
ARTICLE OPEN

Polycrystalline morphology and mechanical strength of
nanotube fibers
Nitant Gupta1, Evgeni S. Penev1 and Boris I. Yakobson 1✉

Correlating mechanical performance with mesoscale structure is fundamental for the design and optimization of light and strong
fibers (or any composites), most promising being those from carbon nanotubes. In all forms of nanotube fiber production
strategies, due to tubes’ mutual affinity, some degree of bundling into liquid crystal-like domains can be expected, causing
heterogeneous load transfer within and outside these domains, and having a direct impact on the fiber strength. By employing
large-scale coarse-grained simulations, we demonstrate that the strength s of nanotube fibers with characteristic domain size D
scales as s ~ 1/D, while the degree of longitudinal/axial disorder within the domains (akin to a smectic↔ nematic phase transition)
can substantially mitigate this dependence.

npj Computational Materials            (2022) 8:15 ; https://doi.org/10.1038/s41524-022-00705-x

INTRODUCTION
Hierarchical design or natural assembly is ubiquitous in biological
structural materials, from the classic examples of wood and bone/
collagen, to the super-tough and highly intriguing like spider-silk
and nacre1–4, which has inspired biomimetic attempts5–7, even-
tually finding its way into nanomaterial-assemblies of graphene,
boron-nitride8,9, carbon, or inorganic nanotubes10. The carbon
nanotubes (CNTs) are exceptionally promising to combine light-
weight and strength11 and have driven substantial development
in scalable synthesis12 and CNT-fiber spinning13.
The strength s of parallel array-assemblies derives from the

length of the constituents ~L and the traction at the interfaces, an
effective force per length f, opposing the tubes slippage against
each other, with s ~ fL14. This relationship holds well when axially
tube positions are random, and most tubes touch laterally to all
neighbors (i.e., 12 for a close packing). However, in fiber synthesis
from tube solutions/suspensions15–17, forests18,19, or direct spin-
ning from CVD growth20–24, the tubes often form some a priori
groups (‘random tangles of bundled tubes’25, or ‘liquid crystalline
domains’26,27) retained then in the fiber morphology. Some lateral
contacts expand while others are lost, directly affecting the
strength. The important goal of quantifying the morphology-
strength relation in realistic fibers calls for (i) capturing the
morphology in at least one measure, a transverse size (roughly a
‘diameter’) D of the grouped mesoscale domains, and then (ii)
exploring how it affects the overall strength of the fiber.
In general, the notion of strength scaling with a domain size is

rather common. In polycrystalline ductile materials like metals,
there is the Hall–Petch relationship of strength and size of
domains or grains, s � 1=

ffiffiffiffi
D

p
(due to dislocation slip restricted by

the grain boundaries)28. A similar relation, albeit of different
nature, was described for graphene29. In carbon fibers elastic
moduli and strength dependence on the crystallite size has also
been long noted empirically30,31.
The origin of the a priori stacking in the aligned domains of

tubes is due to long-range van der Waals attraction and high L/d
ratio, which causes neighbors to not only align, but also maximize
contact, to lower total surface energy. In models related to liquid
crystalline phases32, it has been shown that when rigid cylinders

with only repulsive (or sometimes weakly attractive33) interactions
are concentrated together in a liquid medium, they undergo
orientational alignment, to increase their translational entropy. If
agglomeration into aligned clusters of n tubes is treated as a
kinetic growth process, in the gas phase as an example, it occurs
on a timescale t ~ n/βc (c is the initial tube concentration and β is a
collision kernel)34. Upon densification, these clusters become
bundle-domains (‘mesotubes’) - and all assemble, positioned
randomly along the fiber axis, giving it a characteristic polycrystal-
line morphology. The origin of fiber morphology is a rich subject,
long observed and studied,15,16,26,27,32,33 is far beyond our scope.
Our work aims to explore how a given morphology determines

the mechanical strength of nanotube fibers, which has been a
challenge not addressed, to the best of our knowledge. By using
an expedient coarse-grained nanotube model, we quantify the
strength of a mesoscale nanotube fiber as a function of the size D
and degree of nanotube axial ordering in its constitutive bundles
(with the number of nanotubes in a bundle varying over nearly 3
orders of magnitude). The ability to access such sub-micron model
fiber sizes allows to demonstrate how the size↔ axial-ordering
interplay determines the overall nanotube fiber strength.

RESULTS
Strength scaling in a bulk polycrystalline fiber
Load transfer across the ends of a nanotube fiber occurs through a
continuous network of tube-tube interfaces. In the simple case of
nanotube assemblies with perfect orientational alignment, nano-
tubes occupy a triangular lattice with their lateral neighbors as
shown in Fig. 1a. When such fibers comprise domains formed by
longitudinally aligned tubes of nearly equal length, the load
transfer among the inter- and intra-domain interfaces are not
identical. The former have tubes that straddle between axially
adjacent tubes (Fig. 1a, left), forming bridges that can transmit load
longitudinally14,35. However, in the latter case, the axial alignment
of the gaps causes no tubes to straddle (Fig. 1a, right) and as a
result, the top and bottom pieces are completely disconnected.
Thus, in fibers composed of tubes with a narrow L-distribution, the
load is transmitted almost solely across the inter-domain interfaces.
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If n is the number of tubes in a domain, and n0 is the number of
inter-domain interfaces, then the total stress applied over the
entire fiber cross-section gets redistributed to only the tubes near
the domain interfaces, and the stress is effectively reduced by a
factor of n0=n, the periphery-to-bulk ratio. The tubes will then slip,
or fail at the interface, upon reaching the maximum load and the
strength should behave as

s � n0

n
fL

d2
: (1)

Here, the assumption that assemblies of nanotubes will always
fail preferentially at the interface and not by fracture of the tubes,
stems from the weakness of the interface, i.e., when fL/d2 < sNT, as
discussed in ref. 14. This has been the consensus suggested by
numerous state-of-the-art experiments4,36–41, observing a linear
relationship between the length of nanotubes and the strength of
their fibers. However, if the interfaces could be strengthened to
the point where they become at least as strong as the tubes
(fL/d2⩾ sNT), the failure occurs due to tube fracture, bringing the
strength of the fiber up to the intrinsic nanotube strength
(s→ sNT). In this case, the distinction between the inter- and intra-
domain interfaces is lost, and the entire assembly shall behave as
a continuum material, as is demonstrated later.
We show next that this scaling can be captured by a simple

coarse-grained model14 where all domains are identical and
space-filling (for details, see the “Methods” section), allowing also
for a quantitative understanding of the domain-size effect on the
strength of bundles. The validity of Eq. (1) is also extended to the
heterogeneity in the sizes of domains upon minor adjustments as
discussed in Supplementary Note 3.
One unit cell consists of 6 domains, each of n tubes laterally, and

2 tubes in the axial z-direction separated by gaps. In addition, the
nearest-neighbor domains are shifted axially by ±L/3, mimicking a
modified fcc arrangement42. A tri-color coding is used to identify
tubes of identical z-position, and hence visually distinguish
the domains as indicated in Fig. 1b, c. Primarily, the domains
are chosen to have a hexagonal geometry (Fig. 1c, top-inset)

with n and n0 determined by the number of hexagonal shells
around a central tube. Additionally, to assess the effects of
irregular-shaped domains43, a fractal geometry (Fig. 1c, bottom-
inset) is also adopted. Details about the geometry of domains is
provided in Supplementary Note 2.
The computed fiber strength, Fig. 1b, displays a power-law

dependence, s ~ n−α (with α≃ 1/2 for hexagonal domains; see
Supplementary Note 2). The inset shows the corresponding stress-
strain curves for both domain shapes, demonstrating changes in
fiber modulus Y as well as strength. It is interesting to note that
fractal domains demonstrate a higher strength for the same n as
compared to the hexagonal domains, suggesting that the domain
shape-irregularity can contribute to a strengthening of the fibers.
In Fig. 1c, s is plotted with respect to n0=n for both the domain
shapes, with computed points following closely the s=s0 ¼ n0=n
line, where s0 is the strength of the domain-less fiber (n= 1). In this
regard, the ratio n0=n is the fundamental descriptor of strength
scaling. Nonetheless, it may be more useful to relate strength to
the domain size D which is perhaps easier to estimate or even
measure through experiments. This is straightforward for regularly
shaped domains where the perimeter is � n0a, the area is ~ na2,
and the area-to-perimeter ratio is equivalent to diameter, so that
D � na=n0. Therefore, at least for regularly shaped domains, the
fiber strength scales inversely with domain size, s ~ 1/D.

Finite-width fibers: modulus and strength scaling
In Fig. 2, the effect of domain size D for hexagonal shaped
domains is explored for fibers of finite width (diameter≃ 18 nm)
and 0.6 μm periodic length, as shown in the top image (for details,
see the Methods section). Here the stress-strain curves (not
shown) follow a similar trend for both s and Y as in Fig. 1b, again
exhibiting s ~ 1/D. So far, however, these trends are only
applicable to very narrow length distributions. To generalize for
wider length distributions or even polydisperse lengths, an axial
disorder in the tube positions is introduced by applying a random
shift δi for each tube i, as shown in Fig. 2b, c. These shifts represent
the situation where tubes of different length assemble into
domains with some length-wise alignment, however their ends

Fig. 1 Morphology and tensile behavior of a bulk fiber element. a Schematic representation of the domains or bundles (different shades of
gray) viewed axially, demarcated by thicker lines which also represent the inter-domain interfaces. The thinner lines represent intra-domain
interfaces. Each interface is represented by the edge of a tube’s (hexagonal) Wigner--Seitz cell with length a=

ffiffiffi
3

p
, where a is the inter-tube

distance. The side cartoons show the axial arrangements of the encircled tubes: (left) inter-domain and (right) intra-domain interface.
b Computed tensile strength of a representative fiber volume element as a function of the number of tubes (bundle size) in a constitutive
domain for two domain shapes, shown in (b): hexagonal (circles) and fractal (triangles). The top-inset shows the respective stress-strain curves
used to obtain s for each domain shape. The solid lines are the analytical fits s(n) to the computed data points for the corresponding domain
shapes (see Supplementary Note 2). Bottom-inset shows the unit cell for the domain-less (n= 1) fiber. c The same data points as in b, but
plotted as a function of the periphery-to-bulk ratio n0=n � 1=D; the dashed line corresponds to s=s0 ¼ n0=n. Insets show cross-sectional views
of the hexagonal and fractal systems, for their largest simulated bundle sizes: n= 61 and 729, respectively. The black rectangles denote the
boundaries of the periodic cell. Tubes in the same domain/bundle are shown in the same color.
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may no longer be perfectly aligned. In such a scenario, there can
be some axial load transfer within the domain which is
determined by the degree of axial disorder ζ, defined here as
ζ � maxð δij j=2LÞ, with δi distributed uniformly. As a consequence,
the s ~ 1/D scaling, in Fig. 2a, is weighted by ζ, and eventually
disappears completely as the axial disorder maximises. Therefore,
ζ behaves like an ‘order parameter’ which tracks the transition
from the highly ordered phase with ζ= 0 to the phase when all
tubes are axially delocalized (ζ⩾ 1/3) inside the nanotube
assembly.
The scaling of s and Y with D can be understood if one

considers the assembly of very stiff tubes (YNT≫ (f/u*)(L/a)2; see
Supplementary Note 5), which are connected by weak (van der
Waals or sparsely-covalent) forces. Such an assembly will respond
to an external axial stress σ by first yielding and failing at the
interface which has the least stiffness or which is the most
compliant. For a regularly shaped domain, the load transfer occurs
through its exterior surface of area n0aL � LD (because n0 � D=d
and a ~ d). Moreover, taking into account the random shifts with
δ � h δij ji, the contact of individual (interior) tubes interlocked in a
so-called brush-pattern44 (shown in Fig. 2c) with the axially-
adjacent domain, adds area naδ ~ δD2/d (because n ~ (D/d)2).
Therefore, the tensile force σna2 ~ σD2 to the domain cross section
is balanced by the traction, or shear stress τ times the total
interface area: σD2≃ τ(LD+ δD2/d). For the linear-elastic response,
τ is related to the interface friction f as τ ~ (f/u*)(u/a) ~ (f/u*)(u/d),
where u is a small displacement between the rigid domain and its
lateral neighbors, which at the critical failure point (u= u*)
becomes τ ~ f/d. The strength is then obtained as

s ¼ σ� � f ðL=Dd þ δ=d2Þ: (2)

The modulus

Y ¼ σ�=ε� � f
u�

L2=Dd þ δL=d2
� �

; (3)

where ε*= u*/L, scales similarly as 1/D (or ~ 1/d2, when δ is
significant such that δ > Ld/D), but is higher order in tube length
Y ~ L2 until it reaches the intrinsic value of the nanotube, Y→ YNT
(see Supplementary Note 5).
These analytical estimates are verified by the coarse-grained

simulation results in Fig. 2b which plots the strength variation as a
function of the axial disorder ζ for different n. For ζ≲ 0.01, the
strength s= const, showcasing that the assumption of identical
length tubes can explain even the strengths of fibers with narrow
tube-length distributions. However, as the axial disorder increases,
0.01≲ ζ≲ 0.1, a linear regime s ~ ζ is observed as the domains
begin to lose their identity. The tubes in the interior of the
domains can form stronger interfaces with their axial neighbors,
and as a result an overall strengthening of the fiber occurs
whenever n > 1. Further axial disorder increase, up to ζ≃ 1/3, for
all n values leads to the same average configuration, and therefore
s converges to a single value.
In contrast, for the domain-less fiber with no axial disorder,

which are realized for (n, ζ)= (1, 0), the strength is the maximum
because this case shows the best load transfer due to the fcc-like
crystalline ordering of the tubes, as defined in ref. 14, which
ensures the best possible overlap between every tube. This
means that every interface is an inter-domain interface, and such
a fiber will transmit load across the entire cross-section along the
axial direction. In this case, any axial disorder ζ > 0, reduces the
perfect overlap arrangement and causes a reduction in strength
until ζ≃ 1/3.

Fig. 2 Strength scaling in a finite-width fiber. a Computed fiber tensile strength (open circles) as a function of the domain size, s(D). The
inset illustrates the domains and fiber cross-sectional dimensions. The solid line shows the 1/D-regression to the computed data points.
b Fiber strength scaling with the axial disorder ζ. Error bars are provided for the n= 1 and n= 61, obtained from averaging over three random
realizations for the same ζ. The solid lines in a and b are obtained by fitting the empirical relationship, s(D, ζ)= a(ζ)+ b(ζ)/(D+ c) to the
computed data points, where a(ζ), b(ζ) are piecewise polynomial functions and c is a constant (see details in Supplementary Note 4). The
dashed line in b represents the case where n → ∞ or when one domain extends over the entire fiber width. c Perspective view of the fiber
showing the brush-pattern interface due to the axial misalignment. The top image is a rendering of the entire simulated fiber for the case of
largest domains (n= 61).
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One cannot but notice the apparent similarity between the
nanotube fiber morphology as controlled by ζ and the common
liquid-crystalline phases45. As illustrated in the insets in Fig. 2b, the
axial ordering for n→∞ (truncated by the finiteness of the fiber
itself) and ζ= 0 can be associated with a smectic phase, and a
nematic phase for ζ= 1/3 and all n46. The modified fcc
arrangement may then be categorized as a crystalline phase with
n= 1 and ζ= 0. Within such a description, the configurations with
n > 1 and ζ= 0, are hybrids between crystalline and smectic
phases. The gray dashed curve in Fig. 2b, demonstrates
the strength scaling of a pure smectic→ nematic transition, where
the strength of smectic configuration will truly be zero because
the infinitely large domains are axially disconnected.
Figure 3 shows the stress distribution in the nanotubes of the

finite-width fibers as they approach critical failure, i.e., maxima of
the stress-strain curve. When the interface friction f is low enough,
as in Fig. 3a, b, to allow tubes to slip upon critical failure, the
patterns formed by the highly stressed tubes clearly distinguishes
the domain-less fiber from the one with the largest domains, n=
61. Similar observations are also made for the representative
volume elements of the bulk fibers with both hexagonal and
fractal-shaped domains as discussed in Supplementary Note 1 and
also Supplementary Figure 1. However, for very strong interfaces,
fL/d2≫ sNT, as demonstrated in Fig. 3c, d, the fiber will behave as a
monolithic block with homogeneous stress distribution. In this
case, upon reaching the maximum load, the tubes will break. The
axial gaps act as local stress concentrators and their longitudinal
alignment due to the formation of domains results in a large hole

of size D, comparable to the fiber cross section. These holes will
have a larger stress concentration which leads to a lower strength
of the fiber as indicated by the overall darker color in Fig. 3d. The
fiber strength in these cases will be s ~ sNT/K, where K is the stress
concentration due to the gaps or holes. Interestingly, one can
observe a similar trend in the stress distribution using continuum
analysis, if nanotube fibers are modeled as anisotropic materials as
detailed in Supplementary Note 6 and also Supplementary Fig. 5.
In Fig. 4 the stress distribution inside the nanotubes of finite-

width fibers is shown along the longitudinal as well as transverse
cross sections for different (n, ζ) values. Clearly, for ζ= 0, Fig. 4a, d,

Fig. 3 Stress distribution in a polycrystalline fiber for domains of
perfectly aligned tubes (ζ= 0). Stress distribution in the fiber
during tensile loading simulations right before critical failure for
select combinations of size and friction (n, f), as indicated by the
corresponding numerical values. Note that the colorbars for a, b and
c, d have different ranges to make the stress distribution clearly
visible.

Fig. 4 Simulated stress tomography of a finite-width fiber.
Longitudinal and transverse cross-sectional view of the finite-
width fiber showing stress distribution during tensile loading
simulations right before critical failure for select combinations of
(n, ζ) as indicated by the corresponding numerical values. For each in
(a–f), the dashed lines indicate the position of the respective cross
section. The cyan filled circles represent gaps/holes in the fiber cross
section.
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the regular arrangement of tubes results in a regular stress
pattern. Most notable, however, are the hexagonal-shaped
boundaries, also noticeable in Fig. 3b, outlined by the higher-
stressed tubes along the periphery of the domains, as seen in the
transverse cross section in Fig. 4d. Each such domain boundary
surrounds tubes which are essentially load-free throughout their
length. This further confirms that the tubes in the interior of the
domains do not participate in appreciable load transfer along the
axis of the bundle. A direct consequence of this is the observation
that the maximum stress exhibited by constituent tubes in Fig. 4d
never exceeds≃ 4 GPa, while in Fig. 4a the maximum value
approaches≃ 7 GPa (lighter color), which also explains their
corresponding fiber strengths.
With non-vanishing axial disorder, the regular stress patterns in

Fig. 4a, d get slightly smeared out in Fig. 4b, e for ζ= 0.05, and is
completely smeared out in Fig. 4c, f, when ζ= 1/3. As noted
above, the two cases in Fig. 4c, f statistically represent the same
configuration of the fiber but arrived at via different (n, ζ) paths,
and therefore do not show significant difference in stress levels.
These figures indicate that as the axial disorder increases, the
domains start to lose their identity (gradually ‘dissolve’) and
behave like a randomly shuffled arrangement of tubes. The tubes
in the interior of the domains when ζ≪ 1/3 are not completely
load-free, but exhibit lower stress-levels than the tubes on the
domain boundaries.

DISCUSSION
In summary, by employing an expedient coarse-grained model to
access ~ μm length scale, we demonstrate that when identical
nanotubes in a fiber organize in D-sized domains, or bundles, with
perfect end-to-end alignment, the fiber strength decreases as
s ~ 1/D. This reduction in strength is shown to hold even for fibers
comprising domains made from tubes of narrow length distribu-
tion. A similar scaling with the tube diameter d for domain-less
bundles can be expected and is easily seen if domains are
considered as ‘mesotubes’, which has been indeed proposed
earlier, based on dimensional arguments, for nanotube aspect
ratios L/d such that the strength is dominated by frictional load
transfer47.
Additionally, the uncovered trends point to possible strategies

for strengthening of fibers, e.g., introduction of irregularities in
domain shapes, which increases the periphery-to-bulk ratio n0=n.
Another approach is to ensure higher degree of axial disorder
when the tubes assemble into domains, which improves load
transfer efficiency among axial neighbors. Therefore, highly
polydisperse nanotube assemblies should, in principle, always
have highly axially-misaligned domain configurations. The latter,
upon proper densification to rule out large gaps between axially
adjacent domains should demonstrate higher strength than the
fibers with much narrower tube-length distributions. The multi-
scale strength degradation due to the complex microstructure of
nanotube fibers including the effects of voids/pores and
entanglements of domains may be further explored by employing
multi-level hierarchical modeling as was done, e.g., in ref. 48.

METHODS
Coarse-grained model and simulation details
All systems are represented using the coarse-grained model described in
ref. 14 for a (5,5) CNT, without loss of generality. In the models for bulk and
finite-width fibers, all tubes have identical length L= 0.1 μm, and the
interface friction is set to f= 0.003 nN/Å, a combination chosen to effectively
have strength ~ 4–5 GPa for the domainless fiber. The interface is described
by a perfectly elasto-plastic constitutive relation, where the interface remains
linear-elastic, i.e., f(z, u< u*)= (f/u*) ⋅ u, up to a displacement u= u*≃ 0.8 nm,
after which f(z, u > u*)≡ f= const. Here the difference between the function
f(z, u) and its value f should be noted, with z being the axial coordinate. In the

fiber models, periodic boundary conditions are imposed in each direction for
the bulk, and along z-only for the finite-width. Each transverse lattice point
(x, y) contains 2 (for bulk) or 6 (for finite-width) tubes per length, which leads
to a z-period (box length)≃ 0.2 μm and≃ 0.6 μm, respectively. The cross-
sectional area of a tube ANT is defined as the area of the tube’s hexagonal
Wigner–Seitz cell in its closed-packed lattice with lattice constant a, ANT ¼ffiffiffi
3

p
a2=2 ’ 86 Å2, which is used consistently to define the axial stress and

modulus of the tube. All tensile loading simulations are performed in
LAMMPS49 using the same protocol as in ref. 14.
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