided in the plot along with the final BBP snapshots below and above LCST. The
snapshots follow the scheme mentioned in Fig. 1. c Radial Distribution Function (RDF) profiles between water and (i) 30-mer, (ii) 18-mer and
(iii) 6-mer long side chains. 300 K data is presented in blue, and 320 K data is presented in red.
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cake-like BBP are presented in Fig. 3c. These plots show clear
dehydration of polymer chains at 320 K, irrespective of their
lengths, with the extent of dehydration being the greatest for 18-
mer side chains. It should be noted that the height for the first
peak in RDF decreases with decrease in the PNIPAM chain length,
indicating that the structure of water might be different near
these chains. The evolution of the RDF between the PNIPAM
backbone and water, throughout the simulation run was also
plotted for the cake-like BBP as shown in Supplementary Fig. 22
and Supplementary Table 8. This plot shows that the structure of
solvent significantly changed for the first 200–250 ns of the run
and eventually attained a more stable value. PNIPAM-water RDFs
and an in-depth analysis for the remaining BBPs can be found in
Supplementary Note 8 of the SI, which showcase similar behavior
to the cake-like BBP. To further emphasize the extent of
dehydration in these systems, data for the mean number of
water molecules per PNIPAM monomer, in the first, second and
third hydration shells are provided in Supplementary Table 9.
These data also show that dehydration was greater at 320 K in all
cases except one––the plus-like BBP. The effect of the side chain
environment on the LCST behavior of 30-mers in the abruptly
changing shapes was also analyzed, which is presented in
Supplementary Note 9 of the SI. The conformations of PNIPAM
30-mers in three distinct environments (Supplementary Fig. 28)––
(i) edge (chains at two ends of the backbone), (ii) center (chains at
the center of 30-mer blocks) and (iii) interface (chains at the ends
of 30-mer blocks, adjacent to a different side chain block) were
analyzed, which showed that PNIPAM chains displayed different
conformations in all three environments depending on the shape
of the BBP studied. PNIPAM side chains at the edge and the center
showed appreciable reduction in Rg at 320 K as compared to
300 K. At the interface, 30-mers were observed to fall onto the
adjacent shorter side chains, thus showing little change in Rg
values at the two temperatures. RDFs between PNIPAM 30-mers
and water also showed that chains at the edge were most
hydrated, followed by chains at the interface and the center at
320 K. These data indicate that apart from the PNIPAM chain
length, their immediate environments also play a big role in
determining the conformations of individual side chains in
the BBPs.

Need for convolutional neural network (CNN) model
Following these conventional analyses, we developed a 3D CNN-
based classifier to further analyze these complex BBP structures for
much more minute similarities and differences85–89. CNNs, having
previously demonstrated great success in the fields of image
processing, computer vision, etc90–96, are easy to understand, fast
to implement and can detect important features with little human
supervision97. CNNs have also recently found way into diverse
areas such as material science and biochemistry98–101, where they
have been utilized for defect classification, microstructure identi-
fication and reconstruction, heterogeneous material homogeniza-
tion,102–105 as well as to identify protein functions, RNA splicing
sites and predict subcellular protein localization106–109. CNNs have
also been shown to perform better than rule-based classifiers for
flexible objects due to their ability to analyze shapes irrespective of
their orientation110–112. The use of DL to analyze our systems was
thus warranted for two main reasons––(i) Studying the shapes of
dynamic soft-material architectures in the presence of solvents
using existing experimental methods or traditional geometry-
based computational analysis is very challenging given their
flexible nature. Use of DL methods such as CNNs have been shown
to analyze flexible objects very well due to their ability to identify
shapes irrespective of their orientation––something essential for
soft-matter architectures113,114. This method, which differentiates/
classifies based on the microscopic features of these systems, was
thus deemed as an appropriate and powerful tool to solve this

problem. (ii) Features obtained from CNN based models are
frequently used for image recognition and segmentation, image
and video classification, natural language processing etc. However,
to the best of our knowledge, this approach has not been used to
handle problems concerning nanoscale soft material architectures
in the literature. Thus, this provided us the opportunity to
demonstrate the applicability of such DL methods in soft-
material research.

CNN model development and data processing
The first and most crucial step here was generating easily
processable data points out of the available CG MD trajectories
without losing out on important structural information. This was
achieved by voxelization of the entire BBP structure into a binary
3D grid of 50 × 50 × 50 voxels using the cartesian coordinates of
each bead and their corresponding bead radii (see Fig. 4a and
Supplementary Fig. 29). Specifically, from the later stage of the
production run (last 150 ns), 250 randomly chosen frames were
used as individual data points for each of the seven BBP shapes.
Models were also trained using different number of data points
per BBP shape, and it was observed that with a higher number of
frames per shape, the model was trained in fewer epochs
(Supplementary Fig. 30) but required more time and memory.
This number of 250 frames was chosen as an optimum between
the model accuracy, training time and memory usage of our CNN
model. The rationale behind using cartesian coordinates was that
they allowed us to capture the spatial information of the BBPs,
including their overall shape and the minute details regarding
their internal structure. The size of 50 voxels (~4 Å) was selected to
cover most microstructural details of the BBP structures, with one
CG bead generally occupying one unit in the 3D grid. We also
attempted to use 75 voxels per side during the grid generation
which provided an even more detailed representation of the
structure (Supplementary Fig. 31). However, this too required
much greater amount of time and memory. Trajectories for 300 K
and 320 K were analyzed separately, which provided us with
equally distributed 1750 data points (250 frames × 7 shapes) at
each temperature.
This dataset of 1750 points was labelled and randomly shuffled

before segregation into training, validation, and testing data with
a ratio of 70:15:15. Once the data was ready, the next step
involved developing a 3D CNN architecture to process the data
and classify the input into one of the seven shapes. This was
developed using the Keras library with four convolutional layers,
the Rectified Linear Unit (ReLU) activation function and max
pooling in each layer115,116. A kernel size of 3 × 3 × 3, stride length
of 1 and no-padding (i.e. no additional rows or columns were
added to the existing data while carrying out convolutions) were
configured on the convolutional layers. A rigorous hyperpara-
meter tuning process was carried out to identify the best
parameters for our CNN model. The number of convolutional
layers, batch size, and kernel dimensions were systematically
varied to study the performance of the CNN model. While all
models with one, two, three and four convolutional layers were
capable of accurately classifying the shapes, the features each
model considered to do so were not the same. The number of
convolutional layers was chosen as four to extract a rich
representation of the microscopic features of each shape during
convolution. Kernels that operate directly on the input data
usually only learn low-level features, such as lines or planes.
However, as the depth of the network is increased, the features
are abstracted at a higher order. Thus, features become more
complex as more convolutional layers are added117,118. Batch sizes
including 32, 64, 96 and 128 were studied and comparable results
were obtained for all the cases. Kernel dimensions for the first
convolutional layer were also varied from 3 to 7, which showed
comparable results. It was generally observed that as the shapes
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used in this manuscript were considerably different from each
other and the voxelization process utilized adequately captured
the differences between these shapes, the CNN model was able to
accurately classify the shapes with a wide variety of hyperpara-
meter sets without overfitting. Results from this hyperparameter
tuning process can be found in Supplementary Figs. 32–34. A
dropout of 0.5 was applied after the third convolutional layer to
regularize the model and avoid overfitting. Using L1 and L2 kernel
regularization methods was also explored but they were found to
reduce the validation accuracy of the models (Supplementary Fig.
35). This was followed by four dense layers, where the output of
the first dense layer represented 100 features of the input.
Softmax function was applied on the output of the last layer to
obtain the probability scores for each class119. The Adam
optimizer along with a categorical cross-entropy loss function
was used120. A detailed architecture diagram of the 3D CNN model
is provided in Fig. 4b.
The model was trained for 30 epochs to prevent the model from

overfitting the training data and to simultaneously reach the
optimal accuracy value for the validation dataset (Supplementary
Fig. 36). The training and validation were carried out for data
points at 300 K and 320 K separately to train different models at
different temperatures. Visualization of a representative tensor
slice after different convolutional layers is also presented in
Supplementary Fig. 37. The testing dataset, which was indepen-
dent from the training and validation datasets was then used to
classify existing BBPs into their respective shapes. Successful
classification of all shapes by the CNN indicated that the model
was able to convert our one-hot encoded grid of input data points
into translational equivariant responses known as feature maps121.
These feature maps, in our case are feature vectors consisting of
100 numbers that cannot be directly interpreted into particular
structural features of the BBP, but are formed entirely as a result of
the same and are capable of classifying the structures based on
their shape and microstructure. An independent feature vector is
also generated for each tested data point and the structure is
classified based on similarities between this feature vector with

other feature vectors for the different classes in question. This
approach of converting known structures into feature vectors
forms the basis of this paper as well as several CNN-based
approaches used for image recognition and segmentation, image
and video classification, natural language processing etc122–125.
These 100 features, which reflect microstructural characteristics of
the different BBP structures that may not be apparent to the more
macroscopic analyses105, were extracted from the first dense layer
of our architecture for further analysis. This process, known as
feature engineering––which is quite cumbersome using conven-
tional methods, and usually requires extensive knowledge of the
system to be studied––was thus carried out very easily using our
deep learning model106–108,126–128. Finally, to identify and quantify
the similarities between different BBP shapes, these different
extracted feature vectors (FVs) were used to obtain important
insights into the behavior of these BBPs below and above LCST.
However, since the obtained features may vary with every model
trained using different training data points, it was essential to first
make these values statistically significant.

Comparison and quantification of BBP shapes using CNN
This was achieved by training 100 different CNN models, each
with the same hyperparameters. Each model was fed a unique,
randomly selected set of training data points from the complete
data set. For each model trained, FVs for every structure from the
testing data were extracted, with those for the same shape
averaged to obtain one representative FV. The cosine similarity
between these mean FVs for different shapes was calculated and
stored as a similarity matrix of dimensions 7 × 7. These similarity
matrices were used to obtain their mean and standard deviation
matrices after every 10 models to observe their evolution as the
number of CNN models increased. It was observed that after
about 50 models, the overall values of these matrices converged
to a near constant value, thus indicating that all possible sets of
unique FVs for each shape had been accounted for in our final
matrices (Supplementary Fig. 38). These matrices for the mean
similarity values and standard deviations are presented in Fig. 5.

Fig. 4 CNN model development. a Schematic of the grid generation. b Architecture diagram for the developed CNN model.
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It was also observed that more BBP pairs showed higher similarity
values at 320 K as compared to 300 K. This indicates that below
LCST, when side chains are in a stretched, coil-like state, the BBP
shapes are different from each other as identified by the 3D CNN
model. Above LCST, however, these differences in shapes were
much lower than those below LCST. This could be because at
320 K a coil-to-globule transition of PNIPAM side chains may have
altered their shapes to contain more similar microscopic features
than at 300 K.
The diagonal values approached the value of 1, indicating that

the CNN model was able to accurately capture and classify BBPs
based on their shapes. The traditional analysis (e.g., SANS, free
volume, RDF, asphericity, and Rg) also suggests that the internal
structure of the BBPs changed in response to their local
environment and change in the temperature due to the LCST
behavior of PNIPAM. Indeed, when CNN compared analogous
BBPs with two different shapes it suggested that dumbbell-
hourglass and plus-diamond pairs have higher similarities at 320 K
and cake-cone pairs have higher similarities at 300 K. Thus, these
results generally suggest that the combination of the one-hot
encoded grid and BBP coordinates can capture two important
aspects of the BBPs: (i) their shape and (ii) partially internal
structure. These data, being different from our 3-feature
comparison of the different shapes (Fig. 2) indicate that the
CNN model was able to find granular similarities between shapes
of BBPs, which were not captured by geometry based analysis
such as Rg and SANS. The mean cosine similarity values also
indicated that BBP pairs like cake-dumbbell, cake-hourglass,
diamond-cone showed similar similarity values at 300 K and
320 K. However, some BBP pairs displayed a considerable change
in their similarity values at the two temperatures. For instance, the
similarity between cake-cone, plus-cone, and hourglass-diamond
BBP pairs was higher at 300 K than 320 K, but for the pairs cone-

diamond, cake-plus, and cone-dumbbell, the opposite behavior
was observed. These results can be attributed to the LCST
behavior of these BBPs and the arrangement of side chains
around the backbone. It was also observed that the similarity of
the worm-like BBP with most other shapes was lower at 320 K than
at 300 K. The standard deviation matrix showed that similarity
values at 300 K generally displayed more fluctuations than at
320 K. This indicates that the magnitude of similarities between
structures at 300 K is not deterministic enough as compared to at
320 K. A detailed account of the similarity values between
different BBP pairs is further provided in Supplementary Note 10
of the SI.
In conclusion, the current study showed that the shapes of BBPs

greatly influenced their overall conformations, dictating the
compactness and bending in these structures. BBPs with the
same theoretical molecular weights were shown to behave
differently when the side chains were grafted onto the backbone
in different patterns––with the structure with higher PNIPAM-
PNIPAM interactions resulting in a smaller, more compact
structure. The length of PNIPAM side chains and their immediate
environments were also found to affect their coil-to-globule
transition as well as their solvation dynamics, further influencing
the overall structure of the BBP. Finally, a new CNN-based analysis
was developed to quantify the degree of similarity between
different BBP structures below and above the LCST of PNIPAM.
This model, by itself, identified the best 100 features to define
each BBP structure, without the need for human intervention.
These features were obtained for 100 different CNN models to
generate a statistically significant quantification of the similarity
between different shapes. The CNN-based model was able to
identify several structural and shape-based features of BBPs, not
captured by conventional methods to provide unique, new
insights into the similarities between these BBPs. In the near

Fig. 5 Quantification of similarities and differences in BBP shapes. Shape-wise comparison of the (a) mean cosine similarity and (b) mean
similarity standard deviation between the extracted feature vectors for each shape at (i) 300 K and (ii) 320 K. Legend for the similarity and
standard deviation values is presented alongside each plot. Shape legend same as Fig. 3.
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future, we plan to use this CNN model to study architectures of
Glycomaterials including their BBPs.

METHODS
Structure generation and computational details
Six shapes of BBPs were designed by gradually and abruptly changing the
length of PNIPAM side chains between 7-mers to 30-mers using an in-house
Python code. All generated bottlebrushes consisted of a hydrophobic
backbone of 72 beads and PNIPAM side chains and a constant grafting
density of 100% (one side chain on every backbone bead; 72 side chains).
Individual BBPs (~4,250 beads) were solvated in a box of length 250 Å in x,
y, and z directions with explicit 1-site CG water beads. The box dimensions
were chosen to prevent interactions between the BBP and its periodic
images while the number of water beads (~ 200,000) was calculated to
account for the experimental density of water. Solvation was achieved by
using the Packmol package developed by Martinez et al.129 Coarse-grained
(CG) molecular dynamics (MD) simulations were employed to study these
systems at two temperatures––300 K (below LCST) and 320 K (above LCST)
for 500 ns in NPT ensemble (1 bar pressure). Simulations were carried out
using the NAMD package developed by the Theoretical and Computational
Biophysics Group at the University of Illinois at Urbana-Champaign130.
Simulation time-step of 10 fs was used to perform all the simulations. The
cut-off for evaluating the nonbonded interactions was set to 12Å.
Temperature and pressure control during the CG MD simulations was
achieved by Langevin thermostat and barostat, respectively. The first 50 ns
of the simulation were set aside for equilibration of the system and
50–500 ns was considered as the production run. Detailed information can
be found in Supplementary Notes 1, 2 and 3 of the SI.
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