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A review of the recent progress in battery informatics
Chen Ling 1✉

Batteries are of paramount importance for the energy storage, consumption, and transportation in the current and future society.
Recently machine learning (ML) has demonstrated success for improving lithium-ion technologies and beyond. This in-depth
review aims to provide state-of-art achievements in the interdisciplinary field of ML and battery research and engineering, the
battery informatics. We highlight a crucial hurdle in battery informatics, the availability of battery data, and explain the mitigation of
the data scarcity challenge with a detailed review of recent achievements. This review is concluded with a perspective in this new
but exciting field.
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INTRODUCTION
The continuous growth of economics and global energy
consumption has increased the CO2 emission by 45% from 2000
to 20191. To meet the goal of carbon neutrality, replacing current
reliability on fossil fuel with cleaner and renewable energy
resources is urged. Rechargeable batteries play a vital role in a
green society for energy storage, consumption, and transporta-
tion. The market size for Li-ion batteries was at 36.7 billion dollars
in 2019, and is projected at 128.3 billion by 2027 with a
compounded annual growth rate estimated at 18% from 2020
to 2027, driven mostly by the shift from combustion engine
vehicles to hybrid and electric transportation2. In the past decade,
the desire to meet the demanded large-scale applications with
higher energy density and power density, larger capacity, longer
durability, and better safety has motivated tremendous research
efforts to improve current Li-ion technology as well as developing
new battery chemistries.
A battery is a complex electrochemical ensemble of multiple

components of cathode, anode, electrolyte, separator, current
collectors, and housing materials. The complicated electrochemically
coupled transport processes across a wide range of time and length
scales haunts quantitative understanding of the relationship among
the performance, materials, design, and operation of a battery. The
traditional simulation and experiment methods in battery research
usually require large research resources in combination with
sophisticated domain knowledge or experience to enhance the
effectiveness of trial-and-error approaches. In recent years, data-
driven techniques have emerged as the fourth paradigm of
materials research in parallel to empirical, model-based, and
computation-based science3–6. Machine learning (ML) has been
flourishing in materials representation7–9, accelerating atomic
simulations10–12, reaction network13 and synthesizability network
analysis14, experimental design15–17, and the discovery of numerous
functional candidates with an unprecedented rate18–26. Integrating
ML into conventional experimental and computational techniques
has achieved success in various aspects of battery research. From
2010 to 2020, the number of publications in the interdisciplinary
field of battery informatics has increased by ~20 times, matching
well to the growing interest of ML in other materials domains.
This review is devoted to summarizing the achievements of

battery informatics in the past years. Herein, the battery informatics
is defined as the research that utilizes machine learning as the main

technique or relies on machine learning as a major tool for data
analysis and interpretation. The employment of ML offers the
surrogate function of observables to circumvent the challenge to
understand the underlying mechanism of the complex battery
systems in conventional approaches. There are several excellent
reviews in the literature covering the fundamental mathematics of
ML as well as the application in materials domains3–6. In battery
informatics, the work in Liu et al. reviewed the application of ML in
the design and discovery of novel battery materials27. The work of
Chen et al. summarized the application of ML in energy storage
materials22. For batteries materials, they reviewed the ML prediction
of diffusion, mechanical properties as well as developing intera-
tomic potential for dynamical simulations of battery materials. The
work of Guo et al. reviewed the application of ML to accelerate first-
principles calculations and facilitate the modeling of battery
materials28. The work of Liu et al. summarized the discovery of
solid-state electrolyte through ML29. These reviews have high-
lighted the progress and achievements in certain subareas of
battery studies. Amid the broad range of battery research from
fundamental materials development to system-level operation and
optimization, a more comprehensive review is desired for better
summary of the state-of-art work as well as providing instructive
guidance into future research. The structure of the remainder of this
paper is illustrated as follows. In the section “Data for battery
informatics” we review available data source of battery research
and explain the data scarcity challenge for battery informatics. In
the section “Circumvent the data scarity challenge through
algorithm development” we briefly discuss how the data scarcity
challenge can be mitigated through appropriate ML algorithms. In
the section “Application of machine learning in battery research”,
we summarize applications of ML in various aspects of battery
research in detail and highlight several exciting achievements of ML
in battery engineering in the section “Machine learning in battery
engineering”. A concluding remark is provided in the last section.

DATA FOR BATTERY INFORMATICS
Data scarcity challenge
Machine learning is a data-centered technique to generalize trends
observed from existing examples to make decisions without
explicating programming to achieve so. Among many factors
determining the success of ML, data are central to the task as the
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availability of good quality data in a large quantity allows more
accurate detecting of underlying patterns and eventually better
prediction of unknown scenario. For example, in the computation
vision field, the standardized dataset of the Modified National
Institute of Standards and Technology database of hand-written
digits includes 70 thousand images of hand-written digits for each
number30. For speech recognition, the Chime-5 challenge recorded
a total of over 50 h of conversation composed of 98,448
utterances31. Although the requirement of data volume necessary
for good ML performance varies with the choice of model algorithm,
data processing pipeline, and the latent dimension of the target
problem, in general, higher data availability will lead to better ML
modeling. In addition, these large, standardized, and well-organized
datasets provide excellent platforms that algorithms and technol-
ogies can be developed, compared and advanced.
The materials community, however, have not fully enjoyed such

luxury in informatics enterprise. Only a number of materials
properties have been organized in good quality and high quantity.
The lack of data availability presents a significant challenge
towards generalizing ML as a standard tool in materials research.
Table 1 summarizes different types of datasets available for the
battery informatics research. Based on the method used to
generate and collect the data, we categorize the data into the
computational database, experimental database, high-throughput
experimentation data, and database through text mining techni-
ques and discuss accordingly.

Computational databases for battery informatics
Computational databases use sophisticated pipelines of simulation
to calculate and store the thermodynamic, electronic, and structural
information for several tens of thousands of inorganic compounds
at the level of density functional theory32–38. The large volume and
good quality of data in these highly curated computational
materials databases has promoted a significant portion of materials
informatics research. The modeling of formation energies, for
example, serves as one of the first few examples that demonstrated
the potential capability of leveraging statistical data technique in
materials research and is continuously employed for testing and
improvement of new ML approaches for feature engineering and
pattern mining of materials properties39–45.
The data from computational materials databases allows the

estimation of many thermodynamic properties of battery materials.
The open-circuit voltages of electrode materials, for example, can be
obtained once the phases in discharge and charge states are both
included in the dataset46. Materials Project includes the calculated
voltages for 4730 intercalation-type and 16,128 conversion-type

electrode materials dated to May 202132. Using the data from
Materials Project, the voltage trends of oxide-based cathode
candidates for Li-ion battery were statistically analyzed to unveil the
effects of polyanion group, redox metal, and the ratio of oxygen to
counter cation on voltage and O2 release temperature47. Taking
advantage of the data abundance, general rules for designing safe
cathode systems were summarized. Another example of materials
properties that can be directly estimated from the data in the
computational materials database is the stability of interfaces
between the electrode and solid-state electrolyte48. Utilizing the
computational data from OQMD, Aykol et al. screened more than
130,000 oxygen-bearing materials with high phase stability, electro-
chemical stability, and hydrofluoric-acid resistance to serve as cathode
coating layers49. They identified optimal hydrofluoric-acid scavengers
of Li2SrSiO4, Li2CaSiO4, and CaIn2O4 for the layered LiCoO2, and
Li2GeO3, Li4NiTeO6, and Li2MnO3 for the spinel LiMn2O4 cathodes.
Xiao et al. screened 104,082 Li-containing compounds to find coating
materials with high phase stability, electrochemical stability, and
chemical compatibility with Li3PS4 solid-state electrolyte and LiNi1/
3Co1/3Mn1/3O2 cathode50. After a detailed analysis of stability and
conductivity, three oxide candidates, LiH2PO4, LiTi2(PO4)3, and LiPO3

were identified for cathode coating. The large amount of good quality
data stored in computational materials databases enables these
studies to screen a board compositional space for materials with
specific functionality without the necessary ML participation.
Properties that can be calculated with reasonable computa-

tional resources only compose a small portion of targets of
interest in battery research. Rate capability, cycling behavior,
degradation, and performance at the cell level are all examples of
crucial properties that are not straightforwardly simulated using
computational techniques. Even properties that can be calculated
in well-established computational methods may face high
computational cost when the pipeline of exploration is extended
to a large and highly diverse configurational space. One
representative example is the ionic transport properties in solid-
state materials. The energy barriers for the solid-state diffusion of
charge carriers can be calculated using the nudge elastic band
method (NEB)51. Ab initio molecular dynamics (AIMD) provides an
additional means to estimate the diffusivity in comparable
agreement with experimental measurements52. However, both
NEB and AIMD methods are much more computationally
extensive than structure relaxation. It restricts the availability of
diffusion data when the ML approach is attempted. With the
leverage of modern information technology infrastructure and
software tools, the assessment of alkali superionic conductors was
facilitated at the rate of about 200 compositions within the space
of two years using relatively modest computational resources53.

Table 1. Available materials database for battery informatics research.

Example Source Content Quantity Challenge

Materials Project32

OQMD33,34 AFlowLib35;
ESP36; CMR37; NOMAD38

Computation Crystalline and electronic
structure, energy, elastic
properties, etc

>10,000 Expensive to collect
kinetic and transport
properties

ICSD54;
COD55;
Pauling file56;

Published literature Crystalline structure, phase
diagram, intrinsic physical
properties

>10,000 Restricted to a few
properties such as
crystalline structures

NASA battery datasets57–59;
Electrochemical data for 18650
cell60

Experiment Battery cycling data Collected from <100 cells High cost for collection

High-throughput experimental
data67–76

HTE Conductivity, battery
performance, etc

Usually in the order of
102–103 samples

High capital cost

Synthesis receipt database85;
Solid-state electrolyte processing
database87;
Battery performance database88

Text mining from
published papers

Synthesis, processing and
battery performance

Collected
>10,000 scientific
literatures

Control the data fidelity
between different
sources
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This rate of exploration, however, is much slower compared to the
calculation of thermodynamic properties.

Experimental database
In parallel to the computational database, experimentally based,
large, and structured materials property datasets have been
pursued. Inorganic crystal structure database (ICSD) stores the
crystalline structure information of inorganic substances published
since 191354. As of December 2020, ISCD contains over 210,000
entries and is updated twice a year. Crystallography open
database (COD) contains more than 150,000 structures and offers
the searching and downloading possibilities55. As of January 2019,
Pauling files stores 51,974 entries of experimental and computa-
tional temperature-composition phase diagrams, 357,612 entries
of crystalline structure information and 156,274 records of a broad
range of intrinsic physical properties of inorganic solids from the
processing of 23,876, 113,556, and 56,219 publications, respec-
tively56. The construction of such a large database requires inputs
from the entire community and necessitates good quality control
on the targeted information. For individual researchers, a common
practice is to apply a standard procedure to a parameter space
and augment the data from discrete measurements. Several
databases have been publicly available through the standard
experimentation such as three battery datasets accessible from
NASA portfolio57–59 and the electrochemical performance of
commercial 18650 cells at a variety of temperatures and discharge
currents60. Due to the standardized protocols for data collection,
the data quality is usually consistent and well-controlled. However,
data collection through single and discrete experiments requires
considerable experimental resources focusing on the measure-
ment of specific properties, making the large-scale accumulation
expensive and time-consuming for individual researchers.

High-throughput experimentation
In recent years, the advancement in experimental automation
techniques has reached the level that executes a large number of
experiments can be executed in parallel and result in a wealth of
experimental data for better technical decisions. In biology and
pharmaceutical industry, high-throughput experimentation (HTE) has
matured to the point that experiments are now routinely executed
for the screening of drug libraries61,62. For battery research, the
experimentation involves several steps including synthesis, character-
ization, cell fabrication, electrochemical testing, and other perfor-
mance evaluations. In the past decade, HTE has gradually extended
its territory to these fields with the successful implementation of
materials synthesis and cell fabrication, electrochemical property
measurement and multiple materials characterization techniques in
the pipeline63–66. HTE offers the direct examination of candidates in a
combination of external tunable parameters, yielding better electro-
chemical functionalities for the compositional screening of Li-ion
battery cathode67–71, Na-ion battery cathode72, liquid electrolyte73,
solid-state electrolyte74, cathode-electrolyte interlayer75, electrolyte
additive76 as well as evaluating cell design parameters63.
The integration of data-driven techniques with HTE could

eventually close the loop of automated materials discovery,
design, and optimization (Fig. 1). In the close-loop approach, a ML
engine receives the data from HTE and make decisions for the
next step. The experimental engine then receives the direction
from ML engine and perform the experiments accordingly. The
data are augmented to start the next loop of collaboration
between these two engines. In the real-time operation, a ML agent
can narrow down the chemical space to be examined prior to the
execution of combinatorial chemistry. Matsubara et al. used ML to
predict the O2− conductivity in 13,384 oxides materials and
identified the system of Bi, Nb, Ta, and alkaline earth metals (Ca,
Sr, and Ba) for the subsequent combinatorial experiments77.
Implementing high-throughput conductivity measurements and

high-throughput XRD increased the total experimental through-
put to chemical space not included in the informatics screening. In
the ideal situation, the close-loop strategy should be executed in
the fully automated manner with robotics carrying out serial
experiments and deposit the data directly to the ML domain. An
example of close-loop exploration was the exploration of a new
aqueous electrolyte. Whitcare et al. built the robotic platform of
Otto for the automated measurement of pH, conductivity, and
voltage stability of liquid electrolytes78,79. By connecting Otto to a
Bayesian optimizer, the machine-learning model directed the
experimental execution on the basis of measurement feedback in
real time to optimize the electrochemical window of aqueous
sodium electrolyte in the design space of mixtures of NaNO3,
NaClO4, Na2SO4, and NaBr and mixtures of LiNO3, LiClO4, and
Li2SO4

80. The automation examined 140 electrolyte formulas in
40 h of experimentation and discovered a blend receipt with more
resistance to oxygen evolution reaction on platinum than high-
concentration NaClO4 electrolyte.
Although HTE provides high-quality data in an unprecedented

rate compared to conventional experimentation, the high capital
cost is still the main hurdle for its implementation in general
battery research community. HTE is usually carried out in
homogenous environments and thus lacks the flexibility to
optimize the performance through process engineering. This is
particularly important in battery research, because many macro-
scopic properties of battery materials strongly depend on the
synthesis, processing and even measurement techniques. Lifting
the restriction of HTE to include the processing space as variables
of exploration thus deserves attention.

Collect unstructured data from literature
Given the much desired needs to mine knowledge directly from
experimental outputs, the information presented as numerical text
or image-based information in publications, patents, and other text
archives composes an invaluable source of data in unstructured
format. Identifying and harvesting them from documents through
text mining presents an avenue to collect the mass volume of
materials data for subsequent ML tasks. Due to the presence of
specialized vernacular, terminology, and chemical semantics, generic
natural langrage processing tools is not performing well in the
materials science domain. In recent years, several materials-specific

Fig. 1 Close-loop operation of machine learning and high-
throughput experimentation. ML could assist the pre-selection of
candidate before HTE execution, or guide the sampling in the HTE.
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text mining tools have been developed to harvest information from
materials literature following the general overflow of acquiring text
content, recognizing entities of interest, collecting and storing the
entity information and performing post analysis and modeling (Fig.
2a)81–83. The usage of these tools generates libraries of information
to explore, which forms the foundation for the designing and
performing next phase research. For example, text mining has been
used to extract the synthesis conditions of inorganic compounds84.
The data were then fueled to predict the appropriate conditions to
synthesize titania nanotubes via hydrothermal routes and clarifying
the procedures to synthesize inorganic materials85. He et al. trained
a two-step bi-long-short-term-memory model to distinguish pre-
cursors and targets in the inorganic synthesis reaction in 86,544
literature papers, which allowed the subsequent meta-analysis on
the similarities and differences between precursors86. Tshitoyan and
coauthors showed the knowledge extracted data from text mining
provided implicit relevance of compounds to a new application26.
The lateral structure–property relationships led to the discovery of
new thermoelectric materials several years before their discovery as
a case of demonstration.
One of the primary goals of text mining is to construct the

structured database to prompt the subsequent data-driven
discoveries. Mahbub et al. collected the processing temperature
for solid-state electrolytes of Li2S-P2S5, Li7P3S11, β-Li3PS4, Li10GeP2S12
(LGPS), and garnet Li7La3Zr2O12 (LLZO) oxides from published
reports (Fig. 2b)87. The processing temperature can be further
broken down, for example, for garnet LLZO, to investigate the
temperature regime of specific processing steps (drying, annealing,
calcination, and sintering) and shed lights on efforts towards low-
temperature processing of solid-state LLZO electrolytes. As shown
in Fig. 2c, A battery database based on text mined information was
recently published by Huang and Cole88. Using the software of

ChemDataExtractor version 1.5 to mine 229,061 academic papers,
they collected 292,313 data records, with 214,617 unique chemical-
property data relations between 17,354 unique chemicals and up to
five material properties: capacity, voltage, conductivity, Coulombic
efficiency and energy. The data were deposited in both relational
and non-relational formats of database shared at figshare.

Data fidelity
The precious value of materials data naturally motivates efforts to
maximize the efficiency of data utilization by consolidating data
from different resources for the modeling of the same property. It
should be, however, cautious that data from different sources is
likely to have varied degree of uncertainties. A similar issue of
fidelity control presents when data from different levels of theory
are mixed for the computational database in the open repository.
Without clarifying the fidelities of different datasets, the high-
quality data will be polluted by the presence of low-quality data in
the modeling. Appropriate inclusion of the fidelity information in
the modeling could, on the other hand, enhance the model
quality. One strategy is to distinguish the low- and high-fidelity
data as input feature and output properties, respectively. Despite
its less accuracy, the crude estimation of targeted property usually
has strong correlation with ground truth value; hence the
inclusion of this specific feature adds knowledge to improve the
inference of target and mitigate the data requirement for
modeling (Fig. 3a)23,89,90. A multi-fidelity graph network to encode
the data fidelity level to a trainable fidelity embedding matrix was
proposed by Chen et al (Fig. 3b)91. They demonstrated that the
inclusion of low-fidelity Perdew–Burke–Ernzerhof band gaps
reduced the error of experimental band gap predictions by
22–45% and offered an approach to model disordered materials.
Fujimura et al. used the high temperature (1600 K) diffusivity of

Fig. 2 Text mining published literature for materials database. a Illustration of the workflow of text mining process for materials database.
b Temperatures of processing temperatures for solid-state lithium-ion electrolytes. The middle and right figures show the temperatures of
processing garnet LLZO reported in literature. Reproduced with permission from ref. 84. Copyright Elsevier 2020. c Distribution of battery
capacity and conductivity from text mining the literature. Reproduced with permission from ref. 88. Copyright Springer Nature 2020.
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LISICON compounds obtained from AIMD simulation (D1600) to
predict the more precious experimentally measured conductivities
at 373 K (σ373)92. These studies all suggest the data from different
sources can be effectively utilized once the labeling of uncertain-
ties and fidelities can be appropriately addressed.

Data bias and anthropogenic bias
Because of the complex interplays among the electronic, structural,
and microstructural degree of freedom, the macroscopic properties
of battery materials are affected by factors across a broad range of
length scales. Taking the conductivity of solid electrolyte as an
example, in the atomic scale, the conduction is affected by the
crystalline structure and chemical composition of the electrolyte.
Beyond the atomic scale, the conductivity is affected by the
microstructures of electrolyte such as particle morphology, size, and
packing. On the cell level, the conductivity is further affected by the
reaction between electrolyte and electrode and the corresponding
interface layer formed in between93. These factors in combination
causes a large variance of measured conductivities even for materials
with the same composition, resulting in bias of collected data. For
instance, depending on the synthesis methods and temperatures, the
conductivity of garnet Li5La3Ta2O12 varied two orders of magnitude
between 10−6 and 10−4 S cm−1 94. Such complexity raises the
importance of labeling the data beyond the level of the materials to
include information about the synthesis, processing, and character-
ization. This is a vast challenge: not all data contain every necessary
characterization of materials. Even for information well presented in
all publications, correctly pairing the materials properties-
characterization is still challenging due to the requirement to scan
a large portion of the article. This distant co- or cross-referencing is a
significant problem to move from human-readable to machine-
readable contents. Recently, a canonical ontology for materials
synthesis consisting of a controlled vocabulary with restricted
relations between concepts was proposed95. It still takes time for
the community to digest and transit to improve the communication
of materials synthesis, extend the impact of the insights contained in
each published synthesis method and contribute toward a global
body of unified materials synthesis knowledge.
Another type of data bias is the anthropogenic bias unconsciously

presented in the sampling procedure. Scientists lean to explore a
system with the highest confidence of success and prefer to select
the most salient results for showcasing scientific points. It leads to
both the overpopulation in a local domain and the absence of
negative examples in the published literature. A survey of lithium-
containing compounds in inorganic crystal database clearly reveals
these biases. Among 2,986 compounds, 80 (2.7%) compounds are in
the family of spinel Li4Ti5O12, 86 (3.0%) has with the formula of Li3x
−1La1−xTiO3 and 30 (1.0%) belongs to the garnet family of

compounds. The heavy population in a few families of compounds
is easily understood. Li-containing compounds are famous for their
potential usages in battery and these over-populated samples are
known with promising properties for battery applications. Spinel
Li4Ti5O12 is a popular anode material, while perovskite
Li3x−1La1−xTiO3 and garnet compounds are good candidates of
solid-state electrolyte. On the other hand, the application of other Li-
containing materials for battery and other potential applications
have either not been attempted, or the negative results have
discouraged the researcher from publishing the data.
From a realistic viewpoint, materials exhibiting a special

functionality should only compose a small portion of the entire
materials space. Negative data not considered to deserve
publication benefits ML models for a trustful exploration of
unknown domains96. Sampling skewed by the anthropogenic bias
ignores the abundance of negative data and will not reflect the
true data distribution. Compared machine-learning models trained
on the complete set of human-selected (biased) reactions to
models trained on randomly generated and unbiased reactions for
the synthesis of amine-templated metal oxides, correcting
anthropogenic bias improved machine-learning models and led
to faster discovery of new materials97.
Avoiding the contamination of model performance by data bias

and anthropogenic bias requires the complete transparency of data
quantity and quality. It should be cautious that the quantity and
quality of datasets are not always straightforward to assess
and often subjective, depending on the choice of ML algorithms
and the intended applications. Therefore, the data quantity and
quality should not be regarded as judgement criteria when reporting
and evaluating ML research. A more important step is to disclose the
data collection and pre-processing procedure in addition to the
encouraged open access of published data. In recent work, Artrith
et al. outline a set of guidelines when reporting machine learning
models composed of listing all data sources, documenting the
strategy for data selection, including access dates or version
numbers, describing data cleaning procedure, and evaluating the
extent of data pre-processing98. Their work provides the checklist for
reporting and evaluating machine learning models towards the
standard of a high data reporting protocol in the materials domain.

CIRCUMVENT THE DATA SCARITY CHALLENGE THROUGH
ALGORITHM DEVELOPMENT
The field of ML includes a vast number of algorithms ranging from
simple linear regression to complex methods such as convolutional
neural network and generative adversarial network. We note here that
our intention is not to generalize the best algorithms for battery
informatics, although the performance comparison for different

Fig. 3 Modeling with multi-fidelity data. a Use the crude estimation of target property as feature to improve the modeling accuracy.
Reproduced with permission from ref. 90. Copyright Springer Nature 2017. b Improving the model accuracy by encoding the fidelity in multi-
fidelity graph network. Reproduced with permission from ref. 91. Copyright Springer Nature 2021.
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algorithms on the same task and the same dataset is important and
necessary. The no-free-lunch theorem states that the computational
cost of finding a solution is the same for all solution methods when
averaged on all problems in the class99. No solution therefore offers a
better capability on all problems. Therefore, our review will not be
restricted to any specific algorithm-related topics. Instead, we aim to
discuss the mitigation of data scarcity challenge through appropriate
algorithms in battery informatics. Reviews of the mathematical
foundation of ML algorithms would be beyond the scope of this
review and the readers of interest are encouraged to statistical and
ML textbooks as well as several excellent reviews covering this
topic4,5,22.

Regression and classification in supervised learning
Supervised learning utilizes labeled data to make decisions by
seeking patterns in the labeled features for an analytics process.
The data used in supervised learning is labeled to make the task
that a direct relationship between the input variable and output
properties can be constructed. In battery informatics, supervised
learning is the most adopted type of methods and finds broad
applications to predict materials properties, discover new
materials and forecast future behaviors. A main goal of supervised
learning is to reduce the expensive experiments by providing
guidance for the next step of experimentation. From this aspect,
the supervised learning is often partnered with high-throughput
simulation in a way that the simulation fuels supervised learning
with necessary data for training, while the supervised learning
accelerates the throughput rate by rapid screening of chemical
space unseen in the simulation.
The typical tasks in supervised learning are regression and

classification. In a classification task, the observable is labeled to a
set of categories and the goal is to identify whether a new
observation belongs to a specific class in a yes or no manner. In a
regression task, the model seeks to map a real-valued numerical
output to independent variables. Regression analysis is widely
adapted for prediction and forecasting while classification is
mostly used for grouping and boundary detection. However, it is
not necessarily the natural reasoning to consider which is the
most suitable for the specific materials problem. For example, to
predict which materials will be the most promising candidates for
an application, one may naturally consider it as a regression
problem and contract models to predict the performance of a list
of candidates. The selection can be made by sorting the predicted
functionalities and choose the one with the best-predicted value.
Alternatively, the regression task can be converted to classification
with the use of proper thresholds to define “promising” and “non-
promising”. Sendek et al applied this strategy in their exploration
of solid-state ionic conductors100. They defined material is
conductive if the room temperature conductivity is higher than
10−4 S cm−1 and nonconductive vice versa. The conversion from a
regression task to the classification was believed to mitigate the
shortage of data availability, resulting in a prediction of logistic
classification on 40 data points. Liu et al. trained a support vector
machine model to classify whether a doped LLZO compound is
stable against the reaction with metallic lithium101. Trained on 100
data points, their model discovered a clear boundary between
stable and unstable doped phases. The output of the classification
model is the probability that material belongs to a specific pre-
defined class and should not be treated as the indication of values
of true property. Due to this limitation, the estimation of true
property can only be obtained through the regression model, or
from the subsequent experiments or highly accurate simulations.

Utilize unlabeled data through unsupervised learning
Unsupervised learning performs learning on dataset without labels.
Taking the advantage of more abundancy of unlabeled data,
unsupervised learning usually enjoys more data availability

compared to the supervise learning models. Typical tasks of
unsupervised learning include grouping and clustering, data
visualization, dimension reduction, and feature extraction. In
materials informatics, unsupervised learning is widely used to
visualize materials in latent space to explore underlying relation
among different materials groups102–105. Our recent work revealed
the previously shadowed potential of unsupervised learning in the
task of materials discovery25. Built on the premise that the Li-ion
conduction in a solid is tightly connected to the crystalline lattice,
we deviated from the supervised prediction of the conductivity
property to unsupervised grouping of all Li-containing compounds
based on their crystalline structural features. Compared to
supervised learning, the capability to utilize Li-compounds without
conduction property circumvented the challenge brought by the
scarcity of conductivity data, resulting good clustering of Li-
conductive and nonconductive materials in separated groups. Our
unsupervised learning scheme provides a powerful alternative to
the most widely adapted supervised approach for the discovery of
other functional materials, especially under conditions of scarce
materials data.

Enhance sampling efficiency through active learning and
Bayesian optimization
Active learning is a type of learning strategy that requires the
interaction between the learning agent and a domain expert. In
active learning, the learning algorithm iteratively chooses
unlabeled examples and query the domain expert for new
labeling. Because the learner decides the examples, selection
strategies can be taken to suggest what examples most deserves
to be labeled, thus reducing the cost of expensive and time-
consuming labeling process while keeping the performance
comparable to supervised learners. A commonly used active
learning approach is Bayesian optimization (BO)106. In BO, the
learner agent uses the posterior for the black box target function
conditioned on the past evaluations to construct an acquisition
function; then determines the next point to label through
maximizing the acquisition function. Several choices for the
acquisition function are available, such as upper confidence
bound107, entropy-based methods108, probability of improve-
ment109, expected improvement110, top-two expected improve-
ment111, knowledge gradient112, and Thompson sampling113.
Similarly, the prior for the target function can be a variety of ML
models such as neural network114 and random forest115, while the
most popular choice is the Gaussian process for the simultaneous
prediction of the value of targeted function and uncertainty116.
These two parameters control the exploration and exploitation
strategy in the acquiring function. For the acquiring focusing on
the target value, the model encourages an exploitation to query
regions where we have more confidence to find better targets,
while focusing on the uncertainty encourages an exploratory
strategy to explore regions we have yet queried.
Both reinforcement learning and active learning are relatively

new to battery informatics. But their promising potential has
already been demonstrated in several studies. Bayesian optimiza-
tion is demonstrated with faster speed to optimize materials
properties compared to the search of random sampling. Homma
used BO to find the composition ratio of ternary
Li3PO4–Li3BO3–Li2SO4 for optimized Li-ion conductivity117. Harada
et al. examined the efficiency of BO in finding the composition
from 49 compounds in the family of NASICON-type Li1+x+2yZr2–x–
yYxCay(PO4)3 solid electrolyte for the highest conductivity at
30 °C118. BO found the optimal after 16 trials with the average
failure rate of <0.1%, which was about three times faster than the
random search. Nakayama et al. calculated the migration energies
in ~400 Li- and Zn-containing oxides of varied crystal structures
using the bond valance force field method119. Based on the
calculated data, they demonstrated better search performance of
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BO approach than random sampling. On average, the BO
approach required ~15% of the total dataset to discover the
material with highest conductivity. We note, however, that the
optimization of the conventional materials is commonly guided by
domain knowledge and/or empirical mathematical analysis and
should not be regarded as random sampling. In the work of
Harada et al., multi-object BO was carried out to find the Pareto
frontiers of the relative density for mechanical properties and ionic
conductivity118. The Pareto frontier is defined as a set of points
where one property cannot be improved without sacrificing any
other properties. The multi-object BO was more efficient to find
the Pareto frontiers than multi-objective optimization approach
based on the non-dominated sorting genetic algorithm II.
Active learning is particularly attractive to connect the

intelligence agent with the simulation or experiment agent to
close the loop of automated materials discovery and optimization
as discussed in the previous section. This is because the simulation
and experimentation in close-loop strategy is the natural step of
labeling new samples while the recommendation from ML serves
as the learner to select samples for labeling. Therefore, the
architecture of active learning excellently matches the framework
of close-loop materials informatics. Dave et al. connected the
robotic HTE platform of Otto to the BO software of Dragonfly80.
Dragonfly learned the measured electrochemical stability window
of aqueous electrolytes from Otto and used four acquisition
functions to adaptively sample based on the performance of each
acquisition function in the task through the course of each
optimization run. By examining one aqueous electrolyte receipt in
one iteration, the cooperative operation of Otto and Dragonfly
accomplished the optimization in about 70 cycles.

APPLICATION OF MACHINE LEARNING IN BATTERY RESEARCH
Batteries are complicated materials systems. Building a better
battery requires the solution of multiple scientific and engineering
problems from materials discovery and microstructure optimization
to the cell and manufacturing process design. After the deployment
in a real device, the operation requires the monitoring of battery
health and optimization of charge and discharge to maximize the
usage value. In the following two sections, we review the success of
ML in these individual tasks. We will first review the application of
machine learning in battery research in this section and highlight
several achievements of machine learning in battery engineering in
the section “Machine learning in battery engineering”.

Materials discovery
Among many applications of ML in battery informatics, the
exploration of novel battery materials is one of the most active
fields. A common approach of ML-guided materials discovery starts
with establishing models to accurately predict the performance of a
material for a targeted functionality, usually parameterized in one or
a few crucial materials properties. The model is then used to
inversely predict the functionality for the discovery of candidates
with best performance. However, as we discussed in earlier
sections, other approaches have been developed to overcome
the data scarcity challenge. Below we review the advances of ML-
guided materials discovery for important battery materials.

Solid-state electrolyte. Solid electrolyte is a rare class of solids that
rival the ionic conductivity typically seen in liquid solutions
(10−3–10−2 S cm−1). These materials are of great importance in
developing all-solid-state batteries. By replacing the flammable
organic electrolyte in current lithium-ion batteries with a solid and
lithium-conductive component, all-solid-state battery holds the
promise of improved safety, excellent stability, and long cycling
life93,120–122. An ideal solid-state electrolyte should have several
important merits of properties: high ionic conductivity and low

electron conductivity, wide window of electrochemical stability,
good thermal and chemical stability, suitable mechanical strength,
easiness of manufacturing and low materials cost. No single
material can meet all of these requirements at this moment,
motivating significant interest to the exploration of new solid-
state electrolyte with better functionalities.
The challenge to discover new solid-state ionic conductors lies in

several aspects. First, the ionic conduction is a complex dynamic
process spanning a broad range of time and length scales with the
ionic conductivity affected by a number of geometric and chemical
factors93. A good model to infer the conductivity thus requires fine
feature engineering to capture the underlying physics of conduction.
Second, the known ionic conductors are distributed in a wide range
of structural and composition space. Solid-state Li-ion conductors, for
example, have compositions ranging from oxides, sulfides to nitrides
and halides, and a diverse set of crystalline structures including
perovskite and antiperovskite123, argyrodite124, garnet125, Li3N126,
NASICON127, LGPS128, and Li7P3S11129. The highly diverse sampling
challenges the reliability of ML models to explore an unknown space
far from any available reference. Finally, the ionic conductivity is
sensitive to small compositional variations. Although computational
methods such as AIMD can simulate the conductivity in good
agreement with experimental measurements, it is still practically
challenging to apply the computational demanding method for
screening every possible doping in a large and unconstrained
configurational space.
Strategies to overcome these challenges have been developed in

the past few years. The feature engineering of suitable descriptors
can be summarized in three approaches: the domain-knowledge-
based chemical features, the physics-based strong descriptors, and
the feature abstraction through deep learning. For the domain-
knowledge-based chemical features, empirical rules are hand-
crafted to vectorize the structural and compositional information of
individual compounds. Examples of hand-crafted descriptors
include the chemical information of individual elemental constitu-
tes, the local structural features such as bonding coordination and
distances, the volume of crystalline cell and packing faction, and the
collective statistics of these descriptors. Due to the large pool of
hand-crafted features pool typically with low correlation with the
targeted property, necessary feature selection is important to avoid
overfitting. Sendek crafted 40 empirical features to model the
conductivity of Li-containing compounds100. After feature selection,
five features were used in the optimal logistic model, including the
average number of lithium neighbors for each lithium, the average
sublattice bond ionicity, the average anion–anion coordination
number in the anion framework, the average shortest lithium–anion
distance in angstroms and the average shortest lithium–lithium
distance. Nakayama used the histogram statistics of various
composition- and/or structure-derived features to construct general
vector-form descriptors for Li- and Zn-containing oxides and
modeled the Li-migration barrier using Gradient boosting regres-
sion119. They found the most critical feature is the radial distribution
function of oxygen-oxygen interaction. Jalem et al. constructed a
neural network model to simultaneously predict the diffusion
barrier and cohesive energy of olivine LiMXO4 compounds130. They
found the average bond length of the Li octahedron, distortion
index of the Li octahedron and bonding angle Li–O–X are positively
correlated with the diffusion barrier, while effective coordination
number of lithium, distance between two X tetrahedra near
midplane and distortion index of M octahedron are negatively
correlated. Using the same neural network architecture, Jalem et al.
found six local structure descriptors for the diffusion barrier in
tavorite LiMTO4F compounds131. They identified common descrip-
tors to increase the diffusion barrier in olivine and tavorite
compounds including bond angle variance of the M octahedron,
the average bond length of the Li octahedron while the polyhedral
volume of the Li octahedron and effective charge of M cation
decreased the barrier.
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Some common factors affect the conduction property appeared
after consolidating the above studies, including the coordination
number of lithium ions, volume of interstitials, local distortion of
coordination environment and the charges on non-lithium species.
The connection of these factors to conductivity is physically
intuitive. For instance, a high coordination number indicates a
large energy penalty to break the bond for diffusion. On the other
side, for a small cation like lithium high coordination number
usually indicates a geometrically frustrated environment, which is
beneficial to mitigate the energy difference between favorable and
unfavorable bonding environment132,133. The same geometric
consideration can be applied to the local distortion of lithium
bonding environment. In fact, the majority of lithium-ion conductor
has a distorted crystalline structure rather than exposing highly
symmetric lattice25,134. The success to identify complex structure-
conductivity relation is certainly attributed to the powerful
capability of ML to detect buried patterns from data analysis.
However, we should be cautious as the results of feature selection
may be sensitive to the choice of learning algorithm, selection
algorithm and data itself, especially in the circumstance of small
availability of training data90.
Physics-based descriptors are constructed from known physics of

properties. For example, the ionic conductivity of most solid
substances follows an Arrhenius dependence on the temperature
σT= Cexp(−Ea/kT). Through this relation, the conductivity at a
given temperature can be quickly estimated from the information
at other temperatures. Zhu et al. analyzed the mean square
displacements (MSDs) obtained from short AIMD simulations at 800
and 1200 K for known superionic conductors. They observed that all
known lithium-superionic conductors fall within the regions
bounded by MSD800 > 5 Å2 and MSD1200/MSD800 < 7, suggesting
the information at high temperature is a strong indicator of
diffusion at room temperatures135. In the work of Fujimura et al., the
model to predict the conductivity of LISICON compounds used four
descriptors, diffusion coefficients at 1600 K, transition temperatures,
experimental temperature and average volume of disordered
structures, for the prediction of conductivity at 373 K92. Not
surprisingly, the diffusivity at high temperatures served as a strong
descriptor of low-temperature conductivity and systems having
high diffusion coefficients at 1600 K tend to have high condcutivity
at 373 K as well.
Deep learning-based feature utilizes the capability of deep

learning to learn the feature by itself and thus avoids potentially
biased handcrafting. For the exploration of solid-state electrolyte,
the representation of the material should appropriately describe the
compositional information and the crystalline structure of candi-
dates. Deep learning has achieved significant breakthroughs in
representing these two crucial materials features. For the composi-
tional representation, the representations extracted from deep
learning models of the formation energy of inorganic compounds
abstract the atomic number of each element into patterns
correlated to chemical trends41,44,45. It offers the potential to
transfer knowledge from learning the formation energies for
representing elemental identifies, thus reducing the efforts to craft
domain-knowledge-based representation of chemical elements.
Meanwhile, the recently introduced crystal graph convolutional
neural network (CGCNN) has shown great success for the
representation of crystalline structure136–138. In the crystal graph
convolutional neural network (CGCNN), atoms are treated as nodes
in a graph, and the bonds are treated as edges connecting
individual nodes. In this way, each individual crystal is represented
by a graph with the convolution and pooling layers satisfying the
invariance with respect to permutation of atomic indices and
choice of unit cell. By introducing global attributes in combination
with atom and bond attributes, the CGCNN is generalized to graph
network no longer constrained in the family of neural networks9,91.
The graph-based deep learning models have shown impressive
capability to predict materials properties. Transferring the elemental

embedding trained from CGCNN or graph network on a large
dataset significantly improved the performance of predicting
properties with a limited data availability139. The application of
CGCNN to quantify the relation between crystalline structure and
ionic conduction remains a promising field for future exploration.
The exploration of new solid-state ionic conductors can be

summarized into supervised regression of activation energy barrier
or conductivity74,92,117–119,130,131,140, supervised classification of super-
ionic or non-superionic materials100,141,142 and unsupervised screen-
ing25. In the supervised approach, the model learns the relation
between ionic conduction and input features and make a prediction
of ionic conductivity accordingly (Fig. 4a). A practical approach to
mitigate the data scarcity challenge in this approach is to restrict the
modeling in a constrained space of exploration. In battery informatics,
this approach is frequently adapted to focus on a specific structural
family because many crucial properties of battery materials are highly
dependent on the crystalline structure prototypes. Built on the
premise that a known family of structure is more likely to yield better
functionality of interest, the exploration is therefore converted to the
task of optimization in the constrained space of interest. The
restriction in the selected structural families efficiently concentrates
the data for better pattern extraction, thus reducing the requirement
of data availability for a qualitied model. The removal of structure as a
variable factoring in the target property also mitigates the technical
challenge to represent the crystalline lattice. The typical size of
training data used in the past studies ranged from a few hundred for
DFT-calculated examples92,130,131 and less than 100 from experimen-
tation74,117,118. The drawback of restrained exploration is that it
scarifies the generality of ML model in multiple structural families. To
switch different structural families, the training and validation of ML
must be re-carried out, usually in a completely independent manner.
A possible strategy to overcome this limitation is to transfer the pre-
established from one system to the study of a new system because
models of conductivity for different crystalline families may share
common features of conduction131.
Another type of supervised exploration is to predict if a candidate

has the potential to be promising conductors rather than directly
output the ionic conductivity (Fig. 4b). By transforming the regression
task into a classification problem, Sendek et al. screened 12000+ Li-
containing compounds in unconstrained compositional and struc-
tural space using a logistic regression100. Among 317 compounds
meeting the requirement of thermodynamic phase stability, low
electronic conduction, high electrochemical stability, absence of
transition metals, and potentially low materials cost and high earth
abundance of the elemental constituents, 21 compounds were
predicted to reach the conductivity of >10−4 S cm−1. They further
used the output of the logistic regression model to train a newmodel
with only the composition of compounds as input variables141. It
extended the screening to compound not included in the database.
They predicted that compounds including LiN5P3O, Li3Na4O3, LiPO3,
LiMg3K2O4, LiNaMg3O5, Li2K3GaO4, Li5Na2O3, Li4NaGaO4, Li2MgO2,
Li5K2O3, and Li5Na2NO2 are promising ionic conductors. The same
logistic regression framework predicted LiAuI4 and Ba38Na58Li26N as
superionic conductors when Ahmad explored candidates to suppress
the growth of Li-dendrites143.
The powerful capability of ML to explore a wide range of

unknown space usually yields a list of promising candidates beyond
the normal capacity of experimentation for brutal examination. The
conductivity of solid electrolyte is especially sensitive to the choice
of dopant and defect concentrations, which greatly increases the
experimental cost of fine tuning the compositional degree of
freedom. To mitigate this challenge, ML-based screening is usually
followed by high accurate simulations to further narrow down the
choice of candidates. By artificially introducing a lithium vacancy in
the supercell, Sendek et al. identified two compounds from the
candidates identified through logistic regression, Li5B7S13 and
Li2B2S5, with exceptional high conductivities at room tempera-
ture142. More rigorously, Li vacancy and excess Li should be
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introduced through aliovalent doping of immobile species. He et al.
proposed the appropriate doping strategy should activate concerted
motion of multiple lithium ions by inserting lithium at high-energy
sites144,145. They identified aliovalent substitution of LiTaSiO5 and
LiAlSiO4 to introduce excess lithium boosted the lithium-ion
conductivity at RT145. Confirmed in experiments, Zr-doped
Li1.1Ta0.9Zr0.1SiO5 showed a conductivity about two orders of
magnitude higher than that of stoichiometric LiTaSiO5

146.
Switching the target of ML from accurately predicting the values

of conductivity to narrow down the candidates for the examination
through expensive simulation or experimentation motivates the
screening through unsupervised learning (Fig. 4c). In our work, we
used the representation to match the modified periodic anion
crystalline lattice of Li-containing compounds into a set of X-ray
diffraction intensities at a fixed set of 2θ values25. Through
agglomerative hierarchical and spectral clustering, we found most
known Li-ion conductors were clustered into two out of a total
seven groups with distinctive diffraction fingerprints. It narrowed the
screening of initial 2,986 compounds down to the evaluation of ionic
conductivity in 82 unique compounds. Through AIMD simulations,
we predicted 16 more candidates to have σRT higher than 10–4 S
cm−1. Three of these new materials systems, Li8N2Se, Li6KBiO6, and
Li5P2N5, have the room temperature conductivity exceeding 10−2 S
cm−1 (Fig. 4d). These new predicted candidates comprise new
structures, chemistries, and compositions significantly different from
known SSLCs, demonstrating the capability of unsupervised learning
to discover materials beyond existing chemistries.

Mechanical properties of solid electrolyte. The mechanical prop-
erty is another important factor to the practical application of solid

electrolyte in all-solid-state batteries147. High mechanical strength
benefits the suppression of lithium dendrite growth. However, too
high mechanical strength may cause the difficulty to wet on
lithium anode. Soft electrolyte is more tolerable to compromise
the volumetric change of electrodes during cycling. Compared to
the conductivity property, the calculation of mechanical property
is a more trackable task using first-principles methods. The DFT-
calculated elastic properties, including the full elastic tenor, bulk,
shear and Young’s moduli and Poisson ratio, of alkali superionic
conductors were in good agreement with available experimental
data148. The Materials Project database contained the DFT-
calculated elastic tensor for more than 13,000 compounds, with
the error typically within 15% of the experimental value149. The
large availability of calculated data led to the successful prediction
of mechanical properties using ML methods9,150,151. To explore
candidates of solid-state electrolyte with suitable mechanical
properties to suppress the growth of lithium dendrite, Ahmad
defined a stability parameter as a function of shear modulus,
Poisson’s ratio, and molar volume ratio143. Using the computa-
tional database of mechanical modulus from Materials Project,
they trained a CGCNN model to predict the stability parameter for
12,950 lithium-containing compounds, among which 3400 were
used for training. Twenty dendrite-suppressing interfaces were
predicted formed from LiBH4 and LiOH and two polymorphs of
Li2WS4.

Solid–electrolyte interface. In addition to the ionic conductivity
and mechanical properties, the interface between solid electrolyte
and electrode plays a crucial role in determining the performance
of all-solid-state battery. The stable operation needs the electrolyte

Fig. 4 Machine learning guided discovery of novel superionic conductors. a Supervised regression of the conductivity/activation energy
barrier. b Supervised classification of promising and non-promising conductors. c Unsupervised clustering of Li-containing compounds. d
Unsupervised clustering of Li-containing compounds based on the anion packing and the discovery of novel inorganic lithium conductors.
Reproduced with permission from ref. 25. Copyright Springer Nature 2019.
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either stable against electrochemical reduction and oxidation or to
form stable passivating solid-electrolyte-interface to avoid contin-
uous consumption of active materials. Most known solid electro-
lytes such as LGPS152, Li1.3Al0.3Ti1.7(PO4)3153, and garnet LLZO154 are
reduced once in contact with metallic lithium. On the cathode side,
sulfides electrolytes usually exhibit lower stability against oxidation
compared to oxides155. Theoretically, the electrochemical stability
of solid electrolytes can be evaluated by constructing the grand
canonical free energy at varied electrochemical potentials156,157.
Utilizing the computational materials database, the interface
stability has been evaluated for a large number of lithium and
sodium compounds, yielding instructive screening of candidates
possessing excellent interface stability and ionic conductivity49,50.
To extend the screening beyond the stoichiometric compositional
space, Liu et al. incorporated ML to explore the stability of doped
garnet LLZO101. They calculated the formation energy of cation
doped LLZO and built an automated route to screen all possible
reactions between doped materials in contact with metallic lithium.
The thermodynamic stability of doped LLZO against the reduction
by metallic lithium was found to increase with stronger dopant-
oxygen bonding. A binary classification model was then trained to
predict whether the Li|LLZO interface is stable or not. They further
trained a kernel ridge regression model to predict the reaction
energy and found good agreement between the DFT values and
KRR predictions. The ML models predicted 18 doped systems stable
against Li metal and the predictions were validated in the
automated calculations.

Polymer electrolyte. Besides ceramic solid electrolyte, polymer-
based electrolyte is an alternative of high processability and
appropriate binding properties to the development of all-solid-
state batteries158. To balance the requirement of conductivity,
mechanical properties, and stability, polymer electrolyte is usually
prepared as a composite of a polymer, lithium salts, and other
necessary additives. ML provides a powerful tool to optimize the
complex receipt for better electrochemical performance. Using a
Bayesian neural network, Ibhahim el al. modeled the conductivity
in a series of polyethylene oxide (PEO)-lithium salt-solvent-
additive systems159–161. The neural network was found successful
for the prediction of conductivity and impedance of nanocompo-
site polymer electrolyte system.
ML was used to explore the wide polymer space for potentially

novel electrolyte systems. Conventionally, the ionic conduction in

PEO-based polymer electrolyte is coupled to the motion of
polymer backbone, which higher conductivity is achieved with the
cost of lower melting points162. To break this limitation,
Hatakeyama-sato et al. constructed a database of Li-ion con-
ductive polymers from published results and used it to train a
Gaussian process model of conductivity using the input of
chemical structures, composition ratio, and measured tempera-
tures (Fig. 5)163,164. Trained with the data reported up to 2018, the
model predicted the conductivities of ~150 representative
conductors reported in early 2019 in good agreement with
reported values. Applying ML model to explore unknown space
led to the discovery that lithium salt in charge-transfer complexes
of polyphenylene sulfide (PPS) and dimethyl-substituted PPS
(PMPS) and aromatic oxidants such as chloranil and 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ) could be a promising
candidate of electrolytes. They confirmed the prediction in
experiments, where the PMPS and PPS electrolytes showed
superionic conductivity around 10−3 S·cm−1 at room temperature.
More importantly, PPS and PMPS have glass transition tempera-
tures much higher than that of PEO, indicating novel lithium
conduction mechanism without involving the movement of
polymer chain in these new polymer electrolytes. Considering
the vast number of polymer systems and the complexity of
polymer electrolytes, great potential exists to apply ML for the
exploration, discovery and optimization of new electrolyte
candidates for the future development of all-solid-state batteries.

Electrode materials. In addition to the study of novel electrolyte
materials, ML was used for the exploration of novel and better
functional electrode materials. By unveiling the complex
structure–property relationships underlying the performance of
electrode materials, the reported studies include the modeling
multiple voltage, structure, and energy landscape of electrode
materials. For example, Joshi et al. used DNN, SVR, and KRR to
predict the voltage profile diagram of cathode materials. Applying
the ML model to screen potential candidates yielded ~5,000
electrode materials for Na- and K-ion batteries with voltages
rivaling their Li-ion counterparts165. Wang et al. studied the
volume change caused by the delithiation of spinel and layered
oxide cathodes166. They found the partial linear square predicted
the volumetric change in excellent agreement with DFT-calculated
values. Shandiz used a wide range of classification algorithms to
predict the crystalline structure in the Li–Si–(Mn, Fe, Co)–O

Fig. 5 Discovery of novel polymer electrolyte through machine learning. Scheme for predicting properties of the solid polymer electrolytes
from consolidating the experimental database to the discovery of new polymer electrolyte. Reproduced with permission from ref. 163.
Copyright American Chemical Society 2020.
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compositional space167. The volume of the unit cell and number of
sites showed the highest importance in determining the crystal-
line lattice, while other factors including formation energies,
convex hull energy, and band gap also played an important role.
Zhang et al. used machine leaning to model the adsorption
energy of lithium polysulfide species on layered sulfides168. By
transferring the pre-established model of adsorption on the
MoSe2 surface to predict the adsorption on similarly structured
WSe2 surface, the ML reduced the computational cost of DFT
calculation while maintaining the accuracy in understanding two-
dimensional layered compounds as the host materials of lithium-
sulfur battery cathode. Table 2 summarizes the data, ML methods,
modeled properties, and applications of these studies.
The topotactic lithiation/delithiation of electrode materials

usually results in highly disordered lithium and vacancy arrange-
ments after lithium is partially removed from a parent crystalline
structure. The classical method to analyze such disordering is
footed on the cluster expansion proposed in the seminal work of
Sanchez et al.169. The common approach of cluster expansion
expresses a lattice model Hamiltonian as a linear combination of
orthonormal basis functions of configurational occupancy vari-
ables. Recently ML has shown potential as a promising alternative
to explore the disordering events. Natarajan and Van der Ven
developed a neural network function to relax the constraint of
linear Hamiltonian in cluster expansion (Fig. 6a)170. In the case
study of spinel LixTiS2, the model using neural network had an
error of 36 meV per formula unit compared to the error of 89meV
per formula unit for the linear regression model. Hochins and
Visvanathan incorporated a neural network potential to relax the
disordered structure determined from grand canonical Monte
Carlo simulations of layered oxide cathodes using the cluster
expansion Hamiltonian (Fig. 6b)171. After structural relaxation,
thermodynamic properties such as lattice parameters, free energy,
and entropy were obtained and the predicted voltage profile of
LixNiO2 and LixCoO2 were in good agreement with the experi-
mental measurements. Beyond the framework of cluster expan-
sion, Eremin et al. modeled the energy landscape of topotactic
delithiation of LiNiO2 and LiNi0.8Co0.15Al0.05O2 cathode through
the structure descriptors that encoded the lithium and dopant
occupancy information (Fig. 6c)172. They found the energetics was
mainly controlled by the topology of Li layers and relative
disposition of Li ions and Li and not by the relative dopant
positions.

Accelerate the simulation and assist fundamental mechanistic
exploration
ML-assisted molecular dynamics. The functionality of battery
materials to a large extent originates from the atomistic structure

of these materials. The correct understanding of the atomistic
structure and reactivity of all materials involved is of paramount
important towards the design of better-performed materials.
Computational simulation has long become an essential tool in
understanding the structure–property relation in complementa-
tion to the experimental characterization and analysis techniques.
DFT method is now a standard approach with proven accuracy
and chemical versality to provide structural, energetic, and
electronic insights into the static ground state-of-battery materi-
als. Molecular dynamics simulation, on the other side, provides
spatial and temporal knowledge of atomic movements at given
conditions. Ab initio molecular dynamics incorporates a molecular
dynamics engine to study the dynamic movement of atoms within
a simulation cell, where the forces experienced by all atoms are
calculated using DFT theory. With the advantage of no prior
assumption of potential energy surface, AIMD is becoming a
powerful tool to study many dynamic phenomena in battery
materials such as ionic transportation and solid-electrolyte inter-
face formation with an excellent accuracy to predict the
experimentally measured quantities as well as offering atomistic
insight into the physical mechanism173. However, in AIMD
simulation each step requires one ionic relaxation of DFT to
calculate the force exercised every atom. The high computational
cost restricts the simulation cell to a few hundred atoms and the
simulation time to at most a few nanoseconds.
An emerging approach to simultaneously maintain the DFT-

level accuracy and reduce the cost of AIMD simulation is to create
interatomic potentials by ML from quantum-mechanical reference
data. More precisely, the ML potential (MLP)-assisted MD
simulation learns the potential energy surface from a dataset of
accurately computed energies and forces without assuming a
specific functional form of the PES. The learned PES is then used in
the simulation to avoid the extensive DFT simulation at every MD
step (Fig. 7a). Since the introduction about 15 years ago174, ML-
assisted MD has been fast developed in the past few years and its
application in battery research has led to successfully modeling of
a variety of cathode171,175, anode176–180 and solid-state electro-
lytes12,181–191, as summarized in Table 3. A variety of ML
algorithms have been used as the surrogate form of potential
energy surface, with the most popular techniques including
neural-network potentials171,175,176,178,184,185, gaussian approxima-
tion potentials (GAP)177,179,180,192, spectral neighbor analysis
potentials186,193, and moment tensor potentials190,194. Leveraging
the large amount of data generated during the AIMD simulation,
the ML model typically predicts the energy within the error of a
few meV per atom and forces with the error of a few hundreds of
meV per Å. Due to the low error of the ML model to predict the
DFT-calculated energy and forces, the prediction of macroscopic
properties through ML-assisted MD can reach the same

Table 2. Application of machine learning in studying battery electrode materials.

Materials ML purpose Property Data ML Method

Inorganic compounds164 Screen high voltage
Na- and K-cathode

Voltage 4,250 voltages data Deep neural network, support vector
regression, kernel ridge regression

Spinel and layered oxides165 Predict volume
expansion

Volume expansion 14 spinel LiX2O4 and 14
layered LiXO2

partial linear square

Li–Si-(Mn,Fe,Co)-O166 Predict crystalline
structure

Structure prototype 339 samples Eight ML methods

lithium polysulfide/layered
sulfide167

Screen sulfur host
cathodes

Adsorption energy 11,395 for MoS2 and 1500
for WS2

Transfer learning

spinel LiTiS2
169 Li/vacancy ordering Energy landscape 66 DFT energies Neural network

Layered oxides170 Li/vacancy ordering Energy 12,962 DFT energies Neural network

LiNiO2 LiNi0.8Co0.15Al0.05O2
171 Li/metal/vacancy

ordering
Energy 87 LNO and 20.760 NCA

configurations
Ridge regression
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performance as AIMD simulations. As shown in Fig. 7b, the
simulation using the ML on-the-fly (LOTF) potential reached better
accuracy to predict the experimental migration energy when
benchmarked with AIMD simulations in a range of solid-state
electrolytes from very good conductors of β-Li3PS4 and Li7P3S11 to
very bad conductors of Li4GeO4

181. The diffusivity of lithium in
Li7P3S11 was within 14% of that obtained directly from AIMD182,
while for LGPS the Li-ion diffusivity at 300 K and the activation
energy were predicted to be 12mS·cm−1 and 226meV, respec-
tively183, in excellent agreement with the experimental data128.
The low computational cost readily extends the time and length

scales of MLP-assisted MD simulation compared to conventional
AIMD. For example, due to the low conductivity and high
migration barrier in Li4GeO4, AIMD had to be performed at
temperatures higher than 1200 K, while LOTF-MD simulation was
able to extract the conductivity as low as 700 K181. For good
conductors, the temperature range reached 300 K while the total
simulation was more than 1300 nanoseconds181. For the simulation
of amorphous Li3PO4, the expensive cost of AIMD simulations
limited the simulation cell to Li46P16O63, while MD simulation using
neural network potential extended the cell over 1,000 atoms
(Li372P128O506, Fig. 7c)184. Huang et al. examined the speed of MD

simulation based on deep potential generator (DP-GEN)185. On one
NVIDIA V100 GPUS, the DP-based simulation took around 4 h to
simulate a 900-atom LGPS systems for 1 ns and the computational
cost scaled linearly with system size up to ~6,000 atoms as shown
in Fig. 9d. The high accuracy, ability to simulate low-temperature
systems in extended time and length scale make ML-assisted MD
simulation a powerful technique for large-scale simulations.
Increasing the size of the simulation cell improves the fidelity of

MD results by alleviating size dependence and avoiding fault
physics due to artificial interaction across simulation cells. For
example, the simulation of Li10SnP2S12 using a supercell of ~200
atoms overestimated the diffusion coefficients by 10 to 100 times
especially at low temperatures185. By expanding the simulation cell
to 900 and 1600 atoms, the diffusivities converged with a difference
of less than 3 × 10−12 m2 s−1. Larger simulation cell used in NN
potential MD simulation suppressed the partial crystallization of
local structures analogous to those in β-Li3PO4 and γ-Li3PO4 as
observed in small cells, suggesting the NN potential simulation
better captured the conduction in a real amorphous phase184.
The extended time and lengths scales allows MLP-assisted MD to

probe amorphous system, polymer and grain boundaries that
conventional AIMD is usually prohibitive due to the large number of

Fig. 6 Machine learning assisted study of disordering phenomena in electrodes. a Schematic of incorporating neural network architecture
into cluster expansion and the prediction of the formation energy convex hull in spinel Li3xTi2S4. Reproduced with permission from ref. 169.
Copyright Springer Nature 2018. bMachine learning assisted prediction of voltage profile in layered oxides. Reproduced with permission from
ref. 170. Copyright American Institute of Physics 2020. c Machine learning explores the configurational space of topotactic delithiation of
LiNiO2 and LiNi0.8Co0.15Al0.05O2. Reproduced with permission from ref. 171. Copyright American Chemical Society 2017.
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atoms necessary to represent the structure and the long simulation
time to describe the rare event of melting and structural
reconstruction. Arithis et al. incorporated an ANN potential in
genetic algorithm and molecular dynamics simulation to generate
the phase diagram for lithium intercalation in amorphous silicon
anode (Fig. 7e)176. Onat et al. developed an “implanted” neural
network that incorporate pre-trained parts to capture the character
of different components178. The MD simulation at room tempera-
ture predicted the diffusion coefficient of Li in amorphous LixSi in
better agreement with experimental measurements than other
theoretical results. Fujikake used Gaussian approximation potential
to model lithium intercalation in graphite and amorphous carbon
structure179. They showed the simulation correctly described the
structural and vibration properties of lithium diffusion in carbonac-
eous frameworks. Deringer and his co-workers used Gaussian

approximation potential to model Li- and Na-insertion in disordered
carbon anode and obtained lithiation and sodiation behavior in
agreement with experimental observations (Fig. 7f)177,180. Mailoa
developed a staggered neural network force field structure to
predict atomic force vectors through the use of rotation-invariant
and -covariant features12. They demonstrated that the simulation
can accurately predict the atomic forces accurately for a
polyethylene oxide (PEO) run at T= 353 K and amorphous lithium
phosphate (Li4P2O7) oxide melted at 3000 K (Fig. 7g). Using
electrostatic spectral neighbor analysis potential for the modeling
of Li3N, Deng et al. modeled the diffusion on the grain boundary in
a simulation box of 5,040 atoms186. They found the diffusivity of Li
within the twist grain boundary was about three times the
extrapolated value in the bulk phase at 300 K, indicating the
important role of grain boundary for conduction in Li3N.

Fig. 7 Machine learning potential assisted molecular dynamics studies of battery materials. a Workflow of MLP-assisted molecular
dynamics studies. b Diffusivities simulated by AIMD at high temperatures and by LOTF-MD at intermediate temperatures for various solids.
Reproduced with permission from ref. 181. Copyright American Institute of Physics 2020. c Supercell of Li372P128O506 for the simulation of
amorphous Li3PO4. Reproduced with permission from ref. 184. Copyright American Institute of Physics 2017. d Speed test of DP models on a
NVIDIA V100 GPU. Reproduced with permission from ref. 185. Copyright American Institute of Physics 2021. e Schematic of the genetic
algorithm sampling approach using the specialized ANN potential. Reproduced with permission from ref. 176. Copyright American Institute of
Physics 2018. f Binding energies of sodium on disordered carbon. Reproduced with permission from ref. 180. Copyright Royal Society of
Chemistry 2018. g Force prediction correlation plots shown for H in PEO and P atoms in Li4P2O7. Reproduced with permission from ref. 12.
Copyright Springer Nature 2019. h MAE of MLMD in the vicinity of phase transition in Li7P3S11 at 500 K. Reproduced with permission from
ref. 188. Copyright American Physical Society 2021.
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Conventional AIMD is usually carried out at high temperatures to
ensure the statistical significance of the sampling on rare events of
diffusion and structural reconstruction. By probing the dynamic
events directly at low temperatures, MLP-assisted MD has the
potential to unveil the physics buried in high-temperature
simulations. Miwa and Asahi used the potential constructed by
self-Learning and adaptive database (SLAD) approach to study the
conduction in Nb-doped LLZO187. The simulation was performed
from 400 to 800 K in a supercell containing 1520 atoms. The ML-
assisted simulation reproduced the conduction properties in good
agreement with experimental results and predicted a negligibly
small energy difference between the 24d and 96 h sites, which was
likely to benefit fast conduction at room temperatures. Using a
sparse Gaussian process potential, Hajibabaei et al. reproduced the
melting of Li7P3S11 at 900 K188. As shown in Fig. 7h, they also
observed a previously unknown phase transition at temperatures
higher than 450 K. By rotating the P2S7 double tetrahedra into a
new orientational order, the new polymorph of Li7P3S11 was almost
iso-energetic to the initial phase but exhibited Li diffusivity several
orders of magnitude smaller. Huang et al. used the DP-GEN models
to study the effect of lattice disordering in LGPS phases185. They
predict the disordering of Ge4+ and P5+ increased the diffusivity by
2 to 4 times at low temperatures due to the flattening of potential
energy surface. Such effect was not seen in high-temperature AIMD
simulation, as the benefit diminished in systems with high diffusion
coefficients.

ML- analysis of dynamics. Due to the large amount of data
generated during molecular dynamics simulation, quantitative
analysis to extract relevant dynamic information is a challenge for
data analysis. Conventionally, the analysis of molecular dynamics
trajectory is carried out through hand-crafted rules in combination
with computing the average behavior of atoms. The powerful
capability of ML in handling a large amount of data opens new
opportunities to post-analyze the MD data to mitigate potential
information loss during the analysis137,195–198. Particularly, an
interesting application of ML in analyzing MD data is labeling
atoms in distinct coordination environments through unsuper-
vised clustering. The unsupervised labeling analyzes the local
configurations and bonding environments of atoms in MD

trajectory and uses the clustering to search structurally distinct
states107–109. Compared to the conventional approach where the
system-specific site locations are given a priori, unsupervised
learning uses no manually crafted rules and ensures the statistical
significance of structural difference. Xie et al. developed a graph
dynamical network combined with the Koopman models to map
the local configuration of target atoms into a lower-dimensional
feature space137. Applying their method to study poly(ethylene
oxide) (PEO)/lithium bis-trifluoromethyl sulfonimide (LiTFSI) com-
posite electrolytes, the model identified four coordination states
of lithium ion, each of which had distinct solvation environments.
Chen et al. developed a method to calculate the nuclear density
from the MD trajectories and cluster the data based on the
density196. In simulating garnet LLZO, their method yielded 576
available sites in a 2 × 2 × 2 supercell for the conductive cubic
phase, and 448 clusters for the less-conductive tetragonal phase.
The difference of site availability reflects the conduction
characteristics in these two phases. Magdau and Miller developed
a machine leaning approach to automate the classification and
identification of ion solvation environments in polymer electrolyte
based on data from MD simulations197. By concatenating the type-
specific Li+ radial distribution functions, they applied two
unsupervised algorithms of UMAP to embed the high dimensional
feature vectors into a low-dimensional latent space and HDBSCAN
to classify the embedded data into specific solvating environ-
ments in poly(3,4-propylenedioxythiophene). Understanding the
occupancy at different lattice sites is an important first step for
subsequent analysis to extract information such as site shape, type
and occupancy. In the work of Xie et al.137, the labeling of lithium
to different solvation sites identified three relaxation processes.
The slowest relaxation is a process to transport a Li-ion into and
out of a PEO coordinated environment. The second slowest
relaxation corresponds to a movement of the hydroxyl end group.
The last relaxation is a Li-ion switching the coordination between
PEO and TFSI.

Interpret underlying physics. Another promising application of ML
in fundamental mechanistic exploration is to interpret physics
underlying measured observables. For some sense all supervised
learning models can be regarded as the interpretation of

Table 3. Machine learning potential assisted molecular dynamics studies of battery materials and the application of machine learning potential.

System Materials Method Property to simulate

Cathode LixCoO2 and LixNiO2
171 Neural network Voltage prediction

Spinel LixMn2O4
175 Neural network Lattice parameters and Jahn-Teller dynamics

Anode Silicon176 Neural network Ground state prediction

silicon178 Neural network Diffusion prediction

amorphous carbon177,180 GAP Lithiation and sodiation behavior

carbon nanostructure179 GAP Lithium diffusion and vibrational density of states

electrolyte Multiple solid-state electrolyte181 LOFT Diffusivity, activation energy barrier

Li4P2O7 and Li7P3S11
182 Graph neural network Diffusion property

LGPS183 SLAD Diffusivity

amorphous Li3PO4
184 Neural network Diffusivity

LGPS, LSiPS, LSnPS185 Neural network Diffusivity, effect of doping

Li4P2O7, PEO
12 Staggered neural network Force and energy in MD simulation

Li3N
186 Electrostatic spectral neighbor analysis potential Li diffusivity, Haven ratio, phonon spectra

Nd-doped LLZO187 SLAD Li diffusivity

Li7P3S11
188 Spare Gaussian process potential Li diffusivity

LGPS, LLZO, Na1+xZr2SixP3−xO12
189 DeePMD Li diffusivity

LLTO, Li3YCl6, Li7P3S11
190 Moment tensor potential Li diffusivity and Haven ratio

Li2B2H12
191 SLAD Li diffusivity and lattice parameter
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underlying physics because the good model should necessarily
discover the relation between property and input features.
However, due to the highly complex architecture, ML, especially
deep learning-based models, lack the transparent interpretability to
understand the physical causality between input and output5. To
overcome this limitation, methods such as variable importance
measure199, visualizing the hidden layer activations200, attention
response map201, physics-leveraging models202,203 have been used
for post-hoc interpretation of ML models204,205. In certain ML
methods, the interpretability is the strength rather than the
weakness of modeling. Symbolic regression, for example, is a ML
method that searches the mathematic expression that quantifies
fundamental relationships of physical phenomena to each other206.
In a number of studies, ML has successfully “rediscovered”
important physical equations in both explicit and implicit formats,
including the Hamiltonians and Lagrangians for simple harmonic
oscillators and double pendulums207, governing equations of
dynamic systems208, and partial differential Nave-Stokes equa-
tion209. We anticipate symbolic regression could discover a new set
of phenomenological equations that leads to the exploration of
new physics in future. Another example of ML-based physics
interpretation is Bayesian model selection210,211. The Bayesian
model selection compares models from different physics and
choose that best describes the data from measurement. Thus, the
result of Bayesian model selection directly decides the underlying
physics of the measured system. In recent work, Park et al. used
Bayesian model selection to study the fictitious phase separation in
the delithiation of Lix(Ni1/3Mn1/3Co1/3)O2 cathode212. From the
operando X-ray diffraction, X-ray microscopy, and electrochemical
measurements they found the inter-particle inhomogeneity during
delithiation was induced by the limitation of reaction rate. They
constructed theoretical models of the reaction- and diffusion-
limited delithiation and used Bayesian model selection to decide
the correct physics (Fig. 8a). As shown in Fig. 8b, the inter-particle
distribution in the fast-delithiation X-ray microscopy data clearly
favored a reaction-limited model and rejected the diffusion-limited
one. The authors concluded that the anomalous phase separation

in layered oxide is caused by electro-autocatalytic reaction instead
of originating from diffusion-limited mechanisms.

Microstructure characterization and design
Microstructure characterization and reconstruction. The electro-
chemical performance of the complex battery systems heavily
depends on not only fundamental materials properties but also the
microstructure characteristics and design. Today, advances in
experimental methods provide much-needed insights of battery
microstructural features using a combination of analysis tools such
as X-ray and neutron diffraction, electron microscopy, nuclear
magnetic resonance, X-ray spectroscopy and Raman spectro-
scopy213. ML is becoming a new weapon in the arsenal to provide
much desired high-level analysis of the data from these advanced
analysis techniques. Leveraging the capability of image analysis
beyond manual annotation and object recognition, ML, especially
CNN-based method, is well-suited for the in-depth visualization, 3D
reconstructing and comprehensive understanding of electrode
microstructures214–217. Jiang et al. trained a Mask R-CNN to perform
the segmentation of images taken from the quantitative X-ray
phase-contrast nano-tomography of the Ni-rich LiNi0.8Mn0.1Co0.1O2

(NMC) composite cathode (Fig. 9a)214. After training, the ML model
automated the segmentation over 650 NMC particles, from which
the visualization of the microstructure of the composite electrode
and the statistical analysis revealed the mechanism of particle-
carbon/binder detachment as well as its correlation to the battery
performance. Furat et al. collected the electron backscatter
diffraction data for a LiNi0.5Mn0.2Co0.2O2 (NMC532) composite
electrode215. A convolutional neural network model of segmenta-
tion was trained to identify individual grains in the EBSD images,
which allowed the 3D reconstruction and segmentation of grains
within NMC particles for further quantification of microstructural
features (Fig. 9b). Petrich et al. simulated the morphology evolution
during a thermal runaway and trained a classification model to
identify particles that are either broken or split by the watershed
transformation during the thermal runaway (Fig. 9c)216. The model

Fig. 8 Machine learning assisted interpretation of phase separation in Li layered oxides. a Schematic illustration of the reaction-limited
and diffusion-limited inhomogeneity evolution. b Bayesian model selection of lithium fraction histogram rejects the diffusion-limited case.
Reproduced with permission from ref. 212. Copyright Springer Nature 2021.
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reached an accuracy of 73% when applied to real-world
tomographic images taken from a lab-based X-ray nano-CT. Dixit
et al. used synchrotron to track in situ morphology transformation
of Li metal electrodes in a Li|LLZO|Li cells during stripping and
plating processes217. Segmentation of lithium and pores using a
resnet34 based deep convolution neural network quantified
microstructural properties such as pore size distribution in lithium
metal during cycling experiments.
In the reconstruction of battery microstructures, images are

usually taken as a stack, which serves a source of data with good

quantity and consistent quality. For example, in the work of Furat
et al.215, each stack of EBSD data included 91 individual images for
the analysis of convolution neural network. Dixit collected the
tomography data with the size greater than 30 GB from each
scan217. Their neural network model was trained on 800 images
from one electrode in a single electrochemical cycle and tested on
another 200 images from the same electrode. Baliyan and Imai
used the hyperspectral Raman to characterize the cylinder-type
18650 Li-ion battery cells at different charge states218. Each
hyperspectral was composed of 60 × 60 Raman spectra, where the

Fig. 9 Microstructure characterization and reconstruction using machine learning. a Workflow of the machine learning-based
segmentation and labeling of NMC cathode using hard X-ray phase contrast nano-tomography. Reproduced with permission from ref. 214.
Copyright Springer Nature 2020. b 3D segmentation of NMC cathode using electron backscatter diffraction. Reproduced with permission from
ref. 215. Copyright Elsevier 2021. c Broken particle pairs from machine learning reconstruction. Reproduced with permission from ref. 216.
Copyright Elsevier 2017. d Unsupervised segmentation of NMC cathode using hyperspectral Raman analysis. Reproduced with permission
from ref. 218. Copyright Springer Nature 2019. e Machine learning assisted inverse design of microstructures. Reproduced with permission
from ref. 222. Copyright Elsevier 2020.

C. Ling

16

npj Computational Materials (2022)    33 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



numbers denoted the spatial resolution on the sample analysis.
Taking the advantage of the data abundance, They applied
principle component analysis to reduce the dimensionality of each
Raman spectral and used unsupervised clustering and supervised
classification to distinguish the distribution of phases of
Li(Ni1−x−yMnxCoy)O2 (NMC) and carbon in the electrode
(Fig. 9d). Even for traditional microscopy techniques such as SEM
and TEM, the post-processing of images through cropping, flipping
and rotation can be utilized to generate more artificial data from a
single example, assuming these operations maintain the repre-
sentative macroscopic property of the original samples219.
Furthermore, the established image analysis model can be
leveraged to train microstructural image analysis models, reducing
potential errors in the model initialization. For example, rather than
training the model end-to-end from start, Jiang et al. initialized the
weights in neural network from the large-scale ImageNet dataset
and optimized the pre-trained weights for the analysis of real
image of NMC particles214. Overall, the abundance of image data
and the advanced image processing and analysis techniques
suggest the great potential of ML for the characterization,
reconstruction, and analysis of microstructural characteristics of
batteries.

Inverse design of microstructure. In addition to the characterization
of microstructural details, ML has been applied to the inverse
design of microstructures for the optimized electrochemical
performance220. The workflow of inverse design generally includes
three essential steps of data generation, training ML models to
predict the electrochemical performance directly from the input of
microstructural parameters and applying the ML models in the
inverse design of microstructures to optimize the electrochemical
performance (Fig. 9e)221. Duquesnoy et al. used the experimental
data of LiNi1/3Mn1/3Co1/3O2 composite electrode calendaring results
to fit mathematical expression of process parameters and micro-
structure features222. A deep neural network was used to predict
the effective properties when the input processing and micro-
structure parameters changes. The model offered detailed insights
into the effect of the calendar pressure, electrode composition and
initial porosity on a list of mesoscale electrode properties including
the particle network interconnectivity, the electrolyte tortuosity and
effective conductivity, the coverage of the current collector by CBD/
AM particles and the active surface area. Gao and Lu designed a
thick electrode with a bio-inspired electrolyte channel for fast
charging/discharging223. To optimize the electrolyte channel
design, a DNN model was trained to predict the specific energy,
specific capacity and specific power from channel geometric
parameters. The obtained DNN model was used for the parameter
optimization through gradient descent algorithm. The optimized
design showed a 79% increase in specific energy compared to
conventional design without electrolyte channels. Takagishi simu-
lated 2100 three-dimensional artificial electrode structures using
the stochastic particle packing algorithm224. The artificial neural
network was used to predict the reaction resistance, the electrolyte
resistance, and the solid diffusion resistance using the input
parameters of the volume ratio of the active material, particle size,
the pressure in the compaction process and bind/additive volume.
Incorporation the ANN prediction in a Bayesian optimization
workflow achieved the inverse design of microstructural processing
parameters for optimized electrochemical properties of total
resistance and high capacity.

MACHINE LEARNING IN BATTERY ENGINEERING
In the above sections, we have reviewed the application of ML in a
wide range of battery research from materials discovery, materials
simulation, and microstructure study. These studies focus on the
individual components of a battery, aiming at the improvement of
battery performance from enhancing materials functionalities. ML

has also achieved significant success going beyond the materials
research of battery. In the following section, we briefly overview
several applications of ML at the system-level (cell or pack) of battery
engineering, highlighting several exciting achievements of ML in
battery design, state of health and state of charge estimation and
charging protocol optimization Although these problems reside in
the different territory with research topics such as materials
discovery and mechanistic exploration, the executing of ML follows
the same underlying principle to circumvent the complex design
and optimization with the surrogate function of observables.
Therefore, the exciting achievements of ML in solving battery
engineering problems also reflects the promising potential of this
data-driven approach towards future better battery technologies.

Optimize battery design
The performance of a battery is strongly determined by the design of
individual cell, the packing and stacking of cells and the actual
operation conditions. ML is becoming a new tool of optimization for
these aspects. To design a better battery by ML, one practice is to
parameterize the design and operation conditions, followed by
seeking for the correlation of these factors with the battery
performance. For example, Li et al. modeled the performance of
vanadium flow battery as a function of operating and design
parameters225. The parameterized design factors included carbon felt
type and thickness, electrode area, cell number, negative electrode/
bipolar plate structure, positive electrode/bipolar plate structure,
bipolar plate type and area, end plate type, seal type, membrane
type and area, flow field type, electrolyte concentration and volume.
The operation factors included the compression ratio, cutoff charging
voltage and current density. After accumulation the data over more
than 100 stacks, they used linear regression to predict the voltage
efficiency and energy efficiency, reaching the accuracy of within 1%
of mean absolute error. By incorporating the materials cost, the
model successfully optimized the best-performed design as well as
the low-cost designs of vanadium flow battery stacks.

State of health and State of charge estimation
State of health (SOH) and state of charge (SOC) are two
parameters describing the current and future states of battery,
defined as the capacity in fully charged state normalized by the
capacity of a band new battery, and the capacity in current state
normalized by the capacity in fully charged state, respectively.
Accurate determination of SOH and SOC is of paramount
important in battery management. For instance, SOC allows us
to estimate the remaining range of battery usage before the next
charge occurs. SOH can be used to predict the reliable remaining
useful life of battery, from which appropriate deployment of
battery can be developed to increase the remaining value of a
battery in other applications.
Traditional means to obtain SOC and SOH relies on the

estimation from empirical model and physics-based models226.
Equivalent circuit model (ECM), for example, simplifies the battery
as a network of electrical components such as resistors and
capacitors, and model the battery status with empirical para-
meters for dynamic diffusion and charge-transfer processes.
Because of the computational efficiency, ECM are currently the
major choice for online SOC estimations in electric vehicles.
However, the accuracy of ECM is restricted by the model
parameterization from laboratory test. Physics-based models
incorporates internal dynamics of electrochemical process and
therefore provides better accuracy of estimation. However, the
computational cost of solving the complicated governing partial
differential equations in physics-based models makes it less
efficient for online estimations.
ML techniques offers new opportunity to develop data-driven

models for the estimation of SOC and SOH with the potential to
overcome the accuracy-efficiency tradeoff. A variety of ML

C. Ling

17

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    33 



techniques have been employed to predict SOC and SOH from
input variables such as voltages, current, temperature and cycling
numbers. On average, the accuracy to predict SOC and SOH had
the error percentage of 3–4%, while a few reports reached the
accuracy within 99%227. We refer several excellent reviews and
perspectives of applying ML for SOH and SOC estimations to
readers interested in this topic227–230.

Optimize charging protocol
The performance of a battery cell highly depends on how the
battery is utilized. Good charge and discharge protocol maintain-
ing internal health of battery component are crucial to maximize
the usage value to full lifetime expectance. Optimization of a
charging protocol on battery performance is thus of great value in
battery management. In traditional ways, such optimization would
require extensive laboratory experiments to examine a large
number of combinations of operation factors. On the other side,
the ability to forecast the remaining lifetime of a battery allows us
to predict the effect of operation from early cycling data. Hence
the combination of lifetime prediction model with a search
strategy offers a new avenue towards optimization the operation
protocol through data-driven techniques. In recent work, Attia
et al. developed a close-loop optimization of fast-charging
protocols for commercial high-power lithium iron phosphate/
graphite 18650 cylindrical cells231. Their close-loop optimization
relied on two ML models. First, an elastic net model was trained to
predict the battery lifetime using the early cycling data232. Using
the data collected for 124 commercial cells in a temperature-
controlled environmental chamber (30 °C) under varied fast
charging but identical discharging conditions, the model pre-
dicted the cycle life with an error of 9.1%. Next, they coupled the
early lifetime prediction model in a Bayesian optimization
algorithm to model the effect of charging protocols on the
battery lifetimes. The close-loop approach optimized the fast
charging protocol from 224 candidates, reducing the time for
optimization from over 500 days to 16 days. The successful
optimization of fast-charging protocol highlights great potential of
ML to find other best charging design space as well as in other
aspects of battery optimizations.

CONCLUDING REMARKS
Batteries are unique compared to other materials systems in terms
of their complexities. The observed battery behavior originates
from the complex interplays among multiple structural, micro-
structural, and macrostructural components of batteries. Con-
ventionally, the design and development of a battery starts from
the detailed mechanistic understanding of how each individual
component works and, in many cases, guided by the domain
knowledge, experience and intuition. The employment of ML
provides an alternative to circumvent the challenge of under-
standing the complex mechanism through a surrogate function of
observables, thus offering a short cut towards improved battery
performance. The recent progress of battery informatics summar-
ized in this review has demonstrated the great success of applying
ML to exploit the design space through data interpretation. We
should note that the potential of battery informatics is also
reflected in making exploration type of findings, such as the
discovery of novel inorganic and polymer electrolyte with
chemistries significantly differing from existing examples. Yet still
in the early stage, the success of ML in solving a variety of
challenges in battery domain, ranging from mechanistic under-
standing and novel materials discovery to the engineering,
optimization, and management of battery cells all indicate the
promising potential of this data-driven technique for better
batteries in future.

A major challenge of battery informatics lies in the lack of
available datasets and standards. In our opinion, developing
standard battery database with accessibility to the research
community is the same importance as advancing algorithms and
machine learning pipelines to tackle specific problems in battery
research. Although significant advancements have been made for
the acquisition of high-quality data in large amounts as well as
circumventing the challenge through designing suitable ML
pipelines, we believe the situation of data scarcity cannot be fully
mitigated without the collaboration of entire community. We note
that efforts to foster data sharing in public materials science data
repository and the development of modern data infrastructure have
been carried out recently233,234. In some journals including npj
computational materials, statement of data availability is now a
mandatory requirement for publishing. On the other side, public
data sharing unavoidably raises the concerns about the intellectual
property. Protocols to resolve potential intellectual disputes while
promoting data sharing should be considered in our perspective. In
addition, the real-world deployment of battery very unlikely
conform the constrained lab conditions such as temperature-
controlled environmental chamber and standard discharge proto-
cols. The collaboration among battery researchers, developers, and
users to share and consolidate the data is urged towards applying
ML for more comprehensive and sophisticated design and
optimization of batteries.
In a short summary, the ML is becoming a more and more

standard tool of battery research to add a new dimension in addition
to the conventional materials fabrication, characterization, evaluation,
and modeling. We hope this review not only serves as a summary of
the research status of battery informatics but sheds light on the
exciting opportunities of employing ML for materials-related
problems difficult to tackle through traditional means.
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