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A graph based approach to model charge transport in
semiconducting polymers
Ramin Noruzi1,3, Eunhee Lim2,3, Balaji Sesha Sarath Pokuri 1,3, Michael L. Chabinyc 2✉ and Baskar Ganapathysubramanian 1✉

Charge transport in molecular solids, such as semiconducting polymers, is strongly affected by packing and structural order over
several length scales. Conventional approaches to modeling these phenomena range from analytical models to numerical models
using quantum mechanical calculations. While analytical approaches cannot account for detailed structural effects, numerical
models are expensive for exhaustive (and statistically significant) analysis. Here, we report a computationally scalable methodology
using graph theory to explore the influence of molecular ordering on charge mobility. This model accurately reproduces the
analytical results for transport in nematic and isotropic systems, as well as experimental results of the dependence of the charge
carrier mobility on orientation correlation length for polymers. We further model how defect distribution (correlated and
uncorrelated) in semiconducting polymers can modify the mobility, predicting a critical defect density above which the mobility
plummets. This work enables rapid (and computationally extensible) evaluation of charge mobility semiconducting polymer
devices.
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INTRODUCTION
Predicting the charge carrier mobility of semicrystalline polymers
is challenging because of the interplay between ordered and
disordered regions1,2. Polymer chains in ordered regions are
extended with long conjugation lengths and packed such that the
interchain electronic coupling is weak, but still significant for
charge transport. The chains in the amorphous regions have a
significantly broader distribution of electronic couplings between
neighboring chains due to structural disorder. In the ordered
regions, transport may occur through extended electronic states
whereas in the disordered regions charges are thought to move
by hopping between localized sites3,4. The ability of high
resolution transmission electron microscopy (HR-TEM)5–11 and
X-ray scattering methods12–14 to reveal the detailed morphology
of semiconducting polymers presents an opportunity to reveal
how ordered and disordered regions impact charge transport. The
challenge is to model how charge transport occurs between these
two regions, which can guide the design of new polymers and
processing routes to achieve higher carrier mobilities.
The level of detail in models of charge transport in polymers has

a significant influence on their applicability. For crystalline
polymers, quantum mechanical calculations can be performed
to predict the band structure of perfectly ordered chains and
thereby model the mobility of carriers in ordered regions3,15.
Disordered, or amorphous, polymers can be difficult to model
using such techniques and can require very large scale simulations
that combine molecular dynamics to model molecular-scale
morphologies and electronic structure calculations on specific
microstructures16–19. Most semiconducting polymers have a
mixture of ordered and disorder domains leading to challenges
in incorporating both types of regions in transport models.
Hopping models that consider transport between localized steps
as a set of jumps between sites on model lattices have been
widely used. Energetic disorder is incorporated by varying the
distribution of the energies of the sites that charges jump

between4. While such lattice models are powerful, it can be
difficult to model systems with spatial anisotropies over long
ranges relative to the spacing of sites. Hopping simulations can
additionally require computationally intensive methods, such as
kinetic Monte Carlo (kMC) techniques, that can constrain the
ability to study experimentally relevant time and length scales20,21.
While there has been recent success in running such models at
device scales22, performing design or parametric exploration using
such approaches remains intractable. More importantly, the
addition of molecular level detail can obscure the general
behavior, i.e. they may be too materials specific to reveal critical
behavior23,24.
A simple model for understanding the difference in behavior of

transport in amorphous and crystalline polymers considers the
competition of transport along a polymer chain and between
chains25. By defining a timescale for diffusion along a chain and a
timescale for hopping between chains, the behavior of amor-
phous and nematic polymers can be modeled analytically. In real
systems, the landscape for charge transport is more complex with
energetic disorder within both ordered and disordered regions, a
distribution of chain lengths, and varying connectivity between
ordered and disordered regions. However, this coarse model of
competition between transport along a chain and between chains
captures much of the essential physics of transport in polymers.
Recently, there has been significant progress in developing

more realistic models to understand how charges move through
the complex morphological landscape of polymers24,26,27. Tie
chains that connect ordered domains through amorphous regions
have been recognized as an important factor in transport1,14,28–30.
For example, in poly(3-hexylthiophene) (P3HT) the crystallites are
~20 nm along the chain axis and if the disordered domains are of
similar dimensions, then an extended chain of ~150 repeat units
can span two domains as a tie chain. Using a description from
polymer mechanics of the number of tie chains, the charge carrier
mobility of P3HT was studied by addition of higher MW polymer
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to a lower MW matrix revealing that low percentages of tie chains
can greatly enhance the charge carrier mobility in field effect
transistors31. Efficient analytical models for transport that consider
the role of electronic defects, i.e. kinks in tie chains, that would
cause charge trapping have also been developed30. By combining
a model for the role of defects with coarse models of the
alignment of ordered domains, limits were found for when
transport within ordered domains dominates and when defects
dominate30. Other models incorporating percolation and hopping
transport using numerical simulations of morphologies generated
by coarse grain molecular modeling have also been reported32.
Hopping-based models that use MC methods are computationally
intensive for large scale studies, i.e. over statistically large numbers
of morphologies or large length scales33. For example, kMC
simulations have been reported to model transport in transistors
by considering length scales of ~1 micron in the transport
direction, but only ~10 nm in the transverse directions22. Three-
dimensional modeling over significant length scales with compu-
tational efficiency remains very challenging34. Therefore, there is
still a need for efficient models that capture factors beyond tie
chains including the distribution of chain lengths (molecular
weight), energetic disorder and the varying connectivity of
ordered regions that are becoming experimentally accessible.
Here we report on an approach that uses graph theory to model

charge transport and percolation in semiconducting polymers as a
function of their morphology. Graph theory is particularly
appealing for modeling transport as it enables (a) abstracting
out material specific details into a small set of features (graph
edge weights, graph connectivity, graph node color), thus
allowing generalization, (b) utilization of sophisticated, highly
optimized graph algorithms that enable computationally efficient
assessment of large systems, and (c) natural extensions to account
for more complex effects like chain length distribution, energetic
disorder and varying connectivity. Graph methods have been used
previously in organic electronics to study transport in molecular
solids both in ordered and disordered structures35–38.
In this work, we utilize a directed graph representation39 to

relate the spatial distribution of molecular chains in the organic
solid with charge transport. Representation of morphology as a
graph enables40,41 us to efficiently (and exhaustively) identify all

charge transfer pathways, and characterize their statistical
features. Our graph based model is computationally inexpensive
and simultaneously takes into account coexistence of crystalline
and amorphous regions, the local orientation of the polymer
chains, inter-chain and intra-chain hopping, and presence (and
spatial distribution) of impurities. More importantly, such graph
models can naturally account for information (hopping rates,
overlap integrals, etc.) from detailed molecular calculations that
are performed off-line. After representing the morphology of the
organic solid as a directed graph, we associate the edges of the
graph with properties related to charge hopping. We first consider
the expected contributions of intrachain and interchain transport
to hopping transport. The interchain transport will be anisotropic
and will vary based on the respective orientation of two
neighboring polymer chains (equivalently, set of graph nodes).
We expect the electronic coupling between two co-linear polymer
chains separated by their chain ends will be weak and act as an
impediment to transport. Two side-by-side chains where their
conjugated backbones are co-facially arranged will be coupled
electronically allowing hopping between chains. If the chains are
separated by their sidechains, then the electronic coupling will be
weak preventing charge from hopping from one chain to the next.
Additionally carriers can potentially hop between chains beyond
nearest neighbors with the range being dependent on tempera-
ture and the energy of the site. Intrachain transport will be
affected by the ordering of the polymer chain; extended chains
have better electronic coupling than those with disordered
conformations between repeat units. Therefore transport in
ordered regions will be more efficient along chains than in
disordered regions. Extended chains that bridge two ordered
regions through the disordered regions are referred to as tie
chains; it is presumed that transport along tie chains is
comparable to that in the ordered domain. A graph model
naturally capture these features by associating edge weights
(electronic couplings) that represent interchain and intrachain
transport.
Our graph-based model for transport is effectively a coarse-

grain representation of the polymer solid. We represent the
conjugated polymer chains as a collection of short connected
rods, with each rod representing the local orientation of the
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Fig. 1 Schematic illustration of the graph-based charge transport model. The model takes in an HRTEM image, identifies local order of
polymer chains, represents with nodes to form a graph network which is then used to represent charge transport along a specified electric
field direction.
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backbone of the corresponding polymer chain (see Fig. 1). We
convert this collection of rods into an equivalent graph
representation39,42. Here, each rod is represented as a set of
vertices arranged in order. We define two type of vertices
(crystalline or amorphous vertices) and two types of edges that
connect the vertices (intra-chain or inter-chain edges). The
definition of the edge (and its weight, the edge weight) is directly
related to charge transport (or charge hopping). Two vertices are
connected by an edge if it is possible for a charge to hop between
them, and the weight of the edge (i.e. strength of the connection)
is proportional to the time duration for hopping (inversely
proportional to the hopping frequency). Vertices that are
considered to be part of the same polymer chain have edges
that are weighted based on whether they are in crystalline or
amorphous regions, where the weight increases the timescale for
hopping in the amorphous region. The weights of the edges that
connect vertices that belong to different polymer chains, i.e.
intermolecular transport, are weighted differently than the edges
of a polymer chain and by their relative orientation (to model the
anisotropic electronic coupling) and the distance between the
vertices. The weighting parameters were chosen to represent
differences in the electronic coupling, e.g. a weight of 1 is the
strongest coupling and larger weights represent weaker coupling.
The weighting scheme is detailed in the “Methods” section. In our
simulation, we have ignored variation in the site energies of the
vertices, but the variation in weights between the chains captures
part of the disorder.
Graph transport algorithms43,44 then make it trivially simple to

evaluate the effective charge transport between all vertices
(hopping sites) mediated by the edges (which have different
weights). By representing the network as a graph, effective charge
transport can be equivalently looked as shortest paths between
the respective electrodes (represented as electrode nodes in the
graph). Edges with lower hop probability have higher weights, so
that path is less preferred in the calculation of the shortest path
between electrodes. We consider the shortest (weighted) path as
the most probable path between a set of electrode nodes. Paths
with higher total cumulative edge weights pass through low
charge hop probability sites. Consequently, these will have lower
mobilities compared to paths that have lower cumulative edge
weights. The shortest path is analogous to the time taken by a
charge to traverse the domain between this node pair. We find
out the distribution of these weighted shortest paths for a large
set of node pairs. The inverse of this distribution (scaled by the
domain length) provides an estimate (in arbitrary units) of the
mobility. By considering a large set of pairs of nodes across the
morphology boundary, we construct a distribution of shortest
paths which produces a mobility distribution. It should be noted
that the distribution of graph shortest paths is one strategy of
evaluating the mobility distribution. An alternative approach is to
use graph flow algorithms to construct the max flow (of charges)
through a morphology. Both provide similar abstractions of
charge transport, and result in similar trends.

RESULTS
Comparison to analytical models
To help validate the graph-based model for transport, we first
compare our results to those from an analytical model using a
model for rigid rods. The effect of polymer chain length and
molecular orientation on charge mobility was modeled analytically
by Pearson and Pincus25 and recently re-investigated using a
similar approach45. Their model assumed one value for the time
for a charge to diffuse along the extent of a polymer chain and
one value of the time to hop between chains. Using these two
parameters, the mobility of fully disordered Gaussian coil chains or
nematic rods were determined. The mobility of a polymer chain

with length L is

μðαÞ ¼ μ1ðcothðαÞ � 1=αÞ ¼ μ1LðαÞ (1)

where μ∞ is the mobility of an infinite polymer chain and α is the
length of a polymer chain (L) divided by the distance a charge
career would diffuse in a time τc, on a chain of infinite length,
α ¼ L

ðDiτcÞ1=2
. The operator LðαÞ is the Langevin function. We can

mimic this calculation using our graph-based model by averaging
over a large number of 2D microstructures. To model the cases
with an analytical solution, we formed 100 microstructures with
varying gaps between the end vertices of polymer chains and the
given length of the chain. The number of simulations are chosen
such that increasing the number of distinct microstructures does
not lead to substantial changes in the range of results. Figure 2
plots the (normalized) mobility computed from our graph-based
model and the analytical prediction for nematic and isotropic rods.
Each microstructure gives a different mobility that results in the
range shown in Fig. 2. The graph model captures the trend of the
analytical model. We attribute the deviations for smaller length
rods to the differing assumptions about the variation in coupling
(edges between vertices) between nodes that does not perfectly
replicate the simpler case of only two time constants.

Domain orientation and mobility
The graph-based model provides a means to examine more
complex morphologies than analytical models, but without
incurring large computational costs. For example, the length scale
of alignment of ordered domains of polymers plays an important
role in charge transport. The alignment allows chains to span
aggregated or crystalline domains providing a pathway for
charges to move between them; as the angle between domains
increases then the polymer chains will become disordered if they
tie domains together or the ties will be broken leading to
inefficient charge transport29. One experimental metric for the
length scale of alignment of polymer backbones is the orienta-
tional correlation length (OCL), which is defined as the average
length over which domains with ordered polymer chains drift out
of alignment with each other12. The OCL can be extracted from
polarized soft X-ray scattering12 or from electron microscopy

Fig. 2 Relative charge carrier mobility as a function of the length
of the rod. The triangles represent the analytical solution for
perfectly oriented rods and the circles represent isotropic orienta-
tion; the colored bands represent the range of the values from the
graph-based model. The mobility has been non-dimensionalized
with the mobility of an infinitely long rod that is perfectly oriented
along the conduction axis and the length was non-dimensionalized
with the distance, ðDiτcÞ1=2, a charge would diffuse on an infinitely
long rod in a time τc.
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images10. The simple OCL metric has been shown to be correlated
with carrier mobility of semiconducting polymers determined
using thin film transistors12,46 and also the bulk electrical
conductivity of doped materials47. Figure 3 shows that the charge
carrier mobility from thin film transistors of a thienothiophene-
based polymer, PBTTT, follow an exponential relationship with the
OCL12. Similar behavior was also observed for films that were
electrically doped supporting that the OCL47, which is a bulk
measurement, tracks the behavior of charge carriers in the
material. At the molecular weights and polydispersities used for
the experimental data, we expect that tie chains should connect
aligned domains and likely make the orientation the dominant
factor in slowing transport. The graph model was used to evaluate
the normalized mobility for length scales of the OCL using 100
model microstructures where no significant amorphous material
between domains is present. In this analysis, the model
microstructure consists of aligned polymer chains spaced regularly
at a given distance between each other. In order to simulate the
effect of OCL, circular regions of prescribed OCL size are rotated to
a random angle, such that the mean angle over the domain is
zero. Each of the polymer backbone is represented by nodes in a
graph, and the weights are so chosen that difficult pathways (for
e.g., inter-chain hops, grain boundary hops and hops as the
orientation of domains changes.) are less favored over pathways
with high electron mobility (for e.g., intra-chain hops). Further
discussion on the model morphology and choosing physically
coherent weights is presented in the “Methods” section. The
predicted mobility varies by more than an order of magnitude and
follows the exponential relationship with the OCL. The agreement
with the experiment data suggests that the model captures the
essential features that control transport.

Effect of defects on mobility
The behavior of the graph-based model shows good agreement
with the comparable analytical model and shows good agreement
with experimental data even using relatively simple assumptions.
A powerful application of the graph-based approach is the ability
to rapidly examine the influence of structure and defects, i.e. sites
that are electronic traps or structural impediments to transport, on
long range charge transport. Analytical approaches do not readily
allow a distribution of morphologies and defects to be examined
and KMC-based methods are inefficient due to limitations of the

size of the regions that can be modeled. Here we readily modify
the properties of the edges in the graph to model the role of
defects on charge transport.
To fully quantify the effect of defects on mobility, we consider

two broad types of defects—uncorrelated point defects, e.g. a trap
at a node, and structural defects, e.g. imperfect chain lengths in
crystalline regions, that exhibit a finite size. A graph-based
approach makes it very simple to account for both types of
defects and could also be extended to other types of structural
defects, e.g. chains that loop back at domain boundaries. For a
region of the morphology denoted as a defect, we simply modify
the weight of the edges (i.e. hopping frequency) connecting the
graph nodes associated with that region. The amount of the
decrease in the hopping frequency can be turned to explore the
effect of varying charge transport rates between pristine and
defect regions on the effective mobility over longer ranges. Figure
4 shows this change as a function of changing the percentage of
defects and their correlation using a model morphology. Each
added defect to the morphology disables charge transport
represented by the edges between nodes in that region, thereby
constricting the flow of charges. The structural defects are
incorporated by using Gaussian random fields48. From Fig. 4, it
can be seen that in both cases, 1% is the critical density for the
defects, and mobility decreases dramatically when density of
defects is more than 1% of polymer chains. For both cases, the
mobility decreases as the density of defects increases, but with a
different dependence. The mobility drops as the density of defects
increases in the uncorrelated case, but the drop is less dramatic at
higher defect concentrations. Such behavior is reminiscent of the
variation in materials like poly(3-hexylthiophene) that have
relatively small ordered domains that have a ≈100× difference
in variation of mobility between their crystalline (regioregular) and
noncrystalline (regio-random) forms. Despite the defects, there is
generally a pathway for charges to move through the graph. The
drop in mobility is steeper with increasing correlated defects
(panel b). If the defective regions are large (>5% defect ratio, with
about ~5% domain size) then the carriers cannot find an effective
pathway and are impeded. This result points out that defects that
are aggregated into larger regions can lead to a larger disruption
than if they are spread out spatially. This is quantified for a
representative case in Fig. 4c.
Finally, Fig. 5 illustrates the behavior of the effective charge

mobility as a function of both defect density as well as the ratio of
the inter-chain to intra-chain hopping ratio. Each data point
represents results from evaluating 500 microstructures, with a
specific defect density and inter/intra chain mobility character-
istics. For this study, we incorporate uncorrelated defects to the
standard base-case morphology, similar to Fig. 4a. The complete
dataset—consisting of around 15,000 simulations—took about
14 h (overnight) to evaluate on a standard desktop machine. In
contrast, most alternate methods will take a substantially larger
computation effort and time for comparable microstructures. The
results show a very similar negative logarithmic dependence of
the effective mobility with defect density. We also observe that
the effect of an additional defect is much larger when the inter-
and intra-chain hopping rates are similar. This can be attributed to
the fact that when intrachain hopping rates are much higher than
the interchain hopping rates, then the charge already prefers to
take the path with minimum interchain hops. So, an added defect
is only detrimental when it is precisely on one of the fastest
pathway—the defect will modify the fastest pathway to include
additional inter-chain hop in place of a much faster intra-chain
hop. So, we can expect an average linear behavior as intra-chain
hopping rates become larger and larger compared to inter-chain
hopping rates.

Fig. 3 A simulation of the relationship between mobility and
orientational correlation length (OCL) of domains in a semicrys-
talline polymer when there is no substantial amorphous region
between crystallites. The experimental data (with error bars) for the
carrier mobility is for PBTTT from literature12. The carrier mobility is
normalized with respect to the value at the maximum OCL—
512 nm.
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DISCUSSION
In this work, we presented a computationally efficient route to
model the charge mobilities in organic solids. We applied this

model to semiconducting polymers by converting the spatial
distribution of the polymer chains into a set of graph nodes and
edges. Our model used physically meaningful weights for the
graph edges in terms of the relative probability of charge hopping
and the morphology of the system. Then, we utilized fast, well
established algorithms to efficiently qualify the graph in terms of a
representative mobility. The technique is simultaneously compu-
tationally efficient, both in terms of speed and memory, and
extensible to incorporate other phenomena with minimal effort.
The model shows that experimentally observed correlations
between the charge carrier mobility and average morphologies
can be reproduced with this relatively coarse grain model. The
modularity of the approach provides a means to use alternative
schemes to model the weights of the graph edges, i.e. electronic
couplings. Furthermore, the model predicts the dependence of
charge mobility on critical defects for model morphologies and
variation in the inter and intra-chain transport. This approach
provides a computationally efficient method to leverage structural
analysis of semiconducting polymers by methods such as electron
microscopy5,7,10. We expect that coupling nanoscale structural
data with information about the distribution of size of polymer
chains will provide important constraints for modeling charge
transport.

Fig. 4 Carrier mobility as a function of density of (a) point defects and (b) structural defects in a model morphology. The mobility was
non-dimensionalized with respect to the mobility of perfect morphology with no defects. In (b), an average domain size of ~5% of total
domain size was taken for 5% and 10% defect ratio. The inter/intra-chain hopping ratio is the same as in Fig. 3. The insets in show
representative defect distribution for (a) uncorrelated and (b) correlated defects. Finally, we show a representative result that illustrates the
relative impact of correlated versus uncorrelated defects. Up to a certain density of defects (around 5%), correlated and uncorrelated defects
result in similar charge transport behavior. Beyond this point, correlated defects produce a larger degradation in mobility.

Fig. 5 A comprehensive view of the effect of defect density and
inter/intra-chain hopping ratio on effective mobility. Each data
point represents statistically averaged results across 500 model
morphologies. The figure represents ~15,000 simulations.
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METHODS
Constructing a graph-representation of morphology
Because charge transport is path dependant and directional, posing the
problem as a graph enables fast and robust calculations. This method
requires converting a microstructure image into a set of nodes and edges
connecting the nodes. We consider the microstructure as composed of a
distribution of semi-flexible polymer chains. Each semi-flexible polymer
chain is represented as a chain of short connected rods, with each rod
representing the local orientation of the backbone of the corresponding
polymer chain. We convert this collection of rods into an equivalent graph
representation39,42. Here, each rod is represented as a node (or a set of
nodes arranged in order). Charge transport can then be framed as hopping
over the nodes of the graph, with the frequency (or intensity) of hopping
mediated by the strength (i.e. weight) of the edges between the vertices.
A graph G(V, E) is defined by a set of nodes, V, and edges, E connecting

the nodes. Two nodes are said to be connected if there exists an edge with
non-zero weight between them. Thus, nodes roughly correspond to sites
where the charge hopping can potentially change direction, and
molecules. From a given site, the set of all directly accessible sites are
connected with edges to that site. While the presence of an edge indicates
just the accessibility, we weigh each edge that indicates the degree of
accessibility. Hence, we construct a directed and weighted graph
representation of the given morphology to explore transport character-
istics. The details of the construction of this graph will follow next.

Assigning nodes. The first stage to converting into a graph is to define
nodes, representative of sites of hopping. Depending on the type of polymer
molecule, each polymer chain is divided into equally spaced nodes. In our
work, the polymer chains we have are roughly of length 17 nm and we add a
node every 1 nm apart. These parameters were chosen to represent the
typical contour length of a semiconducting polymer, like poly(3-hexylthio-
phene), and the size of a typical monomer. The next stage is to find
neighborhood (add edges) and assign relevant weights to these edges.

Finding neighborhood. From a given site, the charges can travel to,
broadly speaking, two different kinds of sites—those within the same
chain (intra-chain) and those in adjacent chains (inter-chain). Intra-chain
neighbors can be easily determined by relative positions of the nodes on
the given chain. In order to identify inter-chain neighbors, we use
representative orbital overlaps. The electron cloud distribution around
each molecular backbone is represented with a cylindrical/ellipsoidal
annulus spanning the length of contour. If there is any intersection of
these representative electron clouds between adjacent molecules, then all
the sites belonging to these adjacent molecules are considered neighbors.
It should be noted that while we represent all the nodes of adjacent
molecules to be adjacent/neighbors, the transfer rates across these
neighbors is not equal. This requires assigning weights to each of these
graph edges, which will be discussed next.

Assigning weights to edges. Weights are assigned to the above identified
edges (neighborhood) to distinguish different rates of transfer along different
edges. Edges with higher weights have higher time for transfer across nodes,
i.e., lower transfer rate. The base transfer rate is normalized to 1 (fastest), and
this happens for an intra-chain hop within crystalline regions. The transfer rate
in amorphous regions is several orders of magnitude lower than the transfer
rate in crystalline regions. There are several other factors like orbital overlap
between chains, relative orientation of monomers within a chain, relative
orientation of chains, distances between hopping sites and direction of
electric field. In other words, the qualitative and quantitative details of charge
transfer rates is conveyed to the model through a careful choice of these
weights. In this study, only the following factors are considered in calculation
of weights to edges:

1. Type of regions i.e. crystalline or amorphous, wr: The first classification of
edges is done through classifying the chain to be belonging to
amorphous or crystalline regions. Due to the alignment of the chains in
crystalline regions, charge hops are considerably faster than over
amorphous regions. Thus, edges belonging to crystalline region are
given a weight of 1 and those in amorphous regions are given a large
weight (1000 in our analysis). These edges are identified by tagging the
nematic sticks during the morphology generation process. Please refer
to the Supplementary information for more details.

2. Type of edge—Intrachain vs. Interchain, we: The ease of charge
transfer within a chain is much higher than across different chains.

Hence, inter-chain edges have a constant factor (≈100 in our work)
edge weight multiplication compared to intra-chain edges.

3. Effective orbital overlap between chains, wov: The rate of charge
transfer increases when the neighboring chains are perfectly aligned
and there is greatest overlap of the molecular orbitals. Since we
mathematically represent the orbitals as ‘ellipsoidal’ regions around
the backbone, we quantify the effective overlap through intersection
of these ellipsoids. Quantitatively, the edge weight between over-
lapping chains is considered to be inverse of the fraction of
maximum overlap possible. Thus a fully overlapping set of chains
have a weight of 1 (fastest hop rate) while chains with smallest
overlap have a much larger weight, with zero overlapping chains
with infinite weight.

4. Relative orientation of chains, wor: Neighboring chains with different
orientation of the backbone axis (for e.g. grain boundaries and
amorphous regions) have significantly lower charge transfer rate
compared to a pure crystal. We model this effect of orientation as
wor= f(cos(θ)), where θ shows the difference between orientation of
adjacent chains. This formulation naturally models high charge
transfer for parallel chains and no charge transfer across mutually
perpendicular backbones.

5. Distance between hopping sites, wd: When adjacency is calculated
between chains, the representative nodes in the adjacent chains are
not quantified in terms of the relative distance between the chains.
This factor enables higher charge transfer rate for closer nodes in
adjacent chains while simultaneously penalizes charge transfer
between farther nodes. Several formulations can be considered to
model this effect, like an exponential or linear decay with distance. In
this work, we use a linear variation of the edge weight with distance
between (adjacent) nodes.

6. Direction of electric field, wf: The probability of charges flowing
against the electric field is much lower compared to the probability
of charges flowing along the external electric field. Hence edges
which are aligned against the electric field have a constant, high
factor (≈100 in our work). So, for two nodes connected by an edge,
the weight against the electric field is 100 times the weight along the
electric field.

The effect of all these factors on the overall charge transfer rate between
nodes are considered multiplicative in this work. Hence, the effective edge
weight between nodes i and j in the constructed graph is given by
wi;j ¼ wi;j

r ´wi;j
e ´wi;j

ov ´w
i;j
or ´w

i;j
d ´wi;j

f .

Analytical determination of weights. The above method for assigning
weights to the edges are useful to understand trends in mobility changes
with several factors like electric field, orientation mismatch and grain
boundaries. The weights could be assigned by other methods to capture
differences in hopping events expected by different models, e.g.
Miller–Abrahams or Marcus-type rate constants. Direct comparison of the
graph-approach here to kinetic Monte Carlo simulations will require careful
consideration of the behavior of the weights relative to expectations from
the rate constants for hopping events. Because the calculations in the
presented framework use normalized weights, the hopping rates from kMC
need to be normalized such that the weight for the highest hopping rate is
1 and for every other edge is greater than 1. This will ensure longer
duration of transport for edges related to lower hopping rate.

Calculating mobility
After constructing a graph frommolecular information, as described above, we
calculate a representative effective mobility of the system. We base our
methodology on the observation that the most probable/preferred pathway
for electronic transport is the shortest path from the origin to the destination
electrode. So, given a graph representation of the morphology, we first assign
electrodes and then calculate the shortest distances between each pair of
electrode nodes. We use the well-known Dijkstra’s algorithm43 to find the
shortest path. The weights of the edges as calculated above. As it can be
understood, the weights are assigned such that edges with lower probability of
charge transport are given higher weights. Once the shortest paths are
calculated, the actual path distance is used to calculate the time of travel of a
charge from one electrode to the other electrode. The mobility is then
calculated as the inverse of the cumulative of the edge weights belonging to
the shortest path. Paths with higher total cumulative edge weights pass
through low charge hop probability sites. Consequently, these will have lower
mobilities compared to paths that have lower cumulative edge weights. By
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considering pairs of nodes across the morphology, a distribution of mobilities
is constructed. This distribution is depicted in Figs. 1–5.

Assumption and extensions
In this section, we discuss assumptions made in the model and lay out
approaches for relaxing these assumptions. We also identify natural
extensions to the framework, which is easy to do due to the simplicity of
the graph-based formulation.

Beyond single component system. While we focus on a single component
material, the framework can be easily extended to consider multi-
component organic blends. This change will require assigning different
sets of edge weights (to reflect different hopping rates) across different
materials. Additionally, one could go beyond pair-wise determination of
the edge weights and assign edge weights based on the local
neighborhood (coordination, local field, etc.).

Relaxation dynamics. The mechanism of charge motion at the molecular
scale requires consideration of how the hopping rate depends on features
such as relaxation (e.g. polaron formation) and the impact of neighbors.
While we utilize averaged values based on typical behavior of polymers for
the edge weights, it is relatively straightforward to incorporate more complex
assignments of the edge weights from detailed electronic calculations.

Temperature dependence. The temperature dependence of transport in
polymers at low carrier density generally follows activated transport when
measured at macroscopic scales, i.e. large relative to the size of individual
ordered regions. The addition of weights that depend on predictions for
temperature activated jumps would provide a means to examine the
overall behavior as a function of temperature.

Variations in site energy, and traps. It is conceptually straightforward to
account for variations in site energy and distribution of traps via tailoring the
edge weights across the graph. The addition of such effects would have
comparable effects to the defects considered in Fig. 4 although the detailed
impact would depend on the change in weights for hopping across such sites.

Exploring impact of tie chains and other morphological features. Transport
along an extended tie chain in the background of amorphous chains
would lead to comparable intrachain transport as we discuss in the
“Introduction” section. One can use the graph model to examine specific
cases, e.g. addition of different lengths of chains, for a given morphology.
All one would need is a morphology generator (a non-trivial task) that can
create appropriately features morphologies that can be input into the
graph model discussed here.
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